• Tidak ada hasil yang ditemukan

Heat transfer

N/A
N/A
Protected

Academic year: 2024

Membagikan "Heat transfer"

Copied!
17
0
0

Teks penuh

(1)

Heat transfer

(2)

momentum transfer; result of molecular transfer of momentum conduction; 1) by molecular interaction, 2) by free electrons

; primarily a molecular phenomenon

dv

   dy

(

T

)

   

τ v v

qx dT A  k dx

Aq   k T

(3)

heat conduction in a hollow cylinder

(2 )

r

dT dT

q kA k rL

drdr

   

2 ( )

ln /

r i o

o i

q kL T T

r r

  

r lm

q kA t

r

 

2 1

2 1

( )

ln( / )

lm

A A

A A A

 

heat conduction in a hollow sphere

r gm

q kA t

r

 

 A

gm

 A

1

A

2
(4)

convection; involves energy exchange between a surface and an adjacent fluid

; forced convection, natural convection

radiation; no medium is required, depends on temperature /

q A h T

q 4

A T

2

0

p : u

u u u p

t

c T u T k T u

t

 

 

 

        

  

 

        

  

 

(5)

h

i

h

0
(6)

0 0 5

4

, 4

3

, 3

2

2 1

1 1

A q h

t t

A k

q r t

t

A k

q r t

t

A q h

t t

lm c c

c lm b b

b i i

 

 

Individual temperature drops

(7)

Overall temperature drops

 

 

  

 

 

 

0 0 ,

,

0 0 ,

, 5

1

5 1

1 1

1 1

A h A

k

r A

k

r A

q h

A q h

A k q r A

k q r A

q h t

t

t t

t

lm c c

c lm

b b

b i

i

lm c c

c lm

b b

b i

i overall

 

 

  

 

 

0 0 ,

,

5 1

1 1

A h A

k

r A

k

r A

h

t q t

lm c c

c lm

b b

b i

i

R q toverall

 

(8)

 

 

     

 

0 ,

0 ,

0 0

0

1 h A

k

r A

A k

r A

A h

A

t q A

lm c c

c lm

b b

b i

i

overall

Overall coefficients of heat transfer based on the outside area U 0

0 ,

0 ,

0 0

0

1 1

h A

k

r A

A k

r A

A h

A

U

c c lm

c lm

b b

b i

i

 

 

overall

t A

U

q  0 0 

(9)

 

 

     

 

0 0 ,

,

1

A h

A A

k

r A

A k

r A

h

t q A

i lm

c c

c i

lm b b

b i

i

overall i

Overall coefficients of heat transfer based on the inside area U i

i i lm

c c

c i

lm b b

b i

i

i

h A

A A

k

r A

A k

r A

h

U

, , 0

1

1  

 

overall i

i A t

U

q  

(10)

Overall coefficients of heat transfer

overall i

i

overall

t A

U q

t A

U q

 0 0

(11)

R q t overall

 

Overall coefficients of heat transfer

i i A U

A

R U 1 1

0 0

i i A U

A

U 0 0 

(12)

Fouling in heat exchanger

(13)

Fouling Coefficients

o do

lm c

o c

c lm

b o b

b i

di o i

i o o

scale d

h h

A A k

r A

A k

r A

h A A

h U A

t A h q

1 1

1

, ,

 

 

Outside fluid Outside

fluid Inside

fluid

Outside fluid

kc kb

Inside fluid

Inside fouling

ho

Outside fluid

hi

hdi

outside fouling

hdo

hdi hd0

0 ,

0 ,

0 0

0

1 1

h A

k r A A

k r A A

h A

U c clm

c lm

b b

b i

i

 

 

(14)

Example

A reflux condenser contains ¾ in. 16-gauge copper tubes in which cooling water circulates. Hydrocarbon vapors condense on the exterior surfaces of the tubes. Find the overall heat-transfer coefficient U

o

. The inside convective coefficient can be taken as 4500 W/m

2

·K, and the outside coefficient as 1500 W/m

2

·K.

Approximately fouling coefficients from Table are h

d0

= 5700 W/m

2

·K

h

di

= 2840 W/m

2

·K

Overhead vapors from crude-oil distillation 1000

Water, Great Lakes, over 125oF 500

Btu/(h)(ft2)(oF) ,

1

1 1

o

o o b o

i i di i b b lm do o

U A A r A

h A h A k A h h

     

(15)

Outside fluid Outside

fluid Cooling

water

Outside fluid

k

Inside fluid

inside fouling

ho=1500

Condensing vapor

hi =4500

hdi =2840

outside

fouling hdo =5700

Example Find U o

¾” 16-gauge copper tube r

i

=0.0157

r

o

=0.0191

unit: W/m2·K

,

1

1 1

o

o o b o

i i di i b b lm do o

U A A r A

h A h A k A h h

     

(16)

Example

00067 .

1500 0 1 , 1

00018 .

5700 0 1 1

0000047 .

) 0 0175 .

0 )(

380 (

) 0191 .

0 )(

00165 .

0 (

00043 .

) 0 0157 .

0 )(

2840 (

0191 .

0

00027 .

) 0 0157 .

0 )(

4500 (

0191 .

0

0175 .

0 0157

. 0

0191 .

ln 0

0157 .

0 0191 .

0 ln

0191 .

0 ,

0157 .

0 ,

/ 380

/ 2840 678

. 5 500

/ 5700 678

. 5 1000

/ 1500 ,

/ 4500

0 0

0 0

0 0

0 2

2

2 0

2

0 0

 

 

 

h h

r k

r r

r h

r r h

r

m r

r r r r

m r

m r

K m W k

K m

W h

K m

W h

K m

W h

K m

W h

d lm b

i di

i i

i i l

i d

d i

m i

0 0

0 0

0 1 1

1

0 h

h r

k r r r

h r r

h U r

d lm

b i

d i

i i

hi hdi hdo

k ho

(17)

Example

K m

W U

A U A

U

K m

W

h h

r k

r r r

h r r

h U r

i

o o i

i

d lm

b i

d i

i i

 

 

 

2 2

0 0

0 0

0

/ 785

) 0157 .

0 /((

) 0191 .

0 )(

645 (

/ 00155 645

. 0

1

00067 .

0 00018 .

0 0000047

. 0 00043 .

0 00027 .

0

1 1 1

1

0

hi hdi hdo

k ho

Resistance of metal wall is negligible

Fouling Resistance is significant~39%

i i

A U A

R U 1 1

0 0

Referensi

Dokumen terkait

Afsaneh Mojra 2 Figure 2: Cooling of a circular fin by means of convective heat transfer Where h is the convective heat transfer coefficient, P the perimeter, k the thermal

“Energy in transit due to temperature difference.”gy p Thermodynamics tells us:  How much heat is transferred Q H h k i d W  How much work is done W  Final state of the system

NOMENCLATURE A Activation energy, J/mol H2 Abs Absorption Cp Specific heat, J/kg-K Des Desorption h Over all heat transfer coefficient, W/m2-K K Permeability, m2 m Mass flux of

Nomenclature The following symbols are used in this paper: Ah total heated surface area m2; J Leverett function; K absolute permeability tensor m2; kc thermal conductivity W/mK;

W/m2 h = convective heat transfer co-efficient W/m2K ∆T = Difference between swimming pool water and ambient air temperature °C P = vapour pressure of water at the gas temperature kPa

x Gr Grashof number h convective heat transfer coefficient W/m2.K H height of the cavity m Q heat generation parameter H linear shape function k thermal conductivity of fluid

81m/s 2 Temperature: 1323 K Temperature film coefficient: 2864.19 W/m2 K at outer surface Fig.14 Modelling of structural member inside a pipe Fig.15 Meshing of structural member and

Variables Values Dimensionless Re Reynold for inner pipe tube 107011 Dimensionless Re Reynold for outer pipe annulus 54463 Inner convective heat transfer coefficient in W/m2k hi