• Tidak ada hasil yang ditemukan

InviscidFlow_Week08(H Park).pdf

N/A
N/A
Protected

Academic year: 2024

Membagikan "InviscidFlow_Week08(H Park).pdf"

Copied!
14
0
0

Teks penuh

(1)

2017 Spring Inviscid Flow 2017 Spring

INVISCID FLOW Week 8

Prof. Hyungmin Park

Multiphase Flow and Flow Visualization Lab.

Department of Mechanical and Aerospace Engineering Seoul National University

Joukowski Transformation

o Solutions for the flow around ellipses and a family of airfoils

– For zà±¥, z= z: the complex velocity in the two planes is the same far from the origin (identity mapping)

• if a uniform flow of a certain magnitude is approaching a body in the z-plane at some angle of attack, a uniform flow of the same magnitude and angle of attack will approach the corresponding body in the z-plane.

– Singularity point of transformation @ z= 0 (normally, inside the body and of no consequence)

– Critical points of transformation:

• Smooth curves passing through critical points may become corners in the transformed plane.

c2

z

z

= +

z

(c2: real number)

/ 1 ( ) ( )

dz d

z

= ®W z =W

z

/ 0; = c dz d

z

=

z

±
(2)

2017 Spring Inviscid Flow

Joukowski Transformation

3 c

-c 2c

-2c

1 1

1 2 1 2

2 2

2 2 2

2 2

( ) 2( )

1 1 1 1

2 2 2 2

2

1 1

1 2 1 2

2 2

( ) ( ) 2

2 , 2

2 ,

, 2( )

i iv

i i v v

i iv

c c z c c

z c z c

z c c

R e e R

e e

R e e R

R v v

R

q q q

q

z z z

z z z

r r

r r

r q q

r

- -

æ ö

+ - - -

+ = - = ® + = çè + ÷ø

æ ö æ ö

= ç ÷ = ç ÷

è ø è ø

æ ö

® = ç ÷ - = -

è ø

Joukowski Transformation

o Therefore, a smooth curve passes through the point z= c, the corresponding curve in the zplane will form a knife-edge or cusp.

o Example: a circle centered at the origin of the z-plane (radius is c)

, 2 cos

iv iv iv

ce z ce ce c v x iy

z

= = + - = = +
(3)

2017 Spring Inviscid Flow

Application of Joukowski Transformation

o Flow around Ellipses

– simple geometry of the circle, which we know details, will be placed in the z-plane, and the corresponding body in the z-plane will be

investigated

c: real and positive

• Radius: a(> c), center at the origin

5

2

2 2 2

2 2

cos sin

cos , sin

iv

iv iv

ae z c

c c c

z ae ae a v i a v

a a a

c c

x a v y a v

a a

z z

z

-

= ® = +

æ ö æ ö

= + = ç + ÷ + ç - ÷

è ø è ø

æ ö æ ö

= ç + ÷ =ç - ÷

è ø è ø

Application of Joukowski Transformation

– Equation of ellipses in z-plane is obtained.

1) Complex potential for a uniform flow (U) approaching this ellipse at an angle of attack aßthe same flow to approach the circular cylinder in the z-plane

2 2

2 2 1

/ /

x y

a c a a c a

æ ö æ ö

\çè + ÷ø +çè - ÷ø =

x h z

-plane

2

( ) a

F z U z x

æ ö

= ç + ÷

è ø

a

a

x

¢

h

¢

plane

z

¢ -

2

( ) a , ' i

F z U z z ze a z

æ ö -

¢ = çè ¢+ ¢÷ø =

U

U

x

h

(4)

2017 Spring Inviscid Flow

Application of Joukowski Transformation

7

2

2 2

2 2 2

( )

0 :

2 2

i a i

F U e e

c z z

z z c c

a a

z z

z

z z z z

z

æ - ö

\ = ç + ÷

è ø

= + ® - + = = ± æ öç ÷è ø -

As zà¥, zàz:

2 2

2 2

z z

z

= + æ öç ÷è ø -c

2 2

2

( ) 2

2 2

i a i i z z

F z U ze e e c

c

a a a

- -

é æ öæ æ ö öù

ê ç ÷ú

= êë +çè - ÷çøè - ç ÷è ø - ÷øúû

Application of Joukowski Transformation

2) Position of stagnation point

• In z-plane:

• Corresponding points in z-plane aeia

z

= ±

2 2 2

cos sin

i c i c c

z ae e a i a

a a a

a -a æ ö

a

æ ö

a

= ± ± = ±ç + ÷ ± ç - ÷

è ø è ø

2

a

=

p

a

=0 ???
(5)

2017 Spring Inviscid Flow

Application of Joukowski Transformation

– Modified Joukouski Transformation

9

2 2

c , b

z

z

c ib z

z

z z

= + = ® = -

2 2

2 2 1

/ /

x y

a b a a b a

æ ö +æ ö =

ç - ÷ ç + ÷

è ø è ø Equation of ellipses in z-plane

2 2

2

( ) 1 2

2 2

a z z

F z U z b

b

é æ öæ æ ö öù

ê ç ÷ú

= êë -çè + ÷çøè - ç ÷è ø + ÷øúû

Kutta Condition and Flat-plate Airfoil

o As a reminder,

– potential flow solution for flow around a sharp edge has a singularity (infinite velocity) at the edge itself àphysically impossible

o Two ways to correct this

– Place separation point at the edge, i.e., V= finite value

Place stagnation point at the edge, i.e., V= 0 (Kutta Condition) o From the flow around an ellipse, if càa, then resulting ellipse in the z-

plane degenerates to a flat plate defined by the strip (-2a£x £2a).

Physically impossible to realize

(6)

2017 Spring Inviscid Flow

Kutta Condition and Flat-plate Airfoil

o Leading-edge: real airfoils have a finite thickness and so have a finite radius of curvature at the leading edge àwill not be a matter

o Trailing-edge: usually quite sharp

– if a circulation exists around the flat-plate and the magnitude of this circulation is enough to rotate the rear stagnation point to the trailing edge, this problem will be solved.

o Kutta condition

– For bodies with sharp trailing edges that are at small angles of attack to the free-stream, the flow will adjust itself in such a way that the rear stagnation point coincides with the trailing edge

11

Kutta Condition and Flat-plate Airfoil

o How to determine the amount of circulation?

4

p

Uasin (clockwise direction)

a

G=

sinqs 4 Ua p

=- G Recall

2

2 2

2

2 2 2

2 2

2 2

( ) 2 sin ln

, 2 2

( ) 2 sin ln 1

2 2 / 2 ( / 2) 2 2

i i

i i

F U e a e i Ua

a

a z z

z a

z z a e z z

F z U a e i a a a

z z a a

a a

a a

z z a z

z

z z

z

a

-

-

æ ö

= ç + ÷+

è ø

= + = + æ öç ÷ - è ø

ìé ù é æ öùü

ïê æ ö ú ê ç æ ö ÷úï

= íïîêë + ç ÷è ø - úû + + - + êë çè + ç ÷è ø - ÷øúûýïþ

(7)

2017 Spring Inviscid Flow

Kutta Condition and Flat-plate Airfoil

o Kutta-Joukowski Law (calculation of the lift force)

– Lift coefficient, CL

13

4 2 sin

L=

pr

U a

a

2 2 2 sin ~ 2

0.5 0.5 (4 )

L

L L

C U l U a

p a pa

r r

= = =

(for small a)

Symmetrical Joukowski Airfoil

o A family of airfoils (in z-plane) obtained by Joukowski transformation from a series of circles in z-plane whose centers are slightly displaced from the origin àJoukowski Airfoils

– Variable: center and radius of the circle

o Let’s consider the displacement of the circle in real axis.

o As a reminder,

– if the circle passes through the two critical points of the Joukowski transformation, z= ±c, then a sharp edge is obtained in z-plane

o For the leading edge of the airfoil to have a finite radius of curvature and if there should be no singularities in the flow field, the point z= -cshould be inside the circle in z-plane.

o But, the circle should pass z= c for the trailing edge to be sharp.

Center:

Radius: (1 ), / ( 1)

m

a c m c m c z

e e

=-

= + = + = !

(8)

2017 Spring Inviscid Flow

Symmetrical Joukowski Airfoil

15

Symmetrical Joukowski Airfoil

o

o The chord length, (chord length is not affected by the shift of circle) 2

c

c m

z z ì =

í =- - î

Trailing edge Leading edge

2

( 2 )

1 2

z c

z c e c

e ì =

ïí =- + -

ï +

î c2

z z

= + z

2 2

( 2 ) 1 2 ( ) 2 ( ) 2

z =- c+ e -céë - e +O e ùû =- c O+ e !- c 4

l = c

m a R

v

[ ]

2 2 2 2 2

2 2 2

2

1/ 2

2

2 cos( ) 2 cos

( ) 1 2 cos

( ) 1 2 cos 1 cos ( )

1 (1 cos )

a R m Rm v R m Rm v

m m

c m R v

R R

m m

c m R v R v O

R R

R c v

p

e e

= + - - = + +

æ ö

+ = ç + + ÷

è ø

æ ö æ ö

+ = ç + ÷ = ç + + ÷

è ø è ø

\ = + -

(9)

2017 Spring Inviscid Flow

Symmetrical Joukowski Airfoil

o Then, from the Joukowski transformation

– To find the maximum thickness,

17

[ ]

[ ]

2 2

2 2

1 (1 cos )

1 (1 cos )

1 (1 cos ) 1 (1 cos ) ( ) 2cos 2 (1 cos )sin ( )

2 cos

2 (1 cos )sin

iv

iv

iv iv

iv iv

c c

z Re

Re

c v e ce

v

c v e c v O e

c v i v v O

x c v

y c v v

z z

e e

e e e

e e

e

-

-

= + = +

= + - +

+ -

é ù

= + - + ë - - + û

é ù

= ë + - + û

ì =

í = -

î

2

2 1 1

2 2

x x

y c

c c

eæ ö æ ö

= ± ç - ÷ -ç ÷

è ø è ø

max

2 4 3 3

0 ,

3 3 2

3 3

dy v y c

dv

t c

p p e

e

= ® = ® = ±

=

Symmetrical Joukowski Airfoil

o Ratio of the thickness to chord:

o Equation for airfoil

o Circulation for Kutta condition

o Lift force and lift coefficient

max 3 3 max

or 0.77 4

t t

l l

e e

= =

2

max

0.385 1 2 1 2

y x x

t l l

æ ö æ ö

= ± çè - ÷ø -çè ÷ø

4 sin 1 0.77tmax sin

Ua Ul

p a p æ l ö a

G = = çè + ÷ø

2 max

max

1 0.77 sin 2 1 0.77 sin

L

L U l t

l C t

l

pr a

p a

æ ö

= ç + ÷

è ø

æ ö

= çè + ÷ø

(10)

2017 Spring Inviscid Flow

Circular-Arc Airfoil

o We will show that a circle whose radius is slightly larger than cand whose center is displaced along the imaginary axis of the z-plane produces an airfoil that has no thickness but has a camber.

19

-c c

-2c 2c

Circular-Arc Airfoil

o

2 2 2 2

2 2

2 2

2 2 2 2 2 2 2 2

2 2 2

cos sin

sin cos sin cos sin cos

4 sin cos

iv iv

c c c c

z Re e R v i R v

R R R

c c

x v y v R v v R v v

R R

c v v

z z

- æ ö æ ö

= + = + =ç + ÷ + ç - ÷

è ø è ø

æ ö æ ö

- =ç + ÷ -ç - ÷

è ø è ø

= equation of the airfoil surface in the z-plane

m a R

v

2 2 2 2 2

2 2

2

2 2 2 2

2 2

2 2

2 cos( ) 2 sin

2

sin , cos 1

2 2 sin 2

2 4

4

a R m Rm v R m Rm v

R c y y

v v

Rm m v m

x y c m y c

m

c m c m

x y c c

m c m c

= + - p - = + -

= - = = -

ö + + æç - ÷ =

è ø

é ù

é æ öù æ ö

+êë + çè - ÷øúû = êêë +çè - ÷ø úúû

-c c

(11)

2017 Spring Inviscid Flow

Circular-Arc Airfoil

o Using and linearize the equation, we get

o Chord length:

o Camber height:

o Circulation to satisfy Kutta condition

o Lift force and lift coefficient

21

2 2 2

2 2

2

1

4 m

c

c c

x y c

m m

e =

æ ö æ ö

+ç + ÷ = ç + ÷

è ø è ø

!

4 l = c

2 h= m

2 2 2 2

2

1 2

8 4 16

l l l

x y

h h

æ ö æ ö

+ç + ÷ = ç + ÷

è ø è ø

4 sin m 4 sin m

Ua Uc

c c

p æa ö p æa ö

G = çè + ÷ø = çè + ÷ø

4 2 sin

8 sin 2 sin 2

L

L U c m

c

c m h

C l c l

pr a

p a p a

æ ö

= çè + ÷ø

æ ö æ ö

= çè + ÷ø= çè + ÷ø

Joukowski Airfoil

o Cambered airfoil of finite thickness

– Joukowski transformation in conjunction with a circle in the z plane whose center is in the second quadrant.

(12)

2017 Spring Inviscid Flow

Joukowski Airfoil

o Equation for the upper and lower surfaces of the airfoil

o Lift coefficient

o Complex potential

o Circulation for Kutta condition

23

2 2 2 2

2 2 max

1 0.385 1 2 1 2

4 16 8

l l l x x

y x t

h h l l

æ ö æ ö æ ö

= çè + ÷ø- - ± çè - ÷ø -çè ÷ø

Thickness effect Circular-arc centerline

max 2

2 1 0.77 sin

L

t h

C = pæçè + l ö÷ø æçèa + l ö÷ø

Thickness effect Camber effect

2

( ) ( ) ln

2

i i

i i

i

a e i me

F U me e

me a

a d

d a

d

z z z

z p

é - ù G æ - ö

= êë - + - úû+ çè ÷ø

max 2

1 0.77t sin h

Ul l l

p æ ö æa ö

G= ç + ÷ ç + ÷

è ø è ø

* Limit in increase of thickness and camber àstall

Schwarz-Christoffel Transformation

o maps the interior of a closed polygon in the z plane onto the upper half of the z-plane, while the boundary of the polygon maps onto the real axis of the z plane.

/ 1 / 1 / 1

( ) ( ) ( )

( 2)

dz K a b c

d

n

a p b p g p

z z z

z

a b g p

- - -

= - - -

+ + + = -

!

!

(13)

2017 Spring Inviscid Flow

Schwarz-Christoffel Transformation

25 o Example flow field

– Flow around a flat plate of finite length oriented vertically (90 °angle of attack)

1/ 2 1 1/ 2

2 2

( 1) ( 0) ( 1)

1 1 dz K d

K

z K D

z z z

z z z

z

- -

= + - -

= -

= - +

(D: constant of integral, complex)

1 0

1 0

0 2

z z z i a z

z z

= « = ìï =- « = íï = « = î

2 2 1

z a z

\ = -

Schwarz-Christoffel Transformation

o To find a magnitude of uniform velocity,

– As zà¥, zà2az andW( )z ®2aW z( ) 2= aU ( ) 2

F z aUz

\ = Complex potential for horizontal uniform flow

2

2 2 2 2

2 1

1 4 , ( ) 4

2 z

a

z a F z U z a a

z z

ö

= ± æçè ÷ø +

\ = + = +

From mapping function zà¥, zà¥

This result can be confirmed by the flow around an vertical ellipse using a modified Joukowski transformation

(14)

2017 Spring Inviscid Flow

Source in a Channel

27 o Flow generated by a line source located in a two-dimensional channel

– Complex potential in z-plane

z-plane z-plane

first quadrant only, source is located at z= 0

1/ 2 1/ 2

2 1

( 1) ( 1)

1 cosh

dz K

d K

z K D

z z

z z

z

- -

-

= + - =

-

= +

1 0

1 z

z il z

z

= « = ìí =- « = î

cosh 1 , cosh

l z

z l

z z p

p -

\ = =

( ) ln( 1), ( ) ln cosh 1

2 2

m m z

F F z

l

z z p

p p

æ ö

= - = çè - ÷ø

Source in a Channel

o Using cosh(X Y+ ) cosh(- X Y- ) 2sinh sinh= X Y

2

2

cosh 1 2sinh 2

( ) ln 2sinh ln sinh ln 2

2 2 2 2

ln sinh 2

z z

l l

m z m z m

F z l l

m z

l

p p

p p

p p p

p p

- =

æ ö æ ö

= çè ÷ø= çè ÷ø+

æ ö

= çè ÷ø

this term does not affect the velocity

4 m= Ul

Referensi

Dokumen terkait