Wave propagation (overview)
Rayleigh`s method [Linear conservative system (no damping)]
-
The equation of Energy for a vibrating systemz the original Eq. : k 0
x x
m
••+ =
z multiply by x
• : k 0
x x x x m
•• • •
+ =
z integration of the Eq. : 1 2 1 2 2( ) 2
x k x c
m
• + = ( c: integral constant )
→
1 2 1 2( )
2 m x 2 k x c m
• + =
Instantaneous Instantaneous kinetic Energy potential Energy
z When the displacement x is a maximum Ⅹ
The velocity x 0 → all the dynamic energy in the system is potential
• =
→
1 22kX =cm=P
z When the displacement x is zero, the velocity x
• will be a maximum X
•
→
all the d.e. is kinetic→
1 2 2k X cm• =
- Thus, 1 2 1 2 1 2 1 2
( ) ( )
2m x 2kx 2kX 2m X P
• •
+ = = =
sin x=X wt
cos ( )
x wX wt X wX
• •
= =
- Rayleigh`s principles
z The fundamental natural frequency as calculated from the assumed shape of a dynamic deflection curve of a system will be equal to or higher than the system`s true natural frequency
(upper bound nature ↔ Southwell-Dunkerley Method)
z Small departures from the shape of the true dynamic – deflection curve will not be critical in the determination of the system`s wn
(justifies the use of the static deflection curve)
Ex. 1. Natural frequency of the spring-mass system (spring w/ its weight)
- maximum KE(1 2 2m X( )
• )
Spring: the displacement of spring at distance x
- x 0cos n
z Z w
= L t ( ← assumed the extension of the spring is linear ) - Velocity of element dx, x n 0sin n
z w Z
= −L w t - Max. KE of the element ( mass = (ws)
g dx ) d(KE)max =
2 ws
gdx(
2
(x n 0) Lw Z ← [
2 0
1 ( ) ]
2
s
n
w x
dx w Z
g L
⋅ ⋅
- For the whole spring
2 2
0 max
0
( ) ( )
2
L
s n
w w Z
KE x dx
g L
=
∫
2 2
0
1 2 3
s n
w Lw Z
= g - mass :
2 2
max 0
1 1
( ) ( ) ( )
2 2
m n
KE m Z W w Z
g
= • =
- The total KE = 2 02
1
1( 3 )
2
m s
n
w w L g w Z +
- maximum PE (1 2 2kX )
2 2
max 0
1 1
( )
2 2
PE = kX = kZ
- (KE)max =(PE)max
2 2 2
0 0
1
1( 3 ) 1
2 2
m s
n
W W L
w Z kZ
g
+ =
1 3
n
m s
w kg
W w L
∴ =
+
Ex. 2 Cantilever beam
cos n z=y w t
n sin n
z w y w
• = − t
Assume the dynamic deflection curve of the beam as a static defection curve of a weightless beam w/ the concentrated load P acting at its end.
- (PE)max
→ 0 3
3 y PL
= EI →
( k
e q)
at the free end is (3
3 L
EI )
→ max 1 2 1 02 3 3 0
( )
2 2 2
EI 2
PE kX ky
= = = L y
- (KE)max
→ 2 2
0
1 1
( ) ( )
2 2
L n
m X W w y dx g
• =
∫
2 2 3 2
0 0
( ) [3( ) ( ) ]
2 2
L
w yn
w x x
g L L dx
=
∫
−2 2
0
1 33( )
2 140 n
wL w y
= g
- n 3.56 gEI4
w = wL (cf. ( n exact) 3.515 gEI4
w = wL )
Logarithmic Decrement
-
12
loge x
δ = x , x1&x2: successive peak amplitudes
And 0
exp( 2)sin( )
1
nd
nd
z Z ξw t w t φ ξ
= − +
−
If x1 is the amplitude at w tnd 1, then x2, at (w tnd 1+2π)
→
1 2
1 2
exp log 1
( 2
exp 1
nd
e
nd
w t w t )
ξ
δ ξ ξ π
ξ
−
= − − +
−
2
log exp 2
e 1
πξ
= ξ
−
2
2 1
πξ
= ξ
−
≒2πξ(if ξ <<1)
※ quite often ξ≤0.1 in practice - In this case (ξ <<1)
0 1 1
1 2
n n
x x x
x x x e
− δ
= = = = =
e
2π ξ0 0 1 1
1 2
& n ( n
n n
x x x x
x x x x e
− δ
= ⋅ ⋅ ⋅ = )
→ 1 0
loge
n
x
n x
δ =
Determination of viscous Damping
- In a free vibration test,
1 2
1 log
2 2 e
x x ξ δ
π π
= =
or 1 0
2 2 loge n x
n x
ξ δ
π π
= =
- In a forced vibration test, [ varying frequencies obtain a resonance curve ]
0
2 2 2
1
(1 ) (2 )
st
Z N
r r
δ = − + ξ = (magnification factor)
If 1
n
r w
=w = (at resonance)
0
max
1 ( )
st 2
Z N
δ = ξ , (∵ξ<<1) n practice
(Fig 2.20) - When the magnification factor of motion is 1 1
(2
2 )
ξ , the frequency ratio, r is,
2 2 2 2
1/ 2 1
2ξ = (1−r ) +4ξ r
→r22 −r12 =4ξ 1−ξ2≒ 4ξ (ifξ <<1)
And
2 2
2 2 2 1 2 1 2 1
2 1 2 ( )(
n n
)
n
f f f f f f
r r
f f f
− + −
− = =
≒ 2 ( 2 1)
n
f f f
⋅ − - refer to Fig 2.20
→ ( 2 1
4 2
n
) f f
ξ = ⋅ f− → 1 2 1
( )
2 n
f f ξ = ⋅ f−
※ called ‘bandwidth’ method
Ground Acceleration
-
∑
F =ma( g) ( g)
c x x k x x m x
• • •
− − − − = •
→m x c x x( g) k x( xg) 0
•• • •
+ − + − = ….①
- let xd = −x xg1 Then, xd x xg
• • •
= − xd x xg
•• •• ••
= − →xd xd xg
•• •• ••
= − ….②
- Sub. Eq. ② into ①
( d g) d d
m x x c x kx
•• •• •
+ + + =0
→ m xd c xd kxd m xg ← Govern Eq. ….③
•• • ••
+ + = −
- If xg =x tg( )=Xgsinwt
→x tg( ) w X2 gsin
•• = − wt
→m xd c xd kxd mw X2 gsinwt
•• •
+ + =
- Solution :
sin( )
d d
x = X wt−φ
2
2 2 2
( ) ( )
g d
X mw X
k mw cw
= − + ,
1
tan cw 2
k mw φ = −
−
2
2 2 2
( / ) /
(1 ) (2 )
n
d g
X X w w
r ξr
= − + ….④,
1 2
tan 2 1
r r φ = − ξ
−
The Governing Eq. of the system of vibration measuring instrument is same with Eq. ③
- Displacement pickup
→ For large value of w w/ n(=r)
d / g
X X =1 for all values of damping (refer to Fig. 2.23)
→ i.e. the resulting relative motionXd = Xg(Xbase) Picked up by the instrument
- Acceleration pickup
→ Rearrange Eq. ④
2 2 2 2 2 2 2
1 1
(1 ( / ) ) [2 ( / ) ]
d
b n n n n
X
w X = w − w w + ξ w w =w D For ξ =0.69 → D =1 when w w/ n is small
w/wn 0.0 0.1 0.2 0.3 0.4
D 1.000 0.9995 0.9989 1.0000 1.0053
→ i.e. Xd ∝w X2 b (max. acceleration of the vibrating base)
2 2
1
d n
X w Xb
= w ⋅ x= Xbsinwt
bcos x wX wt
• =
2 bsin x w X wt
••= − → ( )x max w X2 b
•• =
System w/ Two-degrees of Freedom
- mass 1
1 1 0sin 1 1 2( 1 2)
m z F wt k z k z z
•• = − − − ….①
- mass 2
2 2 2( 1 2
m z k z z
•• = − )
t
…. ①’
- assume( vibrating frequency = exciting frequency )
∵
1 1sin
z =Z w
2 2sin
z =Z wt - Sub. These into Eq. ①, ①’
2
1 1 2 1 2 2
(−m w + +k k Z) −k Z =F0 0
….②
2
2 2 2 2 1
(−m w +k Z) −k Z = ….②’
- Let the natural circular frequencies of the systems 1 & 2 be
1 11
1
w k
= m , 22 2 2
w k
= m
& 0 0 1
Z F
= k (i.e. the static deflection of the mass m1 due to F0 ) - Dividing Eq. ② & ②` by k1&k2 respectively,
1 2 2
1 2
2 11 1
[1 k ( w) ] k
Z Z Z0
k w k
+ − − = ….③
1
22
[1 ( w )] 0
Z w
− + − Z2 = ….③’
- From Eq. ③’, we get
1
2 2
1 ( / 22) Z Z
= w w
−
- Sub. Into Eq. ③
2 2 2 1
1 0
1 11 1 2
22
[1 ( ) ]
[1 ( ) ]
k w k Z
Z Z
k w k w
w
+ − − =
−
- Therefore,
2
1 22
2 2 2 2
0
22 1 11 1
1 ( )
[1 ( ) ][1 ( ) ]
w
Z w
w k w
Z
w k w
−
=
− + − −k
k
….④
Similarly, we get
2
2 2 2 2
0
22 1 11 1
1
[1 ( ) ][1 ( ) ]
Z
w k w
Z
w k w
=
− + − k
− k
w
….④’
- From Eq. ④
If w22 = → Z1=0
then → 2 0 1 0
2 2
F Z Z k
k k
= − = −
※ the system 2 is used as a vibration absorber for the main system 1
- the natural frequencies of the system
(consider the free vibration → R.H.S of ③ = 0 )
From Eq. ③ & ③’
1 2 1 2
2
2 2 1 11
/ 1 ( )
[1 / ( / ) ] 22
Z k k w
Z = k k w w = w
+ − −
or 2 2 2
1 11 22 2
[1 k ( w) ][1 ( w ) ] k 0
k w w k
+ − − − 1 = [ Frequency equation ]
or, since 2 2 1 2 22 2
1 2 1 1 11
( )
k k m m w
k =m k m =μ w where, 2
1
m μ = m
2 4 2 2
22 22
11 22 11 22
[w ] ( w ) [1 (1 )(w ) ]( w ) 1
w w − + +μ w w + =0
Spectral Response
- Response quantities : the quantities that are examined as a result of a forcing function (may or may not be a mathematical function)
Ex. Displacement, velocity, acceleration, stress, strain…..
- maximum response of a multidegree freedom system
2 2
11 1 22 2
( ) ( ) ( nn n
X = A X + A X + + A X )2
where, A A11, 22, : the mode participation factor (A11 > A22 > ) X1 : the maximum response of the 1st mode
Mode participation factor depends on
1) type of system 2) boundary condition 3) type of response quantity
- e.g., Longitudinal vibration of Prismatic Bar
2
1,3,5.. 2
4 1
cos cos n
n
Pl n x
u w
AE
n
l tπ π
∞
=
= −
∑
1,3,
4 1
n cos n
n
P n x
A l w t
π
5..
n
si σ π∞
=
=
∑
)
- Response spectrum (Fig.2.25) : max. response of SDF system vs. natural period (of frequency) under different damping ← (N = f w c( n, )