Stress–Strain Relation (1)
8.1 General Stress–Strain System
Objectives
- Understand tensor systems of stress and strain
- Study difference between displacement and deformation
Body force: gravitational force
Surface force: normal force, shear force
F ma d mV
dt
g
x yx zx
x x
g a
x y z
xy y zy
y y
g a
x y x
xz yz z
z z
g a
x y z
Parallelepiped, cube → infinitesimal C.V.
8.1.1 Surface Stress
Surface stresses: normal stress – shear stress –
xx
xy
Surface force
lim0
( )
x
x
xx x
A x
x
A A y z
lim0
x
y
xy A
Ax
lim0
x
z
xz A
x
F
A
lim0
( )
y
x
yx A
y y
F A A x z
lim0
y
y
yy y
A y
F
A
limy 0
z
yz A
y
F
A
lim0
( )
z
x
zx A
z z
F A A x y
lim0
z
y
zy A
z
F
A
lim0
z
z
zz z
A z
F
A
, ,
x y z
F F F
Fwhere = component of force vector
Same direction but different surface
Same surface
but different direction
x : subscript indicates the direction of stress
xy : 1st - direction of the normal to the face on which acts 2nd - direction in which acts
• general stress system: stress tensor
~ 9 scalar components (Cauchy’s formula)
xx xy xz
yx yy yz
zx zy zz
~ an ordered array of entities which is invariant under coordinate transformation; includes scalars & vectors
~ 3n
0th order – 1 component, scalar (mass, length, pressure, energy) 1st order – 3 components, vector (velocity, force, acceleration) 2nd order – 9 components (stress, rate of strain, turbulent diffusion)
' y
y y y
y
' z
z z z
z
' xy
xy xy x
x
' yx
yx yx y
y
' zx
zx zx z
z
' x
x x
x
x
◈ Shear stress is symmetric. → moment is zero
→ Shear stress pairs with subscripts differing in order are equal.
→ [Proof]
In static equilibrium, sum of all moments and sum of all forces equal zero for the element.
First, apply Newton's 2nd law F m du
dt
xx xy xz
yx yy yz
zx zy zz
xy yx
where I = moment of inertia = r2m r = radius of gyration
= angular acceleration
( ) ( 2 ) ( )
d d d d
T rmu r m I I
dt dt dt dt
d dt
Thus,
2 d T mr
dt
(A)Now, take a moment about a centroid axis in the z-direction
2 2 2
xy yx xy yx
x y x y z
y z x z
LHS T
2
d
2d
RHS dvolr x y z r
dt dt
xy yx x y z
2x y z r
2d
dt
𝜏𝑦𝑥
2
2xy yx
r d
dt
2
,
lim
, 00
x y z
r
xy yx
0
xy yx
xx xy xz
xy yy yz
xz yz zz
Components of Lame: 6 components
Motion and deformation of fluid element
translation (displacement) – 단순이동(변위) Motion
rotation - 회전
linear (normal) deformation – 선형변형(수축 및 팽창) Deformation
angular (shear) deformation – 각변형(전단변형)
(1) Motion: no change in shape 1) Translation: x, h
, d u dt u
dt
x
x
, d v dt v
dt
h
h
2) Rotation ← Shear flow
1
z 2
v u
x y
tantan
v x t x
x u y t y
y
v t x
u t y
1) Linear deformation – normal strain (변형율)
y
y
h
Non-dimensional
x
u u dx dt u dt x u
dx x dt x
x
change in length original length
0
x x
x
0
y y
h
change in volume.
- For incompressible fluid, if length in 2-D increases, then length in another 1-D decreases in order to make total volume unchanged.
x '
x dir
.
yx ''
x dir
.
z= elongation in the due to
= elongation in the due to
2) Angular deformation– shear strain
xy x y
h x
○ Strain normal strain: ← linear deformation shear strain: ← angular deformation
ii) Deformation: due to system of external forces
1) Normal strain,
, , ' , ,
O x y z O x x y h z z
' ' ' '
OABC O A B C
change in length original length
, ,
' , ,
C x x y y z z
C x x x y x z x
x x x
x h z
x h z
~ is positive when element elongates under deformation
0 0
lim O'C' lim
x x x
x x
x x x
OC x
OC x x
x x
x x
0 0
lim O'A' lim
y y y
y y y y y
OA y
OA y y
h h h
h
z z
z
OC
(8.1a)
(8.1b)
(8.1c)
~ change in angle between two originally perpendicular elements
For –plane
xy
, 0 , 0
lim lim tan tan
xy c A c A
x y x y
, 0
xlimy
x x
x x
x h
x
y y
y y
y x
h
x y
h x
x x
x x
C’D A’E
O’D O’E
(8.2a)
(8.2c) (8.2b)
xy x y
h x
yz y z
z h
zx z x
x z
(2) displacement vector
i j k
x
h
z
(8.3)change of volume of deformed element original volume
e
x x y y y z z x y z
d V x z
e V x y z
x h z
x y z
x y z
x h z
x y z
e
e x y z
x h z
--- divergence
(8.4) (8.5) (8.6)
O C O A
[Homework Assignment-Special work]
Due: 1 week from today
1. Fabricate your own “Stress Cube” using paper box.