• Tidak ada hasil yang ditemukan

Light-Emitting Diodes

N/A
N/A
Protected

Academic year: 2024

Membagikan "Light-Emitting Diodes"

Copied!
5
0
0

Teks penuh

(1)

445.664 445.664

Light

Light - - Emitting Diodes Emitting Diodes

Chapter 3.

Chapter 3.

Theory of Radiative Recombination Theory of Radiative Recombination

Euijoon Yoon Euijoon Yoon

Theory of Radiative Recombination Theory of Radiative Recombination

Semiclassical model of radiative recombination

based on equilibrium generation and recombination

van Roosbroeck-Shockley model

ÎCalculation of the spontaneous radiative recombination rate under equilibrium and non-equilibrium conditions

Einstein model

ÎCalculation of the spontaneous and stimulated transitions in a two-level atom

(2)

445.664 (Intro. LED) / Euijoon Yoon 3

The van Roosbroeck

The van Roosbroeck- -Shockley Model Shockley Model

α(ν) absorption coefficient [cm-1]

α(ν)-1 mean distance that a photon travels before being absorbed

υgr group velocity of photons propagating in the semiconductor

τ(ν) time that it takes for a photon to be absorbed

= (α υgr)-1

ν frequency of a generated photon

445.664 (Intro. LED) / Euijoon Yoon 4

Photon Absorption Probability Photon Absorption Probability

) d(

d ) / 1 ( d d d d

ν ν λ

ν υ ω

c n

gr = = =

k

) n d(

) d ( ) ( ) (

1

ν ν ν

α υ ν ν α

τ = gr = c

group velocity of photons

angular frequency wave vector refractive index

( )

⎟⎠

⎜ ⎞

⎝⎛ =

⎟⎠

⎜ ⎞

⎝⎛ =

=

λν λ

π πν ω

n c k

2 2

Îphoton absorption probability per unit time inverse photon lifetime

(3)

445.664 (Intro. LED) / Euijoon Yoon 5

Density of Photons Density of Photons

λ λ λ π

λ

ν

d

1 1 8

d )

(

4 /

= h kTN e

ν ν ν λ ν

λ ν λν

d d ) ( d ) ( d

2

n n

c n

c n c

=

=

=

Density of photons per unit volume(equilibrium conditions) by Planck’s black body radiation formula

ν ν ν ν

ν π

ν

ν

d

1 1 d

) ( d 8

d )

(

3 /

2 2

= h kT

e n c

N n

The van Roosbroeck

The van Roosbroeck- -Shockley Equation Shockley Equation

ν ν α ν

π

ν ν ν

α ν ν

ν ν

π ν τ

ν ν ν

ν

ν

ν

1d ) ( 8

) d(

) d ( 1d

1 d

) d(

8

) (

d ) ( d ) (

/ 2

2 2

/ 3

2 2 0

= −

⎟⎟⎠

⎜⎜ ⎞

⋅⎛

⎟⎟⎠

⎜⎜ ⎞

= −

=

kT h

kT h

e c

n

c n e

n c

n R N

ν ν α ν

ν π

ν ν d

1 ) ( 8

d ) (

/

0 2

2 2

0 0

0 =

R =

c n eh kT

R

Phonon absorption rate per unit volume

= Absorption probability ×Photon density

Absorption rate per unit volume in the frequency interval νand ν+ dν

Absorption rate per unit volume

van Roosbroeck-Shockley Equation

(4)

445.664 (Intro. LED) / Euijoon Yoon 7

The Simplified van Roosbroeck

The Simplified van Roosbroeck- -Shockley Model Shockley Model

e x x x x h

c kT E n kT c R

xg x

g g

1 d 8

2 3 2

0 =

π α

g g

E E E

= α0

α

Absorption coefficient

Eg band gap energy of the semiconductor α0 absorption coefficient at hν= 2Eg

Neglecting the frequency dependence of the refractive index Using the absorption coefficient at the band edge ( α= α0 )

( )

ν

ν d / d

/

/ /

kT h x

kT E x

kT E kT h x

g g

=

=

=

=

The simplified van Roosbroeck-Shockley Equation

445.664 (Intro. LED) / Euijoon Yoon 8

Bimolecular Recombination Rate Bimolecular Recombination Rate

0

2

Bnp Bn R

R = = i =

Under equilibrium conditions,

photon absorption rate (R0) = photon emission rate

|| ||

carrier generation rate = carrier recombination rate (R) Equilibrium carrier recombination rate

B bimolecular coefficient

Direct band gap B = 10-9~ 10-11cm3/s Indirect band gap

B = 10-13~ 10-15cm3/s

(5)

445.664 (Intro. LED) / Euijoon Yoon 9

Einstein Model Einstein Model

A B ( )

2 1

1

2 = ρν +

W

) ( 1 2

2

1 = B ρν W

A Spontaneous transition rate

B Induced (stimulated) transition rate photon density, ρ(ν) Probability per unit time

downward transition (2 Æ1) upward transition (1 Æ2)

Induced emission spontaneous emission

Induced absorption

Einstein showed that

1. B = B2Æ1 = B1Æ2 ÎStimulated absorption and stimulated emission are complementary processes.

medium

isotropic

an in constant

/ 8

2. A/B = π n3hν3 c3=

Referensi

Dokumen terkait