• Tidak ada hasil yang ditemukan

Microwave Engineering

N/A
N/A
Protected

Academic year: 2024

Membagikan "Microwave Engineering"

Copied!
13
0
0

Teks penuh

(1)

Microwave Engineering

8

thh

Week: Series Resonant Circuit

(2)

Definition of Microwave Resonator

: Microwave junction in which EM energy can be excited for one or more specific frequencies.

Transmission Line: EM wave is propagating.

Resonator: EM energy is stored.

Types of Microwave Resonators - Rectangular/Circular cavities

- Finite length of microstrip transmission line - Microstrip ring resonator

- Dielectric resonator (DR) - Fabry-perot open resonator

- Surface acoustic wave (SAW) resonator - Film bulk acoustic resonator (FBAR)

LLqwurgxfwlrq

(3)

Important Characteristics:

Ȧ

o

, Q

L

, Q

u

, Q

e

, Z

o

, Insertion loss, coupling coefficient, tunability and temperature stability.

Analysis of Microwave Resonator

- Lumped element circuit theory using series and parallel RLC circuits: Microstrip ring resonator

- Field analysis: Cavity, Fabry-Perot open resonator Excitation of resonators

- Apertures, loop/probe couplings

LLqwurgxfwlrq

(4)

Microwave resonators are used in a variety of applications such as:

- Antennas - Sensors - Filters

- Oscillators

- Frequency meters - Tuned Amplifier

The series and parallel RLC circuit representation is

useful for analyzing microwave resonator near resonance.

D

Dssolfdwlrqv

(5)

Near the resonance frequency, a microwave resonator can be modeled as a series or parallel RLC lumped-element equivalent circuit.

1 Zin R j L j

Z C Z

Vhulhv#Uhvrqdqw#Flufxlw

AC

R L

C Zin

I

Power delivered to the resonator is

1 1 2 1

( ).

2 2

Pin VI I R j L j

C

Z

Z

Power dissipated by the resistor, R, is

1 2

2 .

Ploss I R

Average magnetic energy stored in the inductor, L, is 1 2 4 .

Wm I L

2 2

2

1 1 1

4 4 .

e c

W V C I

Z C

Average electric energy stored in the capacitor, C, is

(6)

V

Vhulhv#Uhvrqdqw#Flufxlw

in

in I Z

P 2

2 1

2

2 I Zin Pin

1 2

2 .

Ploss I R 1 2

4 .

Wm I L

We 1 2 12 4 I .

Z C

2 loss

2 loss

2 m

2 m

ee

2 2 2

2

m e

loss j W W

P 2

Z

¸¹

¨ ·

©

§

j C L

j R

I

Z Z

1

2

1 2

I C L j

j I R

I

Z

Z

1

2 2

2

1 2 2 2

C I

j L

I j

Ploss 2 2 12

4 2 1

4 2 1

Z Z

Z

¸¹

¨ ·

©

§

j I L I C

Ploss 2 2 12

4 1 4

2 1

Z Z

j C L

j R

Zin

Z Z

1

in

2

^

Ploss j Wm We

`

I

2

Z

2

2

2

m

m ee

2 2

(7)

Resonance occurs when the average stored magnetic (Wm) and electric energies (We) are equal and Zin is purely real.

V

Vhulhv#Uhvrqdqw#Flufxlw

The frequency in which is called the resonant frequencyo 1 .

Z LC

1 2

4 .

Wm I L

2 2

2

1 1 1

4 4 .

e c

W V C I

Z C

1

o LC

Z

L C

o 2

1

Z

^

loss m e

`

in P j W W

I

Z 2 2

Z

2 2

2 R Ploss I

2 2

1 I

Zin Ploss R

(8)

Q is a measure of the loss of a resonant circuit.

Lower loss Î Higher Q

V

Vhulhv#Uhvrqdqw#Flufxlw

loss e m

o P

W Q Z W

Quality Factor Q

less]

[dimension Loss

Power

Stored Energy

Average Z

Q

1 2

2 .

Ploss I R 1 2

4 .

Wm I L

We 1 2 12 4 I .

Z C

2 loss

2 loss

2 m

2 m

ee

2 2 2

2

Q increases as R decreases.

loss e o P

2W

° Z

°°

¯

°°

°

®

­

loss m o P

2W

Z R

oL Z R

I

L I

o 2

2

2 14 2 1 Z

oRC Z

1 R

I I C

o

o 2

2

2 1

1 4

2 1 Z Z

(9)

In order to see the input impedance versus a frequency, let’s see behavior of the input impedance near its resonant frequency.

Near resonance,

Z Z

o'

Z V

Vhulhv#Uhvrqdqw#Flufxlw

j C L

j R

Zin

Z Z

1

¸

¹

¨ ·

©§

j L LC

R 21

1

Z

Z

¸

¹

¨ ·

©§

1 2

1

Z Z

L LC j

R

¸¸

¹

·

¨¨

©

§

1 022

Z Z

L

Z

j

R ¸¸

¹

·

¨¨

©

§ 2 2 02

Z Z Z

L

Z

j

R o 1

Z LC

Z Z Z Z Z Z

Z

Z

2 o2 o o # 2 ' Z

' | 2Z

Z0

Z #

¸¹

¨ ·

©

§ '

# 2 2

Z Z Z

L

Z

j R

Zin

R j 2 L ' Z

(10)

V

Vhulhv#Uhvrqdqw#Flufxlw

o in

j RQ R

Z Z

Z '

| 2

R . Q ZoL

This form is useful for identifying equivalent circuits with distributed This form is useful for

element resonators.

element resonators.

Example: Microstrip resonators

Q factor of the series resonant circuit is

o

L RQ

Ÿ Z

Z '

# R j L

Zin 2 Z

Z ¸¸¹'

¨¨ ·

© §

0

2 RQ j

R

(11)

V

Vhulhv#Uhvrqdqw#Flufxlw

Lossy resonator

A resonator with loss can be modeled as a lossless resonator whose resonant frequency has been replaced with a complex effective resonant frequency.

Lossless resonator

o

in

L j

L j

L j R Z

Z Z

Z

Z '

'

| 2 2

2

o

in

L j R

L j R Z

Z Z

Z

'

|

2 2

¸¸

¹

·

¨¨

©

§ ¸¸

¹

¨¨ ·

©

§

| Q

L j j L

j

Zin o o

1 2 2

2 Z Z Z Z

¸¸¹

¨¨ ·

©

§

m Q

j

o

o Z 1 2

Z

o

o RQ

R L Q L

Z Z Ÿ

Identical

back to gap coupled MSL resonator

o

L j

R 2 Z Z

Zo

¹

¸¸¸¸·

¹¸¸

·¸¸

¸¸¸¸¹

¸¸·

¨¨¨¨ ¸¸

©¨¨

§¨¨

Q j

o 1 2

Z

Q L j

j L

j o o

2 2

2 Z Z Z

o

o j L

Q

LZ Z Z

2

L j L j2

Q j Q Q 2QQ 2

o

o o

L Q j

RQ Z Z Z

Z 2

Proof:

o

L RQ Z

Z L LZ

Q Z

o

RQ Z

(12)

V

Vhulhv#Uhvrqdqw#Flufxlw

Q Q

RQ R

R R

Z R R

Z

o

in in

1 1 2

2 2

satified.

be must ,

707 2 . have 0

order to

In 2 2

Ÿ '

Ÿ '

'

Z Z Z

Z Z

Z

Z Z

2

2 2

1 2 ¸¸

¹

¨¨ ·

©

§ '

¸¸Ÿ

¹

¨¨ ·

©

§ '

|

o in

o in

R RQ Q Z

j R

Z Z

Z Z Z

Z Z

·2

§

§ ·

Magnitude of input impedance versus a frequency

(13)

Fractional Bandwidth is defined as:

o

o o

o o

o

BW BW

Z Z

Z Z Z

Z Z

Z Z

Z Z Z

Ÿ '

' '

'

2

1 2

2

Vhulhv#Uhvrqdqw#Flufxlw

Z Z

Z2 o ' Z

Z

Z1 o '

• Bandwidth increases as R increases.

Narrower bandwidth can be achieved at higher quality factor (Smaller R).

BW Q

o Q

, 1 1 Since 2'

Z Z

Magnitude of input impedance versus a frequency

Referensi

Dokumen terkait