• Tidak ada hasil yang ditemukan

Minimal models for axion and neutrino

N/A
N/A
Protected

Academic year: 2024

Membagikan "Minimal models for axion and neutrino"

Copied!
5
0
0

Teks penuh

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Minimal models for axion and neutrino

Y.H. Ahn

a,

, Eung Jin Chun

b,

aCenterforTheoreticalPhysicsoftheUniverse,InstituteforBasicScience(IBS),Daejeon,34051,RepublicofKorea bSchoolofPhysics,KIAS,Seoul130-722,RepublicofKorea

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received17October2015

Receivedinrevisedform25November2015 Accepted27November2015

Availableonline30November2015 Editor:A.Ringwald

ThePQmechanismresolvingthestrongCPproblemandtheseesawmechanismexplainingthesmallness of neutrino masses may be related in away that the PQ symmetry breaking scale and the seesaw scalearisefromacommonorigin.DependingonhowthePQsymmetryandtheseesawmechanismare realized,onehasdifferentpredictionsonthecolorandelectromagneticanomalieswhichcouldbetested inthefutureaxiondarkmattersearchexperiments.Motivatedbythis,weconstructvariousPQseesaw modelswhichareminimallyextendedfromthe(non-)supersymmetricStandardModelandthussetup differentbenchmarkpointsontheaxion–photon–photoncouplingincomparisonwiththestandardKSVZ andDFSZmodels.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The existence of neutrino mass and dark matter is a clear sign of new physics beyond the standard model (SM). Another long-standing issue in SM is the strong CP problem [1] which is elegantly resolved by the Peccei–Quinn (PQ) mechanism [2].

It predicts a hypothetical particle called the axion as a pseudo- Nambu–Goldstone(NG) bosonof an anomalous global symmetry U(1)PQ which is spontaneously broken at an intermediate scale vPQ109–12 GeV[3].ThePQsymmetryisrealizedtypicallyinthe contextofaheavyquark(KSVZ)model[4]oratwo-Higgs-doublet (DFSZ)model[5].

The PQ symmetry breaking may be related to the seesaw mechanism explaining the smallness of the observed neutrino masses [6–9] identifying the PQ symmetry as the lepton num- berU(1)L[10,11].Letusnotethattheseesawmechanismrealized at the intermediate scale vPQ can provide a natural way to ex- plain the matter–antimatter asymmetry in the universe through leptogenesis[12].Anattractivefeatureofthisscenarioisthatthe axion isa good candidateofcold darkmatter through its coher- entproductionduringtheQCDphasetransition[13].Astheaxion is well-motivated dark matter candidate, serious efforts are be- ingmadetosearch foritbyvarious experimentalgroupssuch as ADMX[14],CAPP[15]andIAXO[17].ThetraditionalKSVZorDFSZ modelshavebeenconsideredastwomajorbenchmarksinsearch fortheaxiondarkmatter.

*

Correspondingauthor.

E-mailaddresses:[email protected](Y.H. Ahn),[email protected](E.J. Chun).

In the context of the PQ mechanism combinedwith the see- saw mechanism,however,theelectromagneticandcoloranomaly coefficientscan takedifferent values,andthuscan havedifferent predictionsinthefutureaxionsearchexperiments.Thismotivates ustoconsiderminimalextensionsoftheSMinwhichvarioussee- sawmodels[6–8]areextendedtorealizetheKSVZorDFSZaxion, and compare their predictions with the conventional KSVZ and DFSZmodels.

Thispaperisorganizedasfollows.Wewillfirstsetupminimal extensionsoftheSMtocombinethePQ andseesaw mechanisms innon-supersymmetricandsupersymmetrictheoriesinSections2 and3,respectively.Thecorresponding modelpredictionsarepre- sentedinSection4,andthenweconcludeinSection5.

2. MinimallyextendedstandardmodelforthePQandseesaw mechanism

A PQ seesaw model is characterized by how a global U(1)X symmetry, playing the role of the PQ symmetry and the lepton number,isimplementedtoactonaspecific setofextrafermions carrying non-trivial X charges. Such an U(1)X symmetry is sup- posed to be broken spontaneously by the vacuum expectation valueofascalarfield

σ

assumingascalarpotential:

V

( σ ) = λ

σ

( | σ |

2

1

2v2σ

)

2 (1)

with 109–12GeV which sets the scales of the axion decay constant Fa and the heavy seesaw particles. In the case of the type-I and type-II seesaw introducing a singlet fermion (right- handed neutrino) [6] and a Higgs triplet scalar [7] respectively, http://dx.doi.org/10.1016/j.physletb.2015.11.067

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

their combinations withthe KSVZ and DFSZ axion models leads to the same results to the conventional ones. Thus, we consider thetype-IIIseesaw(byheavyleptontriplets)[8]implementingthe PQsymmetryinthemannerofKSVZorDFSZ.

KSVZ+type-III (KSVZ-III): In a KSVZ model combined with type-IIIseesaw(leptontripletswithzerohypercharge),weadd as usual an extra heavy quark field which transforms as (3,1,0)underSU(3)c×SU(2)L×U(1)Y,andthree(Majorana) leptontriplets whichtransformas(1,3,0). Theright-handed andleft-handedleptontripletsaredenotedby

=

NR

/ √

2 E+R ER

NR

/ √

2

,

c

=

(

NR

)

c

/ √

2

(

ER

)

c

(

E+R

)

c

−(

NR

)

c

/ √

2

(2) where heavy neutrino NR, heavy charged leptons E±R, ci

τ

2˜ci

τ

2withthechargeconjugation˜c=C¯T andthePauli matrix

τ

2.Thenon-trivialX-chargesareassignedasfollows

σ

L

R

LL lR

X

+

1

+

12

12

12

12

12 (3)

compatible with the Yukawa Lagrangian for the KSVZ-III model,

LKSVZ-IIIYuk ±

= −

LSMYuk

+

Lh

σ

R

+

LYD

˜ +

1

2Tr

[

ch

σ ]

1

2Tr

[

ch

σ

] +

h.c. (4)

where =+0)T and L=(

ν

L,L) stand for the Higgs doublet and the lepton doublet in the SM, respectively, and ˜ =i

τ

2. Depending on the X-charge signs of the triplet fermiononecouples

σ

or

σ

tothetripletasdenotedbyIII+ or III,respectively. Note that we took the normalization of =1 inEq.(3)underwhichtheQCD anomalyisthenum- beroftheheavyquarks:c3=N.

After the U(1)X breaking by an appropriate scalar potential (1),thecomplexscalarfield

σ

canbewrittenas

σ = √

1

2ei Aσ/

(

vσ

+ ρ )

(5)

where a is nothing but the KSVZ axion, and the real scalar

ρ

issupposed to getmass ∼vσ which setsthe axion andseesawscales.

DFSZ+type-III(DFSZ-III):InaDFSZaxionmodel,thePQsym- metryisimplementedbyextendingtheHiggssectorwithtwo Higgsdoublets, i=+i i0)T withi=1,2,andaHiggssin- glet

σ

,andallowingthescalarpotentialterm

V

(

1

,

2

, σ ) λ

σ

1

2

σ

2

+

h.c. (6) whichsetsthePQ(X)chargerelationofthetwoHiggsbosons:

2=X1X2 againunderthenormalizationof=1.

ThentheYukawaLagrangianforDFSZ-IIIreads

LDFSZYuk s-III±

=

QLYu

˜

2uR

+

QLYd

1dR

+

L Y

s

R

+

L YD

˜

2

+

1

2Tr

[

ch

σ ]

1

2Tr

[

ch

σ

] +

h.c.

,

(7) where one can choose s=1 or 2 depending on which we categorize two differentDFSZmodels. As we againhavetwo

choicesforthetripletmass operatorwith

σ

or

σ

,thereare fourdifferentDFSZ-IIImodels.

Eqs.(6),(7)give six X-charge relations tobesatisfiedby the eight fields (other than

σ

). As will be discussed shortly, the orthogonalityofthe axionandthelongitudinaldegree ofthe Z boson gives another condition. Then, one finds that there is freedom to choose one ofthe three quark charges. Taking XQL0,wegetthefollowingX-chargeassignment:

σ

1 2 QL uR dR LL lR

X 1 +XdXu 0 −XuXd1212+Xu12+XuXs

(8) wherewehave X1=Xd and X2= −Xu leadingtotheQCD anomalyc3=(Xu+Xd)Ng=6 withthenumberofthegener- ation Ng=3.

AfterthebreakingofSU(2)L×U(1)Y×U(1)X bythevacuum expectationvalues,v1,v2and,of1,2and

σ

,theaxion andthelongitudinaldegreeofthe Z bosondenotedbyaand G0,aregivenby[18]:

a

Xdv1A1

Xuv2A2

+

XσvσAσ

,

G0

v1A1

+

v2A2

,

(9)

where A1, A2 and are thephasefieldsof1,2 and

σ

. ThentheorthogonalityofaandG0isguaranteedby

Xd

=

2x

(

x

+

1

/

x

)

and Xu

=

2

/

x

(

x

+

1

/

x

)

(10)

withthenormalization=1 andxv2/v1. 3. MinimalsupersymmetricPQseesawmodel

ToimplementthePQsymmetryinsupersymmetricmodels,let usintroduce two chiralsuperfields

σ

ˆ and

σ

ˆ¯ havingthe opposite X charges,say, = −Xσ¯ ≡ +1,andits spontaneousbreaking is assumedtooccurbythetypicalsuperpotential:

WPQ

= λ

SS

ˆ ( σ ˆ σ ˆ¯ −

1

2vσvσ¯

)

(11)

where

σ

=vσ/

2 and ¯

σ

=vσ¯/

2 isimpliedinthenotation.

Here Sˆ isagaugesingletsuperfieldandcarryPQchargezero.

ThesupersymmetricversionoftheKSVZmodelintroducesthe heavyquarksuperpotential

WKSVZ

=

WMSSM

+ ˆ

h

ˆ

c

σ ˆ¯

(12) whichdefinesthePQchargerelation:X+Xc= −Xσ¯ ≡ +1 lead- ingtotheQCDanomaly:c3=N+c asinthenonsupersymmetric case. Here WMSSMistheusual MinimalSupersymmetricStandard Model(MSSM)superpotentialgivenby

WMSSM

= ˆ

Q Yuu

ˆ

cH

ˆ

u

+ ˆ

Q Ydd

ˆ

cH

ˆ

d

+ ˆ

LY

ˆ

cH

ˆ

d

+ μ

H

ˆ

uH

ˆ

d (13) whichisseparatedfromthePQmechanism.

ThesupersymmetricDFSZmodelprovidesanaturalframework toresolvethe

μ

problemaswell[19]byextendingtheHiggssec- tor

WDFSZ

= ˆ

Q Yuu

ˆ

cH

ˆ

u

+ ˆ

Q Ydd

ˆ

cH

ˆ

d

+ ˆ

LY

ˆ

cH

ˆ

d

+ λ

μ

σ ˆ

2

MPH

ˆ

uH

ˆ

d (14)

where MP isthereducedPlanckmassandtherightsizeofthe

μ

term,

μ

=λμv2σ/2MP,arisesafterthePQsymmetrybreaking.The
(3)

usual PQ chargesassignment consistent withtheabove superpo- tential is

ˆ

σ

H

ˆ

u H

ˆ

d Q

ˆ

u

ˆ

c d

ˆ

c L

ˆ ˆ

lc X

+

1

Xu

Xd 0

+

Xu

+

Xd

+

XL

XL

+

Xd

(15) where we have put XQ0 as before and Xu+Xd=2 follows fromthecharge normalizationof = +1.Atthisstage,thereis arbitrarinessin choosing the value of XL, but it will be fixed in seesawextendedPQmodels whichhasnophysicalconsequences.

Notethat theQCD anomalyofthesupersymmetricDFSZmodelis againgivenbyc3=(Xu+Xd)Ng=6.

Nowletusconsidertheseesawextensionsofthesupersymmet- ricPQmodels.Asinthenon-supersymmetriccase,Type-I seesaw introducingright-handed (singlet)neutrinos doesnot change the resultsof thestandard KSVZ andDFSZ models.Thus, we discuss theType-IIand-IIIextensionsinorder.

KSVZ+Type-II(sKSVZ-II): Type-II seesaw introduces a Dirac pair of SU(2)L triplet superfields with the hypercharge Y =

±1:ˆ =(ˆ++,ˆ+,ˆ0)andˆc=(ˆc0,ˆ,ˆ−−).Itscombi- nation withtheKSVZmodelcan berealizedby thesuperpo- tential:

WsKSVZ-II±

=

WKSVZ

+ ˆ

LYνL

ˆ ˆ + λ

dH

ˆ

dH

ˆ

d

ˆ +

λ

σ

σ ˆ¯ ˆ ˆ

c

λ

σ¯

σ ˆ ˆ ˆ

c (16)

whichsetthePQchargesoftheleptonicfields:

L

ˆ ˆ

lc

ˆ ˆ

c

X 0 0 0

±

1 (17)

DFSZ+Type-II(sDFSZ-II): Similarly to the previous case, the superpotentialfortheDFSZmodelcombinedwithType-IIsee- sawtakestheform:

WsDFSZ-II±

=

WDFSZ

+ ˆ

LYνL

ˆ ˆ + λ

dH

ˆ

dH

ˆ

d

ˆ +

λ

σ

σ ˆ¯ ˆ ˆ

c

λ

σ¯

σ ˆ ˆ ˆ

c (18)

which is invariant under the PQ symmetry with the charge assignmentof(15)extendedtotheleptonicsectorasfollows:

L

ˆ ˆ

lc

ˆ ˆ

c

X

Xd

+

2Xd

+

2Xd

±

1

2Xd (19)

KSVZ+Type-III(sKSVZ-III):InsupersymmetricType-IIIseesaw one introduces threetriplet superfields(with Y=0) denoted by

ˆ =

N

ˆ

c

/ √

2 E

ˆ

E

ˆ

c

− ˆ

Nc

/ √

2

(20) Then thewholesuperpotential oftheKSVZmodelrealizedin Type-IIIseesawis

WsKSVZ-III±

=

WKSVZ

+ ˆ

LYD

ˆ

H

ˆ

u

+

1

2

λ

σ

σ ˆ¯

Tr

[ ˆ ˆ ]

1

2

λ

σ¯

σ ˆ

Tr

[ ˆ ] ˆ

(21)

which definesthe PQcharges oftheleptonic fields asinthe non-supersymmetriccase:

ˆ

L

ˆ

lc

ˆ

X

12

±

12

±

12 (22)

DFSZ+Type-III(sDFSZ-III): Type-III seesaw introduces three tripletsuperfields(withY=0):

ˆ =

N

ˆ

c

/ √

2 E

ˆ

E

ˆ

c

− ˆ

Nc

/ √

2

(23) Thesuperpotentialis

WsDFSZ-III±

=

WDFSZ

+ ˆ

LYD

ˆ

H

ˆ

u

+

1

2

λ

σ

σ ˆ¯

Tr

[ ˆ ] ˆ

1

2

λ

σ¯

σ ˆ

Tr

[ ˆ ] ˆ

(24)

whichsetthePQchargesoftheleptonicfields:

L

ˆ ˆ

lc

ˆ

X

12

+

Xu

±

12

Xu

+

Xd

±

12 (25)

4. Modelimplicationstotheaxiondetection

TodiscusstheimplicationsofthePQseesawmodelspresented inthe previous sections,letusfirst summarizesome basicprop- erties of the axion relevant for our discussion [3]. After the PQ symmetrybreaking byageneric numberofscalarfieldsφ having thePQcharge andφ=vφ/

2,thefollowingcombinationof thephasefields definestheaxiondirection:

a

=

φ

XφvφAφ

/

vPQ with vPQ

=

φ

X2φv2φ

.

(26)

IntegratingoutalltherelevantPQ-chargedfermions,theaxiongets the effective axion–gluon–gluon and axion–photon–photon cou- plings through its color and electromagnetic anomalies, respec- tively:

L

a Fa

g32 32

π

2G

a

μνG

˜

aμν

+ ˜

caγ γ a Fa

e2 32

π

2FμνF

˜

μν (27)

where the axion decay constant Fa is defined by FavPQ/c3, and ˜caγ γ is the ‘modified’ electromagnetic anomaly normalized by the color anomaly c3 of the PQ symmetry. Below the QCD scale QCD200 MeV,the axion–gluon–gluon anomaly coupling inducestheaxionpotential

V

(

a

) =

ma2Fa2

1

cos a Fa

(28) wheretheaxionmassiscalculatedtobe

ma

z 1

+

z

mπfπ

Fa

6 μeV

1012GeV Fa

(29) withzmu/md0.5,=135 MeV and =92 MeV.

UnderthePQchargenormalizationof= +1 (andXσ¯ = −1) in the non-supersymmetric (supersymmetric) axion models dis- cussed in the previous section, the color anomaly c3 counts the number of distinct vacua developed in the axion potential (28) whichsetstheaxionicdomainwallnumberNDW= |c3|.Then the axion–photon–photoncouplingconstantisgivenby

˜

caγ γ

=

caγ γ

cχS B (30)

with caγ γ

2Tr

[

X Qem2

]

c3

and cχS B

2 3

4

+

1

.

05z 1

+

1

.

05z

1

.

98 wherecaγ γ countstheelectromagneticanomalynormalizedbythe coloranomaly,andS B isthemodified effectbythechiralsym- metrybreakingincludingthestrangequarkcontribution.
(4)

Fig. 1.Theaxion–photon–photoncoupling|gaγ γ|asafunctionofaxionmassma invariousPQseesawmodels.Thefuturesensitivities oftheADMXandCAPPex- perimentsare shown inthe cyan and redthick-dashed lines,respectively. (For interpretationofthereferencestocolorinthisfigure,thereaderisreferredtothe webversionofthisarticle.)

EachPQseesawmodelpresentedintheprevioussection gives adifferentpredictiononthe coefficientcaγ γ andthus onthefu- ture sensitivityof the axion search at ADMXor CAPP. Following Eq.(31),theelectromagneticanomalyofeachmodelisgivenby

caγ γ

=

⎧ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎩

±

2Ng

= ±

6 KSVZ-III± 8

3

±

1

=

113

,

53 DFSZ1-III±

1

3

±

1

=

53

, −

23 DFSZ2-III±

±

10 sKSVZ-II±

8

3

23

±

103

=

163

,−

43 sDFSZ-II±

±

2Ng

= ±

6 sKSVZ-III±

8

3

23

±

1

=

3

,

1 sDFSZ-III±

(31)

where NDW=1 and 6 are used for the KSVZ and DFSZ models, respectively.

In Fig. 1, we plot the axion–photon–photon coupling gaγ γ

˜

caγ γ

α

em/2

π

Faasafunctionofaxionmassma,andcomparethem withtheconventional KSVZ(caγ γ =0) andDFSZ(caγ γ =8/3, or 1/3) predictions.Theexperimentssuch asADMX[14],CAPP[15], CAST[16],IAXO[17],are projected toprobe someregions ofthe parameterspaceoftheaxioncouplingtophotonsanditsmass.In Fig. 1thecyan- (red-) thickdashedboundaryindicates thefuture sensitivityoftheaxiondarkmatter searchby ADMX(CAPP)[21].

The current ADMX results [20] exclude only a limited region of KSVZtypemodelsandDFSZ2-III,sDFSZ-II±modelsoverthemass range ofma=3.3–3.69 μeV. Solar axion search experimentslike CASTandIAXOarealsosensitivetothePQaxions.CASTprobesthe axion massrangeof ma0.1–1 eV for gaγ γ9×1011GeV1, while IAXO would have sensitivity to much larger axion masses compared to CAST if gaγ γ 9×1012GeV1. Most recently, CAST has improved the limit on the axion–photon–photon cou- pling to gaγ γ <1.47×1010GeV1 at 95% C.L. [16]. This may excludethemodelsabovetheKSVZlineoverthemassrangema 0.06–0.4 eV,whichcanbeseenbyconsideringthemassvaluesat

gaγ γ =1.47×1010GeV1 in thevarious modelslike sKSVZ-II− (ma0.06 eV), sKSVZ-II+, sKSVZ-III, KSVZ-III (ma0.1 eV), sKSVZ-III+, KSVZ-III+ (ma0.2 eV), sDFSZ-II± (ma0.24 eV), DFSZ2-III(ma0.3 eV),andKSVZ(ma0.4 eV).

5. Conclusion

We have considered minimal extensions of the SM combin- ing the KSVZ or DFSZ axion withvarious seesaw models in the frameworkofthe(non-)supersymmetrictheories,whichprovides apopularsolutiontothestrongCPproblemaswellasthesmall- nessofneutrinomasses.Wehaveshowedthatdependingonhow toembedU(1)PQinaseesawmodel,theelectromagneticandcolor anomaly coefficients take different values, and thus each model has a different prediction on the axion–photon–photon coupling whichcouldbetestedinthefutureaxionsearchexperiments.This sets upvariousbenchmarkpointsfortheminimalPQseesawmod- elsincomparisonwiththestandardKSVZandDFSZmodelswhich aresummarizedinEq.(31)andFig. 1.

Acknowledgement

Y.H. Ahn is supported by IBS under the project code, IBS- R018-D1.

References

[1]Forcomprehensivereviewsoftheaxionphysics,see,J.E.Kim,Phys.Rep.150 (1987)1;

H.-Y.Cheng,Phys.Rep.158(1988)1.

[2]R.D.Peccei,H.R.Quinn,Phys.Rev.Lett.38(1977)1440.

[3]Forareview,see,J.E.Kim,G.Carosi,Rev.Mod. Phys.82(2010)557,arXiv:

0807.3125[hep-ph].

[4]J.E.Kim,Phys.Rev.Lett.43(1979)103;

M.A.Shifman,A.I.Vainshtein,V.I.Zakharov,Nucl.Phys.B166(1980)493.

[5]M.Dine,W.Fischler,M.Srednicki,Phys.Lett.B104(1981)199;

A.R.Zhitnitsky,Sov.J.Nucl.Phys.31(1980)260;

A.R.Zhitnitsky,Yad.Fiz.31(1980)497.

[6]P.Minkowski,Phys.Lett.B67(1977)421;

M.Gell-Mann,P.Ramond,R.Slansky,Conf.Proc.C790927(1979)315,arXiv:

1306.4669[hep-th];

T.Yanagida,Conf.Proc.C7902131(1979)95;

R.N.Mohapatra,G.Senjanovic,Phys.Rev.Lett.44(1980)912;

J.Schechter,J.W.F.Valle,Phys.Rev.D22(1980)2227.

[7]W.Konetschny,W.Kummer,Phys.Lett.B70(1977)433;

S.Bertolini,L.DiLuzio,H.Kolesova,M.Malinsky,Phys.Rev.D91 (5)(2015) 055014,arXiv:1412.7105[hep-ph].

[8]R.Foot,H.Lew,X.G.He,G.C.Joshi,Z.Phys.C44(1989)441.

[9]K.Kang,J.Kim,J.E.Kim,K.S.Soh,H.S.Song,Phys.Rev.D22(1980)2869.

[10] S.L.Cheng,C.Q.Geng,W.T.Ni,Phys.Rev.D52(1995)3132,http://dx.doi.org/

10.1103/PhysRevD.52.3132,arXiv:hep-ph/9506295.

[11]R.N.Mohapatra,G.Senjanovic,Z.Phys.C17(1983)53;

Q.Shafi,F.W.Stecker,Phys.Rev.Lett.53(1984)1292;

P.Langacker,R.D.Peccei,T.Yanagida,Mod.Phys.Lett.A1(1986)541;

A.G.Dias,A.C.B.Machado,C.C.Nishi,A.Ringwald,P.Vaudrevange,J.HighEn- ergyPhys.1406(2014)037,http://dx.doi.org/10.1007/JHEP06(2014)037,arXiv:

1403.5760[hep-ph];

A.Salvio, Phys. Lett. B743 (2015) 428,http://dx.doi.org/10.1016/j.physletb.

2015.03.015,arXiv:1501.03781[hep-ph];

C.D.R.Carvajal, A.G.Dias, C.C.Nishi, B.L.Snchez-Vega, J.High Energy Phys.

1505(2015)069,http://dx.doi.org/10.1007/JHEP05(2015)069,arXiv:1503.03502 [hep-ph];

C.D.R.Carvajal,A.G.Dias,C.C.Nishi,B.L.Snchez-Vega,J.HighEnergyPhys.1508 (2015)103,http://dx.doi.org/10.1007/JHEP08(2015)103(Erratum);

J.D.Clarke,R.R.Volkas,arXiv:1509.07243[hep-ph].

[12]M.Fukugita,T.Yanagida,Phys.Lett.B174(1986)45.

[13]P.Sikivie,Lect.NotesPhys. 741(2008) 19,arXiv:astro-ph/0610440,andthe reviewsin[1].

[14]S.J. Asztalos, et al., ADMX Collaboration, Phys. Rev. D 69 (2004) 011101, arXiv:astro-ph/0310042;

seealso,http://depts.washington.edu/admx/index.shtml.

[15] Center for Axionand PrecisionPhysicsResearch(CAPP), seehttp://capp.ibs.

re.kr/html/capp_en/.

[16] M.Arik,etal.,CASTCollaboration,Phys.Rev.D92 (2)(2015)021101,http://

dx.doi.org/10.1103/PhysRevD.92.021101,arXiv:1503.00610[hep-ex];

seealso,http://cast.web.cern.ch/CAST/.

(5)

[17]I.G. Irastorza, et al., J. Cosmol. Astropart. Phys. 1106 (2011) 013, arXiv:

1103.5334;

E.Armengaud,etal.,J.Instrum.9(2014)T05002,arXiv:1401.3233.

[18]E.J.Chun,A.Lukas,Phys.Lett.B357(1995)43,arXiv:hep-ph/9503233.

[19]J.E.Kim,H.P.Nilles,Phys.Lett.B138(1984)150;

E.J.Chun,J.E.Kim,H.P.Nilles,Nucl.Phys.B370(1992)105.

[20] J.Hoskins, et al., Phys. Rev.D84(2011) 121302, http://dx.doi.org/10.1103/

PhysRevD.84.121302,arXiv:1109.4128[astro-ph.CO].

[21] IBS-MultiDarkJointPocusprogram:WIMPs andAxions,seeGrayRybkaand YannisSermertzidistalksinhttps://indico.ibs.re.kr/event/7/.

Referensi

Dokumen terkait

This could be due to the low number of stages in comparison to other sleep stages as observed from Table 5 The overall performance evaluation of the developed algorithm using

1 2023 23-38 http://ejournal.upi.edu/index.php/IJPE/index Indonesian Journal of Primary Education The Effect of Cooperative Learning Models Ice Breaking Based Tournament Games