Contents lists available atScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb
Minimal models for axion and neutrino
Y.H. Ahn
a,∗, Eung Jin Chun
b,∗aCenterforTheoreticalPhysicsoftheUniverse,InstituteforBasicScience(IBS),Daejeon,34051,RepublicofKorea bSchoolofPhysics,KIAS,Seoul130-722,RepublicofKorea
a r t i c l e i n f o a b s t ra c t
Articlehistory:
Received17October2015
Receivedinrevisedform25November2015 Accepted27November2015
Availableonline30November2015 Editor:A.Ringwald
ThePQmechanismresolvingthestrongCPproblemandtheseesawmechanismexplainingthesmallness of neutrino masses may be related in away that the PQ symmetry breaking scale and the seesaw scalearisefromacommonorigin.DependingonhowthePQsymmetryandtheseesawmechanismare realized,onehasdifferentpredictionsonthecolorandelectromagneticanomalieswhichcouldbetested inthefutureaxiondarkmattersearchexperiments.Motivatedbythis,weconstructvariousPQseesaw modelswhichareminimallyextendedfromthe(non-)supersymmetricStandardModelandthussetup differentbenchmarkpointsontheaxion–photon–photoncouplingincomparisonwiththestandardKSVZ andDFSZmodels.
©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
The existence of neutrino mass and dark matter is a clear sign of new physics beyond the standard model (SM). Another long-standing issue in SM is the strong CP problem [1] which is elegantly resolved by the Peccei–Quinn (PQ) mechanism [2].
It predicts a hypothetical particle called the axion as a pseudo- Nambu–Goldstone(NG) bosonof an anomalous global symmetry U(1)PQ which is spontaneously broken at an intermediate scale vPQ≈109–12 GeV[3].ThePQsymmetryisrealizedtypicallyinthe contextofaheavyquark(KSVZ)model[4]oratwo-Higgs-doublet (DFSZ)model[5].
The PQ symmetry breaking may be related to the seesaw mechanism explaining the smallness of the observed neutrino masses [6–9] identifying the PQ symmetry as the lepton num- berU(1)L[10,11].Letusnotethattheseesawmechanismrealized at the intermediate scale vPQ can provide a natural way to ex- plain the matter–antimatter asymmetry in the universe through leptogenesis[12].Anattractivefeatureofthisscenarioisthatthe axion isa good candidateofcold darkmatter through its coher- entproductionduringtheQCDphasetransition[13].Astheaxion is well-motivated dark matter candidate, serious efforts are be- ingmadetosearch foritbyvarious experimentalgroupssuch as ADMX[14],CAPP[15]andIAXO[17].ThetraditionalKSVZorDFSZ modelshavebeenconsideredastwomajorbenchmarksinsearch fortheaxiondarkmatter.
*
Correspondingauthor.E-mailaddresses:[email protected](Y.H. Ahn),[email protected](E.J. Chun).
In the context of the PQ mechanism combinedwith the see- saw mechanism,however,theelectromagneticandcoloranomaly coefficientscan takedifferent values,andthuscan havedifferent predictionsinthefutureaxionsearchexperiments.Thismotivates ustoconsiderminimalextensionsoftheSMinwhichvarioussee- sawmodels[6–8]areextendedtorealizetheKSVZorDFSZaxion, and compare their predictions with the conventional KSVZ and DFSZmodels.
Thispaperisorganizedasfollows.Wewillfirstsetupminimal extensionsoftheSMtocombinethePQ andseesaw mechanisms innon-supersymmetricandsupersymmetrictheoriesinSections2 and3,respectively.Thecorresponding modelpredictionsarepre- sentedinSection4,andthenweconcludeinSection5.
2. MinimallyextendedstandardmodelforthePQandseesaw mechanism
A PQ seesaw model is characterized by how a global U(1)X symmetry, playing the role of the PQ symmetry and the lepton number,isimplementedtoactonaspecific setofextrafermions carrying non-trivial X charges. Such an U(1)X symmetry is sup- posed to be broken spontaneously by the vacuum expectation valueofascalarfield
σ
assumingascalarpotential:V
( σ ) = λ
σ( | σ |
2−
12v2σ
)
2 (1)with vσ ∼109–12GeV which sets the scales of the axion decay constant Fa and the heavy seesaw particles. In the case of the type-I and type-II seesaw introducing a singlet fermion (right- handed neutrino) [6] and a Higgs triplet scalar [7] respectively, http://dx.doi.org/10.1016/j.physletb.2015.11.067
0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
their combinations withthe KSVZ and DFSZ axion models leads to the same results to the conventional ones. Thus, we consider thetype-IIIseesaw(byheavyleptontriplets)[8]implementingthe PQsymmetryinthemannerofKSVZorDFSZ.
• KSVZ+type-III (KSVZ-III): In a KSVZ model combined with type-IIIseesaw(leptontripletswithzerohypercharge),weadd as usual an extra heavy quark field which transforms as (3,1,0)underSU(3)c×SU(2)L×U(1)Y,andthree(Majorana) leptontriplets whichtransformas(1,3,0). Theright-handed andleft-handedleptontripletsaredenotedby
=
NR/ √
2 E+R E−R
−
NR/ √
2
,
c=
(
NR)
c/ √
2
(
E−R)
c(
E+R)
c−(
NR)
c/ √
2
(2) where heavy neutrino NR, heavy charged leptons E±R, c≡ i
τ
2˜ciτ
2withthechargeconjugation˜c=C¯T andthePauli matrixτ
2.Thenon-trivialX-chargesareassignedasfollowsσ
LR
LL lR
X
+
1+
12−
12∓
12∓
12∓
12 (3)compatible with the Yukawa Lagrangian for the KSVZ-III model,
−
LKSVZ-IIIYuk ±= −
LSMYuk+
Lhσ
R+
LYD˜ +
12Tr
[
chσ ]
1
2Tr
[
chσ
∗] +
h.c. (4)where =(φ+,φ0)T and L=(
ν
L,L) stand for the Higgs doublet and the lepton doublet in the SM, respectively, and ˜ =iτ
2∗. Depending on the X-charge signs of the triplet fermiononecouplesσ
orσ
∗tothetripletasdenotedbyIII+ or III−,respectively. Note that we took the normalization of Xσ=1 inEq.(3)underwhichtheQCD anomalyisthenum- beroftheheavyquarks:c3=N.After the U(1)X breaking by an appropriate scalar potential (1),thecomplexscalarfield
σ
canbewrittenasσ = √
12ei Aσ/vσ
(
vσ+ ρ )
(5)where a≡Aσ is nothing but the KSVZ axion, and the real scalar
ρ
issupposed to getmass ∼vσ which setsthe axion andseesawscales.• DFSZ+type-III(DFSZ-III):InaDFSZaxionmodel,thePQsym- metryisimplementedbyextendingtheHiggssectorwithtwo Higgsdoublets, i=(φ+i ,φi0)T withi=1,2,andaHiggssin- glet
σ
,andallowingthescalarpotentialtermV
(
1,
2, σ ) λ
σ†1
2
σ
2+
h.c. (6) whichsetsthePQ(X)chargerelationofthetwoHiggsbosons:2=X1−X2 againunderthenormalizationofXσ=1.
ThentheYukawaLagrangianforDFSZ-IIIreads
−
LDFSZYuk s-III±=
QLYu˜
2uR+
QLYd1dR
+
L Ys
R
+
L YD˜
2+
12Tr
[
chσ ]
1
2Tr
[
chσ
∗] +
h.c.,
(7) where one can choose s=1 or 2 depending on which we categorize two differentDFSZmodels. As we againhavetwochoicesforthetripletmass operatorwith
σ
orσ
∗,thereare fourdifferentDFSZ-IIImodels.Eqs.(6),(7)give six X-charge relations tobesatisfiedby the eight fields (other than
σ
). As will be discussed shortly, the orthogonalityofthe axionandthelongitudinaldegree ofthe Z boson gives another condition. Then, one finds that there is freedom to choose one ofthe three quark charges. Taking XQL≡0,wegetthefollowingX-chargeassignment:σ
1 2 QL uR dR LL lRX 1 +Xd −Xu 0 −Xu −Xd ∓12 ∓12+Xu ∓12+Xu−Xs
(8) wherewehave X1=Xd and X2= −Xu leadingtotheQCD anomalyc3=(Xu+Xd)Ng=6 withthenumberofthegener- ation Ng=3.
AfterthebreakingofSU(2)L×U(1)Y×U(1)X bythevacuum expectationvalues,v1,v2andvσ,of1,2and
σ
,theaxion andthelongitudinaldegreeofthe Z bosondenotedbyaand G0,aregivenby[18]:a
∝
Xdv1A1−
Xuv2A2+
XσvσAσ,
G0
∝
v1A1+
v2A2,
(9)where A1, A2 and Aσ are thephasefieldsof1,2 and
σ
. ThentheorthogonalityofaandG0isguaranteedbyXd
=
2x(
x+
1/
x)
and Xu=
2/
x(
x+
1/
x)
(10)withthenormalizationXσ=1 andx≡v2/v1. 3. MinimalsupersymmetricPQseesawmodel
ToimplementthePQsymmetryinsupersymmetricmodels,let usintroduce two chiralsuperfields
σ
ˆ andσ
ˆ¯ havingthe opposite X charges,say, Xσ= −Xσ¯ ≡ +1,andits spontaneousbreaking is assumedtooccurbythetypicalsuperpotential:WPQ
= λ
SSˆ ( σ ˆ σ ˆ¯ −
12vσvσ¯
)
(11)where
σ
=vσ/√2 and ¯
σ
=vσ¯/√2 isimpliedinthenotation.
Here Sˆ isagaugesingletsuperfieldandcarryPQchargezero.
ThesupersymmetricversionoftheKSVZmodelintroducesthe heavyquarksuperpotential
WKSVZ
=
WMSSM+ ˆ
hˆ
cσ ˆ¯
(12) whichdefinesthePQchargerelation:X+Xc= −Xσ¯ ≡ +1 lead- ingtotheQCDanomaly:c3=N+c asinthenonsupersymmetric case. Here WMSSMistheusual MinimalSupersymmetricStandard Model(MSSM)superpotentialgivenbyWMSSM
= ˆ
Q Yuuˆ
cHˆ
u+ ˆ
Q Yddˆ
cHˆ
d+ ˆ
LYˆ
cHˆ
d+ μ
Hˆ
uHˆ
d (13) whichisseparatedfromthePQmechanism.ThesupersymmetricDFSZmodelprovidesanaturalframework toresolvethe
μ
problemaswell[19]byextendingtheHiggssec- torWDFSZ
= ˆ
Q Yuuˆ
cHˆ
u+ ˆ
Q Yddˆ
cHˆ
d+ ˆ
LYˆ
cHˆ
d+ λ
μσ ˆ
2MPH
ˆ
uHˆ
d (14)where MP isthereducedPlanckmassandtherightsizeofthe
μ
term,
μ
=λμv2σ/2MP,arisesafterthePQsymmetrybreaking.Theusual PQ chargesassignment consistent withtheabove superpo- tential is
ˆ
σ
Hˆ
u Hˆ
d Qˆ
uˆ
c dˆ
c Lˆ ˆ
lc X+
1−
Xu−
Xd 0+
Xu+
Xd+
XL−
XL+
Xd(15) where we have put XQ ≡0 as before and Xu+Xd=2 follows fromthecharge normalizationof Xσ= +1.Atthisstage,thereis arbitrarinessin choosing the value of XL, but it will be fixed in seesawextendedPQmodels whichhasnophysicalconsequences.
Notethat theQCD anomalyofthesupersymmetricDFSZmodelis againgivenbyc3=(Xu+Xd)Ng=6.
Nowletusconsidertheseesawextensionsofthesupersymmet- ricPQmodels.Asinthenon-supersymmetriccase,Type-I seesaw introducingright-handed (singlet)neutrinos doesnot change the resultsof thestandard KSVZ andDFSZ models.Thus, we discuss theType-IIand-IIIextensionsinorder.
•KSVZ+Type-II(sKSVZ-II): Type-II seesaw introduces a Dirac pair of SU(2)L triplet superfields with the hypercharge Y =
±1:ˆ =(ˆ++,ˆ+,ˆ0)andˆc=(ˆc0,ˆ−,ˆ−−).Itscombi- nation withtheKSVZmodelcan berealizedby thesuperpo- tential:
WsKSVZ-II±
=
WKSVZ+ ˆ
LYνLˆ ˆ + λ
dHˆ
dHˆ
dˆ +
λ
σσ ˆ¯ ˆ ˆ
cλ
σ¯σ ˆ ˆ ˆ
c (16)whichsetthePQchargesoftheleptonicfields:
L
ˆ ˆ
lcˆ ˆ
cX 0 0 0
±
1 (17)•DFSZ+Type-II(sDFSZ-II): Similarly to the previous case, the superpotentialfortheDFSZmodelcombinedwithType-IIsee- sawtakestheform:
WsDFSZ-II±
=
WDFSZ+ ˆ
LYνLˆ ˆ + λ
dHˆ
dHˆ
dˆ +
λ
σσ ˆ¯ ˆ ˆ
cλ
σ¯σ ˆ ˆ ˆ
c (18)which is invariant under the PQ symmetry with the charge assignmentof(15)extendedtotheleptonicsectorasfollows:
L
ˆ ˆ
lcˆ ˆ
cX
−
Xd+
2Xd+
2Xd±
1−
2Xd (19)•KSVZ+Type-III(sKSVZ-III):InsupersymmetricType-IIIseesaw one introduces threetriplet superfields(with Y=0) denoted by
ˆ =
Nˆ
c/ √
2 E
ˆ
E
ˆ
c− ˆ
Nc/ √
2(20) Then thewholesuperpotential oftheKSVZmodelrealizedin Type-IIIseesawis
WsKSVZ-III±
=
WKSVZ+ ˆ
LYDˆ
Hˆ
u+
12
λ
σσ ˆ¯
Tr[ ˆ ˆ ]
1
2
λ
σ¯σ ˆ
Tr[ ˆ ] ˆ
(21)which definesthe PQcharges oftheleptonic fields asinthe non-supersymmetriccase:
ˆ
Lˆ
lcˆ
X
∓
12±
12±
12 (22)• DFSZ+Type-III(sDFSZ-III): Type-III seesaw introduces three tripletsuperfields(withY=0):
ˆ =
Nˆ
c/ √
2 E
ˆ
E
ˆ
c− ˆ
Nc/ √
2(23) Thesuperpotentialis
WsDFSZ-III±
=
WDFSZ+ ˆ
LYDˆ
Hˆ
u+
12
λ
σσ ˆ¯
Tr[ ˆ ] ˆ
1
2
λ
σ¯σ ˆ
Tr[ ˆ ] ˆ
(24)whichsetthePQchargesoftheleptonicfields:
L
ˆ ˆ
lcˆ
X
∓
12+
Xu±
12−
Xu+
Xd±
12 (25)4. Modelimplicationstotheaxiondetection
TodiscusstheimplicationsofthePQseesawmodelspresented inthe previous sections,letusfirst summarizesome basicprop- erties of the axion relevant for our discussion [3]. After the PQ symmetrybreaking byageneric numberofscalarfieldsφ having thePQcharge Xφ andφ=vφ/√
2,thefollowingcombinationof thephasefields Aφdefinestheaxiondirection:
a
=
φ
XφvφAφ
/
vPQ with vPQ=
φ
X2φv2φ
.
(26)IntegratingoutalltherelevantPQ-chargedfermions,theaxiongets the effective axion–gluon–gluon and axion–photon–photon cou- plings through its color and electromagnetic anomalies, respec- tively:
−
L a Fag32 32
π
2Ga
μνG
˜
aμν+ ˜
caγ γ a Fae2 32
π
2FμνF˜
μν (27)
where the axion decay constant Fa is defined by Fa≡vPQ/c3, and ˜caγ γ is the ‘modified’ electromagnetic anomaly normalized by the color anomaly c3 of the PQ symmetry. Below the QCD scale QCD∼200 MeV,the axion–gluon–gluon anomaly coupling inducestheaxionpotential
V
(
a) =
ma2Fa21
−
cos a Fa(28) wheretheaxionmassiscalculatedtobe
ma
√
z 1+
zmπfπ
Fa
≈
6 μeV 1012GeV Fa(29) withz≡mu/md≈0.5,mπ=135 MeV and fπ=92 MeV.
UnderthePQchargenormalizationofXσ= +1 (andXσ¯ = −1) in the non-supersymmetric (supersymmetric) axion models dis- cussed in the previous section, the color anomaly c3 counts the number of distinct vacua developed in the axion potential (28) whichsetstheaxionicdomainwallnumberNDW= |c3|.Then the axion–photon–photoncouplingconstantisgivenby
˜
caγ γ
=
caγ γ−
cχS B (30)with caγ γ
≡
2Tr[
X Qem2]
c3and cχS B
≡
2 34
+
1.
05z 1+
1.
05z≈
1.
98 wherecaγ γ countstheelectromagneticanomalynormalizedbythe coloranomaly,andcχS B isthemodified effectbythechiralsym- metrybreakingincludingthestrangequarkcontribution.Fig. 1.Theaxion–photon–photoncoupling|gaγ γ|asafunctionofaxionmassma invariousPQseesawmodels.Thefuturesensitivities oftheADMXandCAPPex- perimentsare shown inthe cyan and redthick-dashed lines,respectively. (For interpretationofthereferencestocolorinthisfigure,thereaderisreferredtothe webversionofthisarticle.)
EachPQseesawmodelpresentedintheprevioussection gives adifferentpredictiononthe coefficientcaγ γ andthus onthefu- ture sensitivityof the axion search at ADMXor CAPP. Following Eq.(31),theelectromagneticanomalyofeachmodelisgivenby
caγ γ
=
⎧ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎩
±
2Ng= ±
6 KSVZ-III± 83
±
1=
113,
53 DFSZ1-III±1
3
±
1=
53, −
23 DFSZ2-III±±
10 sKSVZ-II±8
3
−
23±
103=
163,−
43 sDFSZ-II±±
2Ng= ±
6 sKSVZ-III±8
3
−
23±
1=
3,
1 sDFSZ-III±(31)
where NDW=1 and 6 are used for the KSVZ and DFSZ models, respectively.
In Fig. 1, we plot the axion–photon–photon coupling gaγ γ ≡
˜
caγ γ
α
em/2π
Faasafunctionofaxionmassma,andcomparethem withtheconventional KSVZ(caγ γ =0) andDFSZ(caγ γ =8/3, or 1/3) predictions.Theexperimentssuch asADMX[14],CAPP[15], CAST[16],IAXO[17],are projected toprobe someregions ofthe parameterspaceoftheaxioncouplingtophotonsanditsmass.In Fig. 1thecyan- (red-) thickdashedboundaryindicates thefuture sensitivityoftheaxiondarkmatter searchby ADMX(CAPP)[21].The current ADMX results [20] exclude only a limited region of KSVZtypemodelsandDFSZ2-III−,sDFSZ-II±modelsoverthemass range ofma=3.3–3.69 μeV. Solar axion search experimentslike CASTandIAXOarealsosensitivetothePQaxions.CASTprobesthe axion massrangeof ma≈0.1–1 eV for gaγ γ9×10−11GeV−1, while IAXO would have sensitivity to much larger axion masses compared to CAST if gaγ γ 9×10−12GeV−1. Most recently, CAST has improved the limit on the axion–photon–photon cou- pling to gaγ γ <1.47×10−10GeV−1 at 95% C.L. [16]. This may excludethemodelsabovetheKSVZlineoverthemassrangema 0.06–0.4 eV,whichcanbeseenbyconsideringthemassvaluesat
gaγ γ =1.47×10−10GeV−1 in thevarious modelslike sKSVZ-II− (ma0.06 eV), sKSVZ-II+, sKSVZ-III−, KSVZ-III− (ma0.1 eV), sKSVZ-III+, KSVZ-III+ (ma0.2 eV), sDFSZ-II± (ma0.24 eV), DFSZ2-III−(ma0.3 eV),andKSVZ(ma0.4 eV).
5. Conclusion
We have considered minimal extensions of the SM combin- ing the KSVZ or DFSZ axion withvarious seesaw models in the frameworkofthe(non-)supersymmetrictheories,whichprovides apopularsolutiontothestrongCPproblemaswellasthesmall- nessofneutrinomasses.Wehaveshowedthatdependingonhow toembedU(1)PQinaseesawmodel,theelectromagneticandcolor anomaly coefficients take different values, and thus each model has a different prediction on the axion–photon–photon coupling whichcouldbetestedinthefutureaxionsearchexperiments.This sets upvariousbenchmarkpointsfortheminimalPQseesawmod- elsincomparisonwiththestandardKSVZandDFSZmodelswhich aresummarizedinEq.(31)andFig. 1.
Acknowledgement
Y.H. Ahn is supported by IBS under the project code, IBS- R018-D1.
References
[1]Forcomprehensivereviewsoftheaxionphysics,see,J.E.Kim,Phys.Rep.150 (1987)1;
H.-Y.Cheng,Phys.Rep.158(1988)1.
[2]R.D.Peccei,H.R.Quinn,Phys.Rev.Lett.38(1977)1440.
[3]Forareview,see,J.E.Kim,G.Carosi,Rev.Mod. Phys.82(2010)557,arXiv:
0807.3125[hep-ph].
[4]J.E.Kim,Phys.Rev.Lett.43(1979)103;
M.A.Shifman,A.I.Vainshtein,V.I.Zakharov,Nucl.Phys.B166(1980)493.
[5]M.Dine,W.Fischler,M.Srednicki,Phys.Lett.B104(1981)199;
A.R.Zhitnitsky,Sov.J.Nucl.Phys.31(1980)260;
A.R.Zhitnitsky,Yad.Fiz.31(1980)497.
[6]P.Minkowski,Phys.Lett.B67(1977)421;
M.Gell-Mann,P.Ramond,R.Slansky,Conf.Proc.C790927(1979)315,arXiv:
1306.4669[hep-th];
T.Yanagida,Conf.Proc.C7902131(1979)95;
R.N.Mohapatra,G.Senjanovic,Phys.Rev.Lett.44(1980)912;
J.Schechter,J.W.F.Valle,Phys.Rev.D22(1980)2227.
[7]W.Konetschny,W.Kummer,Phys.Lett.B70(1977)433;
S.Bertolini,L.DiLuzio,H.Kolesova,M.Malinsky,Phys.Rev.D91 (5)(2015) 055014,arXiv:1412.7105[hep-ph].
[8]R.Foot,H.Lew,X.G.He,G.C.Joshi,Z.Phys.C44(1989)441.
[9]K.Kang,J.Kim,J.E.Kim,K.S.Soh,H.S.Song,Phys.Rev.D22(1980)2869.
[10] S.L.Cheng,C.Q.Geng,W.T.Ni,Phys.Rev.D52(1995)3132,http://dx.doi.org/
10.1103/PhysRevD.52.3132,arXiv:hep-ph/9506295.
[11]R.N.Mohapatra,G.Senjanovic,Z.Phys.C17(1983)53;
Q.Shafi,F.W.Stecker,Phys.Rev.Lett.53(1984)1292;
P.Langacker,R.D.Peccei,T.Yanagida,Mod.Phys.Lett.A1(1986)541;
A.G.Dias,A.C.B.Machado,C.C.Nishi,A.Ringwald,P.Vaudrevange,J.HighEn- ergyPhys.1406(2014)037,http://dx.doi.org/10.1007/JHEP06(2014)037,arXiv:
1403.5760[hep-ph];
A.Salvio, Phys. Lett. B743 (2015) 428,http://dx.doi.org/10.1016/j.physletb.
2015.03.015,arXiv:1501.03781[hep-ph];
C.D.R.Carvajal, A.G.Dias, C.C.Nishi, B.L.Snchez-Vega, J.High Energy Phys.
1505(2015)069,http://dx.doi.org/10.1007/JHEP05(2015)069,arXiv:1503.03502 [hep-ph];
C.D.R.Carvajal,A.G.Dias,C.C.Nishi,B.L.Snchez-Vega,J.HighEnergyPhys.1508 (2015)103,http://dx.doi.org/10.1007/JHEP08(2015)103(Erratum);
J.D.Clarke,R.R.Volkas,arXiv:1509.07243[hep-ph].
[12]M.Fukugita,T.Yanagida,Phys.Lett.B174(1986)45.
[13]P.Sikivie,Lect.NotesPhys. 741(2008) 19,arXiv:astro-ph/0610440,andthe reviewsin[1].
[14]S.J. Asztalos, et al., ADMX Collaboration, Phys. Rev. D 69 (2004) 011101, arXiv:astro-ph/0310042;
seealso,http://depts.washington.edu/admx/index.shtml.
[15] Center for Axionand PrecisionPhysicsResearch(CAPP), seehttp://capp.ibs.
re.kr/html/capp_en/.
[16] M.Arik,etal.,CASTCollaboration,Phys.Rev.D92 (2)(2015)021101,http://
dx.doi.org/10.1103/PhysRevD.92.021101,arXiv:1503.00610[hep-ex];
seealso,http://cast.web.cern.ch/CAST/.
[17]I.G. Irastorza, et al., J. Cosmol. Astropart. Phys. 1106 (2011) 013, arXiv:
1103.5334;
E.Armengaud,etal.,J.Instrum.9(2014)T05002,arXiv:1401.3233.
[18]E.J.Chun,A.Lukas,Phys.Lett.B357(1995)43,arXiv:hep-ph/9503233.
[19]J.E.Kim,H.P.Nilles,Phys.Lett.B138(1984)150;
E.J.Chun,J.E.Kim,H.P.Nilles,Nucl.Phys.B370(1992)105.
[20] J.Hoskins, et al., Phys. Rev.D84(2011) 121302, http://dx.doi.org/10.1103/
PhysRevD.84.121302,arXiv:1109.4128[astro-ph.CO].
[21] IBS-MultiDarkJointPocusprogram:WIMPs andAxions,seeGrayRybkaand YannisSermertzidistalksinhttps://indico.ibs.re.kr/event/7/.