• Tidak ada hasil yang ditemukan

Moonseo Park

N/A
N/A
Protected

Academic year: 2024

Membagikan "Moonseo Park"

Copied!
65
0
0

Teks penuh

(1)

Moonseo  Park  

39433     Phone    880-­‐5848,  Fax    871-­‐5518  

E-­‐mail:  [email protected]   Department  of  Architecture   College  of  Engineering   Seoul  NaJonal  University   Professor,  PhD  

Problem-

Solving with a better

decision

(2)

Earth

I meter

Suppose

We measure the circumference of the earth 1 meter above the earth surface, which is ‘A’.

And, the original circumference is ‘B’.

Then, A – B would be? 1)

<

10 M

2) About 10 KM 3) About 1000 KM 4)

>

1000 KM

A   B  

Anchoring

 
(3)

3 I meter

A  

B  

R

B = 2*

π

*R

π

= 3.14…

A = 2*

π

*(R+1)

A - B = 2*π*(R+1) - 2*π*R = 2 π

= 2*3.14…

= 6.28…

3

(4)

Suppose

You have a paper big enough to fold several times.

If you fold the paper 50 times, what would be the thickness of the paper?

1)

<

10 CM

2) About 1 M

3) about 1 KM

Once,

And so on…

Twice, Three times,

4)

>

1000 KM

Underes/ma/ng  Feedback  Effect

 
(5)

5

Suppose

The thickness of the original paper is ‘x’, which was 0.01 CM.

When you fold the paper twice, the thickness will be x*21 When you fold the paper 10 times, the thickness will be x*210 When you fold the paper 50 times, the thickness will be

x*210 *210 *210*210*210 = 10-2*103*103*103*103*103 = 1013 CM = 108 KM

= 100 Million KM

,where x = 10-2 CM

210 = 1024 = about 103 1 KM = 105 CM

Earth  

Sun   150 Million KM

5

(6)

Lack  of  Empathy  

A  Government  Policy  Failure  Example  
(7)

7

How to reduce air pollution caused by emitting vehicles?

Regulating car driving on an odd and even

number basis

Buying one more car

Increasing registration fee

for new cars

Buying a used car

They  found  a  clue  BUT…

 
(8)

Cogni/on  Trap  

§  CogniJon  (인지):  a  human  being’s  ‘conscious’  mental  process   including  aTenJon,  solving  problems  and  decision-­‐making.  

§  CogniJon  Trap  (인지함정):  a  frame  of  thinking  that  leads  to  a  

mistake  by  staJc  cling  (정태적인 집착으로 실책을 이끄는 사고의

틀).    

§  Our  decision-­‐making  is  prone  to  a  mistake,  as  many  cogni5on   traps  exist  in  the  uncontrolled  real  world.  

(9)

Cause  Confusion

 

§  More  difficult  to  idenJfy  what  the  problem  is  than  you   expect.  

§  Once  idenJfied,  less  difficult  to  solve  than  you  worry  

§  The  problem  should  be  a  ‘nightmare’.  

 Confusing  the  causes  of  complex  events  

9

(10)

Over-­‐simplifying  

by  missing  links  

“Charles  Lamb’s  Essay,  1800”  

Missing  links  in   causes  

(11)

Causa/on  vs  Correla/on  

 

Confusing   causaJon  with  

correlaJon  

Blunder,  Zachary  Shore  2007  

11

(12)

Backward  Causa/on  

 

You  observe  the  shopping   cart  of  a  fat  woman,  which   is  full  of  diet  food.  

?  

(13)

Depression   Chemical  Imbalance  

Drugs  

Not  always  that  simple…

 

What  if  chemical  imbalance  is  the   result  of  depression?  

Blunder,  Zachary  Shore  2007  

13

(14)

Sta/c  Cling

 

§  Longing  for  things  

(prosperity,  peace,  success)   to  remain.  

§  BUT  

§  There  is  oden  something   more  important  than  fact.  

Refusal  to  accept  a  changing  world  

(15)

Categoriza/on  Risk

   

Is  it  a  bird?  

A  chicken   A  robin  

An  ostrich  

Tend  to  think  idealized  best  examples  in  prototypes  

Blunder,  Zachary  Shore  2007  

15

(16)

§  CategorizaJon  is  criJcal  in  daily  life  

§  Relate  all  objects,  events,  and  ideas  as  classes  

§  Tend  to  think  idealized  best  examples  in  prototypes                      

Ex.  When  hearing  “bird”,  people  imagine  a  robin  or  another  bird  like  it  

§  Thus,  allow  a  thing  only  inside  the  category  or  outside,  NO   in  between  

             Ex.  characterize  people  according  to  blood  types  

§  SuscepJble  to  flatview  and  cure-­‐allism  

(17)

Failure  of  Sachs’s  policy  for  Soviet  

Union’s  priva/za/on   IMF  &  Asian  Tigers  in  1998  

Blunder,  Zachary  Shore  2007  

17

(18)

Mirror  Imaging

   

Tendency  that  the  other  people  think  like  themselves.  

PatrioJc  ProsJtutes  in  Japan  ader  2nd  world  war   Men  are  from  Mars,  Women  are  from  Venus  

(19)

Flatview

 

§  Mostly  caused  by  categorizaJon,   lack  of  Empathy  and  ImaginaJon            *empathy  (feel  with)    cf.  sympathy  (feel  for)  

 

§  Lead  to  ‘black  or  white  view’  

§  Important  to  understand  that  all   people  (enemies  or  allies)  are   ruled  by  emoJon  and  their   decision  making  is  ‘opJmized   (good  or  bad)’  to  the  given   situaJon  

Blunder,  Zachary  Shore  2007  

19

(20)

§  Not  only  a  communist  leader  

§  Also,  a  naJonalist  patriot   fighJng  for  his  people’s   freedom  

(21)

Selec/ve  Percep/on  

21

(22)

Infomania

 

§  Amount  of  informaJon  guarantees  a  good  decision?  

§  Lead  to  overconfidence    about  their  decision  

(23)

§  “The  Necklace”,  Maupassant  

§  Job  posJng  example  

§  Occurs  when  people  are   afraid  that  their  posiJon  is   threatened  when  knowledge   is  spread  

§  But,  oden  sharing  informaJon   helps  avert  disaster  

Infomisering  

(정보독점)  

Blunder,  Zachary  Shore  2007  

23

(24)

§  Believe  avoiding  informaJon   can  help  achieve  goals  

§  Shun  the  informaJon  that   could  keep  from  blunders  

§  Similar  with  Infomisering  in   that  it  retreats  from  the  

wisdom  of  others  

Infovoidering  

(정보회피)  
(25)

System  View

 

 

§  System  

§  See  as  a  whole    

§  See  the  unseen    

25

(26)

System  

(27)

See  as  a  whole  NOT  as  parts

 

27

(28)

See  the  unseen

 

There  is  God  as  unseen  wind  moves  reed  (Pascal).  

(29)

System  thinking  can   be  trained?...  

29

(30)

Mental Process Modeling

System Dynamics

(31)

System  Dynamics  

 

§  Extend  our  mental  models  through  the  creaJon  of  explicit   models,  which  are  clear,  easily  communicaJng  and  can  be   compared  with  each  other.    

§  Increase  the  probability  that  the  consequences  of  how  we  will   decide  and  act  in  accordance  with  how  we  plan  to.    

§  Developed  to  apply  control  theory  to  the  analysis  of  industrial   systems  in  the  late  1950’s  by  Jay  Forrester,  MIT  Professor  

§  Used  to  analyze  industrial,  economic,  social  and  environmental   systems  of  all  kinds    

Wikipedia  

Wikipedia  

31

(32)

Finding  the  Root  Cause  

by  iden/fying  missing  links  in  causes  

Root  cause     Missing  links  in  

causes   Perceived   cause  but  not  

real  cause   Problem   observed  

(33)

Decision  making  

against  cogni/on  traps  

Root  cause     Missing  links  in  

causes   AcJons  

taken  

Decision  Making  

Perceived   cause  but  not  

real  cause   Problem   observed  

33

(34)

Analyzing  consequence  of  ac/ons  taken  

by  simula/ng   their  chain  effect  

Root  cause     Missing  links  in  

causes   Missing  links  in  

chain  effect   AcJons  

taken  

Decision  Making  

Perceived   cause  but  not  

real  cause   Problem   observed  

Chain  effect  of   acJons  taken  

(35)

Also,  understa/ng  their  feedback  effect  

back  into  the   root  cause  

Root  cause     Missing  links  in  

causes   Missing  links  in  

chain  effect   AcJons  

taken  

Decision  Making  

Perceived   cause  but  not  

real  cause   Problem   observed  

Chain  effect  of   acJons  taken  

35

(36)

As  the  final  element  of  system  structure,  there  are  two  kinds   of  variables  ...  

•  Stocks  (also  called  ‘levels’):  define  the  state  of  a  system  and   represent  stored  quanJJes    

•  Flows  (also  called  ‘rates’):  define  the  rate  of  change  in  

system  states  and  control  quanJJes  flowing  into  and  out  of   stocks    

Stocks  &  Flows    

(37)

37  

Representa/ons    

Hydraulic  Metaphor:  

Stock  &  Flow  Diagram:   Stock

Inflow Outflow

Integral  EquaJon:   Stock(t)  =  

[Inflow(s)  –  Ouulow(s)]ds                                  +  Stock  (t0)  

t0   t

Clouds”  represent  stocks  outside  the  system   boundary  

(38)

Terminologies  in  Different  Disciplines    

Discipline Stocks Flows

Mathematics, Physics, Engineering

Integrals, states, state variables, stocks

Derivatives, rates of change, flows

Chemistry Reactants, reaction products Reaction rate

Manufacturing Buffers, inventories Throughput Economics

Levels Rates

Accounting Stocks, balance sheet items Flow, cash flow or income statement items

Biology, Physiology Compartments Diffusion rate, flows Medicine, Epidemiology Prevalence, reservoirs Incidence, infection,

morbidity, mortality rates

(39)

39  

•  Auxiliaries:  intermediate  variables  to  be  used  for  easy  of   communicaJon  and  clarity  

•  Break  up  rates  into  meaningful  components  

•  Provide  alternaJve  measures  for  stocks  or  flows  

•  Reduce  diagram  “cluTer”  

•  Constants:  factors  which  may  be  stocks  or  flows,  but  which   do  not  change  over  the  Jme  span  of  the  simulaJon  

Auxiliaries  &  Constants    

(40)

Break  Rates  Into  Components  

Hiring  =  Average  ATriJon  +  (Desired  Staff   -­‐  Staff)/  Time  to  Adjust  Staff  

(separate  equaJons  for  components)     vs.  

Hiring  =  Average  ATriJon  +  (((Total  Work   to  Do  -­‐  Work  Done)  /  ProducJvity)  -­‐  

Staff)/  Time  to  Adjust  Staff  

Staff  

Work  Done  

Hiring   ATriJon  

Average  ATriJon  

Desired  Staff  

Work  Remaining  

Total  Work  to  Do  

ProducJvity  

Time  to  Hire  

(41)

41  

Provide  AlternaJve  Measures  

Inventory  Coverage  =   Inventory  /  Average  Sales  

For  stocks…   For  flows…  

Cash  

Revenues   Expenses  

Profits  

Inventory  

Inventory  Coverage  

Average  Sales  

Profits  =  Revenues  -­‐  Expenses  

(42)

Reduce  Diagram  CluTer  

Project  Costs   Labor  Cost  

Material  Cost  

U/lity  Cost  

Site  Office   Opera/on  Cost  

Project  

Management  Fee   Direct  Cost  

Indirect  Cost   Project  Costs  

Labor  Cost  

Material  Cost  

U/lity  Cost  

Site  Office   Opera/on  Cost   Project  

Management  Fee  

(43)

43  

Causal  Links  (Not  Casual  …)  

•  An  arrow  with  a  posiJve  sign  (+):  all  else  remaining  equal,  an   increase  (decrease)  in  the  first  variable  increases  (decreases)   the  second  variable  above  (below)  what  it  would  otherwise   have  been.  

•  An  arrow  with  a  negaJve  sign  (-­‐):  all  else  remaining  equal,  an   increase  (decrease)  in  the  first  variable  decreases  (increases)   the  second  variable  below  (above)  what  it  otherwise  would   have  been.  

Bank  

Balance   Interest  

Earned   +  

Price   -­‐   Orders  

(44)

Labeling  Link  Polarity  

Inventory  

Produc/on   Shipments  

Ordered   Books  

Sales  force   Price  

Popula/on  

Births   Deaths  

+   -­‐  

+   -­‐  

+   -­‐  

(45)

45  

Causa/on  vs.  Correla/on  

Murder   Rate   Ice  Cream  

Sales  

+  

Observed  behavior:  “…Ice  cream  sales  and  murder  rise  in   summer  and  fall  in  winter…”  

Incorrect  

Murder   Rate   Ice  Cream  

Sales  

+  

Correct  

Average   Temperature   +  

Causal  diagrams  must  include  only  those  rela5onships  that   capture  the  underlying  causal  structure  of  the  system.  

(46)

Having  Unambiguous  Polari/es  

Revenue   Price  

?  (+  or  -­‐)  

Incorrect  

+  

Correct  

-­‐  

All  causal  links  must  have  unambiguous  polari5es.  

 *  Apparently  ambiguous  polariJes  usually  imply  the  presence      of  mulJple  causal  pathways  that  can  be  represented  

   separately.  

Revenue   Price  

Sales  

+  

(47)

47  

Iden/fying  the  Feedback  Loop  

Bank  

Balance   Interest  

Earned   +  

Murder   Rate   Ice  Cream  

Sales  

+   Average  

Temperature   +  

+  

-­‐  

Revenue   Price  

Sales  

+   A`rac/veness  of  

Market  

Number  of   Compe/tors  

Price   Profits  

+  

-­‐  

+   +  

Feedback   Loop  

(48)

Loop  Polari/es:  Reinforcing  or  Balancing?  

Applicant  for   Admission  

School   Reputa/on  

Capable   Student  

Research    

+  

+   +  

+  

R  

Reinforcing  Loops:  loops  with  all  posiJve   or  an  even  number  of  negaJve  causal   links  

A`rac/veness   of  Market  

Profits  

Industry  

Number  of   Compe/tors  

+  

+  

+  

B  

Balancing  Loops:  loops  with  an   odd  number  of  negaJve  causal   links  

(49)

49  

Naming  Variables  

Price  Rise   Costs  Rise  

+  

Incorrect   Correct  

Names  should  be  nouns  or  noun  phrases.  

 

•   The  acJons  (verbs)  are  captured  by  the  causal  links  

•   A  causal  diagram  captures  the  structure  of  the  system,  not        its  behaviors  

Price   Costs  

+  

(50)

Naming  Variables  

Mental   Abtude   Feedback  from  

the  Boss  

+  

Incorrect   Correct  

Names  should  have  a  clear  sense  of  direc5on.  

 

Choose  names  for  which  the  meaning  of  an  increase  or   decrease  is  clear  

   

Morale   Praise  from  

Boss  

+  

(51)

51  

Naming  Variables  

Unhappiness   Quarrels  with  

Friends  

+  

Incorrect   Correct  

Choose  variables  whose  normal  sense  of  direc5on  is  posi5ve.  

 

 Avoid  the  use  of  variable  names  containing  prefixes  indicaJng   negaJon  (non,  un,  etc.)  

   

Happiness   -­‐  

Quarrels  with   Friends  

(52)

Choosing  Right  Level  of  Aggrega/on  

Unit  Costs   Market  Share  

-­‐  

If  audience  is  confused  by    

Use  intermediate  variables,  if  they  can  make  communica5on  easier   and  clearer    

You  might  make  the  intermediate  concepts  explicit  as  follows.    

Unit  Costs   Market  Share  

+   Produc/on   Volume  

Cumula/ve   Produc/on   Experience   +  

-­‐  

(53)

53  

Making  Goals  Explicit  

Make  the  goals  of  nega5ve  loops  explicit.  

 

•   All  negaJve  feedback  loops  have  goals  (the  desired  state      of  the  system)  

•   They  funcJon  by  comparing  the  actual  state  to  the  goal,          then  iniJaJng  a  correcJve  acJon  in  response  to  the    

     discrepancy.  

•   Making  goals  explicit  encourages  people  to  ask  how  the          goals  are  formed.    

(54)

Making  Goals  Explicit  

Product Quality

Quality Improvement

Programs - +

B

The  goal  of  the  loop   is  determined  by   management   decision  (human   behaviors).  

Incorrect   Correct  

The  goal  of  the  loop  is   determined  by  the   laws  of  

thermodynamics   (natural  processes).  

Coffee  

Temperature  

 

+  

-  

B  

+  

Temperature  

Difference  

Desired  Room  

-  

+  

Coffee  

Temperature  

Cooling  

-  

B  

Temperature  

Product  

Quality  

Quality  

Improvement  

Programs  

-  

+  

B   Quality  

Shordall  

Desired  

Product  

Quality  

+  

+  

Incorrect   Correct  

(55)

System

Dynamics

Applications

(56)

DPM  

(57)

57  

The  US  Navy  and  Ingalls  case  

A  system  dynamics  model  developed  by  Pugh-­‐

Roberts  Associates  in  the  US  was  used  to  seTle   the  claim  against  the  US  Navy  in  the  late  

1970’s.  

 

With  help  of  this  modeling  approach,  the  ship   builder,  Ingalls  managed  to  receive  $447  

million  as  compensaJon  for  their  financial   losses  caused  by  the  owner’s  design  and   specificaJon  changes.  

 

Reference:  Business  Dynamics  (Sterman,  2000);  Strategic  management  of   complex  projects  (Lyneis  et  al.,  2001)  

(58)

Quan/fying  the  ripple  effects  

TradiJonal  project  management  tools  such  as  CPM,  PDM,  and   PERT  do  not  provide  a  mean  to  quanJfy  the  ripple  effects  that   mulJply  the  direct  impact  many  Jmes,  leading  to  significant   overall  delay  and  disrupJon.    

Design/  

SpecificaJon   Change  

Altering  work   sequence  

Requiring   overJme   Unscheduled  

hiring  

Work  out  of   sequence   Lowered  

producJvity  

Resource  idling  

Lowered  quality  

(59)

59  

0 200 400 600

1976 1978 1980 1982 1984 1986 1988 1990

Thousand people/year

Total Arrests

Sale/Manufacture Possession

0 20 40 60

1976 1978 1980 1982 1984 1986 1988 1990

Thousand people/year

ER Mentions

ME Mentions * 10

0 20 40 60 80 100

1976 1978 1980 1982 1984 1986 1988 1990

Purity (%)

The  War  on  Drugs    

(60)

Simulated vs. actual cocaine epidemic. Dashed lines, data; solid lines, model.

0 0.01 0.02 0.03 0.04 0.05

1976 1980 1984 1988 1992 1996

Prevalence (fraction of population)

NHS Past Month User Fraction Simulated

Actual Past Month User Fraction

Simulated

Reported Past Month User Fraction

History Forecast

Past  month  user  fric/on  decreased…  

(61)

61  

Source: Homer (1993, 1997)

0 200 400 600 800

1976 1980 1984 1988 1992 1996

Thousand people/year

Sale/Mfr Possession Total Arrests History Forecast

But,  drug  possession,  arrests,  sales  increased  

(62)

0 25 50 75

1976 1980 1984 1988 1992 1996

Thousand people/year ER Mentions

ME Mentions * 10 History Forecast

Even  worse…  

(63)

63  

Where  to  Get  More  

•  System  Dynamics  Group  at  MIT  

                 hTp://sysdyn.mit.edu/sd-­‐group/  

 

•  System  Dynamics  Society  

     hTp://www.albany.edu/cpr/sds/  

 

•  System  Dynamic  Review        SNU  Library  

 

•  Ventana  Systems:  download  Vensim  PLE  version        hTp://www.vensim.com/  

 

(64)

References  

•  Avraham  Shtub,  Jonathan  F.  Bard,  Shlomo  Globerson,  “Project  management  :  engineering,  technology,  and   implementa/on”,  Englewood  Cliffs,  NJ,  Pren/ce  Hall,  1994    

•  Frederick  E.  Gould,  Nancy  Joyce,  Chapter  8,  “Construc/on  project  management”,  Upper  Saddle  River,  NJ,   Pren/ce  Hall,  1999    

•  James  M.  Lyneis  *,  Kenneth  G.  Cooper,  Sharon  A.  Els,  “Strategic  management  of  complex  projects:  a  case   study  using  system  dynamics”,  System  Dynamics  Review,  Vol.  17,  No.  3,  2001    

•  Christopher  M.  Gordon,  “Choosing  appropriate  construc/on  contrac/ng  method”,  J.  of  Construc/on   Engineering  &  Management,  Vol.  120,  No.  1,  1994    

•  Feniosky  Pena-­‐Mora,  Jim  Lyneis,  “Project  control  and  management”,  MIT  1.432J  Lecture  Material,  1998  

•  Barrie,  D.S.,  and  Paulson,  B.C.,  “Professional  Construc/on  Management”,  McGraw  Hill,  1992  

•  Halpin,  D.W.,  “Financial  and  Cost  concepts  for  construc/on  management”,  John  Wiley  &  Sons,  1995  

•  Yehiel  Rosenfeld,  “Project  Management”,  MIT  1.401J  Course  Material,  2000  

•  Sarah  Slaughter,  “Innova/on  in  construc/on”,  MIT  1.420  Course  Material,  1999  

•  Chan,  Albert  P.  C.;  Ho,  Danny  C.  K.;  Tam,  C.  M,  “Design  and  Build  Project  Success  Factors:  Mul/variate   Analysis”,  J.  of  Construc/on  Engineering  &  Management,  Vol.  127,  Issue  2,  2001    

(65)

65  

Where  did  the  gasoline  go?    

NO  GAS  

Referensi

Dokumen terkait