Structural Design Lab.(Prof. Ho-Kyung Kim) Dept. of Civil & Environmental Eng.
Seoul National University
457.649 Advanced Structural Analysis
Part V:
Geometric Stiffness of Frames
▶
Geometric effects:
§
Initial imperfections
§
P-Δ effect
§
P-δ effect
▶
Material effects:
§
Plastic deformation of steel structures
§
Cracking or creep of reinforced concrete structures
§
Inelastic interaction of axial force, bending, shear and torsion
Source of Nonlinearity
P-δ and P-Δ Effects
Moment Amplification or Second-Order Analysis for P-δ
( C P
mP
e)
M
M = -
0
1
max
Moment Amplification or Second-Order Analysis for P-Δ
2
2
1 1
1
nte
B P
P
= ³
- å
å
Types of Analysis
▶
Linear Elastic Analysis
▶
Incremental form with tangential stiffness matrix
▶
Second-order Elastic Analysis
▶
First-order Inelastic Analysis
▶
Second-order Inelastic Analysis
▶
Eigenvalue Problem
Matrix Representation
[ ] K
e{ } { } D = P
[ ] K
t{ } { } d D = dP
{ } { }
e g
é + ù D =
ë K K û d dP
[ K
e+ K
m] { } { } d D = dP
{ } { }
e g m
é + + ù D =
ë K K K û d dP
{ } { }
e
l ˆ
g0
é + ù D =
ë K K û l 1 { } D
f= - é ë K
efù û ë
-1é K ˆ
gfù û { } D
fLarge Displacement
▶
e.g. for axial force element,
§
▶
for pure torsion element,
§
▶
for flexural element,
§
Displacement in terms of nodal displacements
[ ] { } D
= D
=
D +
+ D +
+ D +
D
= D
å
=N N
N N
N N
n i
i i
n n i
i
1
2 2 1
1
! !
2 2 1
1
u N u
N
u = +
2 2 1
1 x x
x
N q N q
q = +
2 4 1
3 2
2 1
1
v N v N
zN
zN
v = + + q + q
Shape Functions for Axial Member
x a a dx u
e
x= du Þ =
1+
2( )
1 22 1
2 2 1
1
1 1
u u
L u u x
L x
u N u
N u
x x + -
=
÷ + ø ç ö
è æ -
=
+
=
Shape Functions for Flexural Member
1 1 2 2 3 1 4 2
2 3
1
2 2
2 3
3
2 4
1 3 2
1
3 2
z z
v N v N v N N
x x
N L L
N x x
L
x x
N L L
x x
N x
L L
q q
= + + +
æ ö æ ö
= - ç ÷ è ø + ç ÷ è ø
æ ö
= ç è - ÷ ø
æ ö æ ö
= ç ÷ è ø - ç ÷ è ø é æ ö ù
= ê ê ë ç ÷ è ø - ú ú û
그림
7.3 삽입
그림
7.5 삽입
Element Stiffness Matrix
= 0 -
= W
extW
intW d d d
[ ][ ] { } ( ) d vol
W
int= ò
vold e E e d
[ ] d Δ { } F
d
d = å D =
= n i
i i
ext
F
W
1
[ ] { } [ ][ ] { } ( ) [ ] { }
vol
d d vol d
é ¢ ¢ ù =
ë ò Δ N E N Δ û Δ F
[ ] k = é ë ò
vol{ } N ¢ [ ][ ] E N ¢ d vol ( ) ù û
Geometric Stiffness Matrices: Axial Force Member
Geometric Stiffness Matrices: Combined Bending and Axial Force
2 3
Combined Torsion and axial force
Three Dimensional Geometric Nonlinear Analysis