• Tidak ada hasil yang ditemukan

24763057.pdf - AJOU Open Repository

N/A
N/A
Protected

Academic year: 2024

Membagikan "24763057.pdf - AJOU Open Repository"

Copied!
7
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Carbohydrate Polymers

j ou rn a l h o m e pa g e : w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

Protective effect of fucoidan against AAPH-induced oxidative stress in zebrafish model

Eun-A Kim

a

, Seung-Hong Lee

b

, Chang-ik Ko

c

, Seon-Heui Cha

d

, Min-Cheol Kang

a

, Sung-Myung Kang

e

, Seok-Chun Ko

f

, Won-Woo Lee

a

, Ju-Young Ko

a

, Ji-Hyeok Lee

a

, Nalae Kang

a

, Jae-Young Oh

a

, Ginnae Ahn

g

, Young Heun Jee

h

, You-Jin Jeon

a,∗

aDepartmentofMarineLifeSciences,JejuNationalUniversity,Jeju690-756,RepublicofKorea

bDivisionofFoodBioscience,KonkukUniversity,Chungju,Chungbuk380-701,RepublicofKorea

cResearchInstituteofProcessingfromJejuFisherFood,ChoungRyongFisheriesCo.,Ltd.,Jeju697-943,RepublicofKorea

dDepatmentofPharmacology,SchoolofMedicine,AjouUniversitySuwon,RepublicofKorea

ePediatricOncologyExperimentalTherapeuticsInvestigatorsConsortium(POETIC)LaboratoryforPre-ClinicalandDrugDiscoveryStudies,Universityof Calgary,Calgary,AB,Canada

fDepartmentofFoodandNutrition,SungshinWomen’sUniversity,Seoul136-742,RepublicofKorea

gLaboratoryofComparativeAnimalMedicine,DivisionofAnimalLifeScience,InstituteofAgriculture,TokyoUniversityofAgricultureandTechnology, Tokyo183-8509,Japan

hDepartmentofVeterinaryMedicine,AppliedRadiologicalScienceResearchInstitute,JejuNationalUniversity,Jeju690-756,RepublicofKorea

a r t i c l e i n f o

Articlehistory:

Received14December2012

Receivedinrevisedform31October2013 Accepted20November2013

Available online 27 November 2013

Keywords:

Fucoidan Zebrafish AAPH Anti-oxidant

a b s t r a c t

Fucoidan,extractedfromEckloniacava,hasbeenextensivelystudiedbecauseofitswidebiologicalactiv- ities.However,antioxidativeactivitieshavenotbeenyetexamined.Thereforeweevaluatedinvitroand invivostudiesonantioxidativeactivitiesofE.cavafucoidan(ECF).ECFexhibitedmoreprominenteffects inperoxylradicalscavengingactivity,comparedtotheotherscavengingactivities.Thus,ECFwasfur- therevaluatedforitsprotectiveabilityagainst2,2-azobisdihydrochlorideinducedoxidativestressin VerocellsandECFstronglyreducedtheAAPH-inducedoxidativedamagethroughscavengingintracel- lularreactiveoxygenspecies.Furthermore,weevaluatedprotectiveeffectofECFagainstAAPH-induced oxidativestressinzebrafishmodel.ECFsignificantlyreducedROSgeneration,lipidperoxidationandcell deathinzebrafishmodel.ThesefindingsindicatethatECFhasantioxidantactivitiesinvitroVerocells andinvivozebrafishmodel,eventhoughECFisnotapolyphenolorflavonoidcompoundanddoesnot containbenzeneringsorconjugatedstructures.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Reactiveoxygenspecies (ROS)or highlevelsoffree radicals causeoxidativestressleadingtodegradationofDNA,cellmem- branes, proteins and other cellular constituents (Fang, Yang, &

Wu,2002;Lopaczynski&Zeisei,2001).Asaresult,differentkinds ofserioushumandiseasesarecreatedincludingatherosclerosis, rheumatoidarthritis,musculardystrophy,cataracts,someneuro- logical disorders, sometypesof cancers and aging(Kovatcheva etal.,2001;Ruberto,Baratta,Biondi,&Amico,2001).

Zebrafish(Danioreiro)havedefiniteadvantages.Forexample, their comparatively small size makes them easier to adminis- ter in largenumbers in a laboratory environment (Kishiet al., 2003). Furthermore zebrafish have a very short development, as the basic body plan is laid out 24h post-fertilization (hpf),

Correspondingauthor.Tel.:+82647543475;fax:+82647563493.

E-mailaddresses:[email protected],[email protected](Y.-J.Jeon).

embryos hatch approximately 2–3 days post-fertilization (dpf) and theyattain maturity at about 3 months. Additionally, one female can spawn about 100 eggs per day, which are fertil- izedbyspermreleasedintothewaterbymales(Scholz,Fischer,

& Gundel, 2008). Zebrafish have beentraditionally used in the fieldsofmoleculargeneticsanddevelopmentbiology,asamodel organismfordrugdiscoveryandtoxicologicalstudiesbecauseof theirphysiological similaritytomammals (Drieveret al.,1996;

Hertog, 2005; Kimmel, 1989; Pichler et al., 2003). Moreover, zebrafish have been used as a model for human disease and developmentand have beenthetargetof a large-scalefunding program undertaken by the European Union (Zebrafish Model for Human Development and Disease ZF-MODELS) (Bradbury, 2004).

Seaweeds arecomposedof a varietyof bioactivesubstances (polysaccharides,pigments,minerals,peptidesandpolyphenols) withvaluable pharmaceuticaland biomedical potential.In par- ticularbrownseaweedscontainvariousbiologicalbenefitssuch asantioxidant,anticoagulant,antihypertension,antibacterial,and 0144-8617/$seefrontmatter© 2013 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.carbpol.2013.11.022

(2)

antitumoractivities(Athukorala&Jeon,2005;Heo,Park,Lee,&

Jeon,2005;Kotake-Nara,Asai,&Nagao,2005;Mayer&Hamann, 2004;Nagayama,Iwamura,Shibata,Hirayama,&Nakamura,2002).

Eckloniacava (class,Phaeophyceae; family, Lessoniaceae; order, Laminariales, E.cava)contains a variety of unique compounds including sulfated polysaccharides and phlorotannins with dif- ferent biological activities (Heo et al., 2009). In recent years, sulfatedpolysaccharidesandisolatedcompoundsfromseaweeds have been demonstrated to be potential ROS scavengers, and to possess anticoagulant, antithrombotic, antiviral, anticancer, anti-inflammation and antioxidant activities (Hayashi, Nakano, Hashimoto,Kanekiyo,&Hayashi,2008;Leeetal.,2012;Lietal., 2009;Shi, Nie, Chen,Liu, &Tap, 2007; Wang,Zhang, Zhang,&

Li, 2008). Nevertheless, the antioxidative activities of polysac- charides such as fucoidans have not been evaluated properly, because they do not have benzene rings or conjugated struc- tureswhich aregenerally thefunctional groupsfor antioxidant activity.

In this study, therefore, the antioxidative activities of E. cava fucoidan (ECF) were evaluated against 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stressinvitrocellexperimentsandinvivozebrafishmodel.

2. Materialsandmethods

2.1. Materials

Brownseaweed,E.cavawascollectedfromthecoastofJeju Island,SouthKorea,betweenFebruaryandApril2011.Thesam- plewas rinsedcarefully withfresh water and freezedried. The driedseaweedsamplewasgroundandshiftedthrougha50mesh standardtesting sieve.Allchemicalsand reagentsusedwereof analyticalgradeandobtainedfromcommercialsources(Leeetal., 2012).

2.2. ExtractionoffucoidanfromE.cava

Fucoidanwasextractedandfractionatedaccordingtothepre- viously reported methods withslight modifications (Lee et al., 2012).Tengramssampleoftheground,driedE.cavapowderwas homogenizedwith1000mLofdistilledwater(dH2O)andmixed with100␮LofCelluclast(NovoNordisk,Bagsvaerd,Denmark).This reactionwascontinuedfor24hat50Candthenthedigestwas boiledfor 10minat100C toinactivate theenzyme.Theprod- uctwasclarifiedbycentrifugation(3000×gfor20min)toremove theunhydrolyzedresidue.ThentheoptimalpHfortheenzymatic hydrolysiswasadjustedto7.0andthecrudECFwasasadditionof precipitatedwith3volumesofethanolafterthehydrolyticreac- tion.Subsequentlythecentrifugationat10,000×gfor20minat 4C, theprecipitate wasre-dissolved in dH2Oand sequentially treatedwith4MCaCl2 forpurification.Theresultingprecipitate wasremovedbycentrifugationandtheresultantsupernatantwas treatedwithcetylpyridinumchloride.Thepyridiniumsaltswere solubilizedwith3MCaCl2 andreprecipitatedwithethanol.The precipitatewasre-dissolvedindH2O,dialyzed(MwCO,10–12kDa) againstwaterat4Cfor72h,andthenlyophilized;thelyophilized samplewasusedascrudefucoidansample.Thefucoidanconsisted of mostly carbohydrates (51.8%), sulfates (20.1%), uronic acid (11.3%)andsmallamountsofprotein(8.7%).Monosaccharidecom- positionanalysis showed that fucose(61.1%), galactose (27.2%) werethemajorsugarsin thefucoidan,withminoramounts of xylose (7.0%), rhamnose (3.9%) and glucose (0.8%) (Lee et al., 2012).

2.3. Radicalscavengingassaysbyusingelectronspinresonance (ESR)spectrometer

2.3.1. DPPHradicalscavengingassay

Thisassayisbasedonthescavengingabilityof stableDPPH radicals by the radical scavenging constituentsin the extracts.

MethoddescribedbyNanjoetal.(1996)wasusedtoinvestigate theDPPHscavengingactivityby ESRspectrometer(JES-FAESR, JEOL,Tokyo,Japan).DPPHwaspreparedinMeOHattheconcen- trationof60␮M.A60␮LofECFwasaddedtothesamevolume offreshlypreparedDPPHsolution.Then,thereactantswerethor- oughly mixedand transferredto50␮L glasscapillary tubeand fittedintotheESRspectrometer.Thespinadductwasmeasured after2min.Themeasurementconditionswereasfollows;central field 2min.The measurement conditionswere asfollows; cen- tralfield3475G,modulationwidth0.8mT,amplitude500mT,scan width10mT,microwavepower5mW.

2.3.2. Peroxylradicalscavengingassay

PeroxylradicalsweregeneratedbyAAPHandtheirscavenging effectswereinvestigatedbythemethoddescribedbyHiramoto, Johkoh,Sako,andKikugawa(1993).Thereactionmixturecontain- ing20␮Lofdistilledwater,20␮Loftheextract,40mMAAPHand 20␮Lof40mMPOBNwasincubatedat37Cfor30min.Thespin adductwasrecordedonJES-FAESRspectrometer.Themeasure- mentconditionswereasfollows;centralfield3475G,modulation width0.2mT,amplitude 500mT, scan width10mT,microwave power8mW.

2.3.3. Hydrogenperoxidescavengingassay

TheabilityofECFtoscavengehydrogenperoxidescavenging activitywasdeterminedaccordingtothemethodofMüller(1985).

A100␮Lof0.1Mphosphatebuffer(pH5.0)andthesamplesolution weremixedina96-wellplate.A20␮Lofhydrogenperoxidewas addedtothemixture,andthenincubatedat37Cfor5min.After theincubation,30␮Lof1.25mMABTSand30␮Lof peroxidase (1unit/mL)wereaddedtothemixture,andthenincubatedat37C for10min.TheabsorbancewasreadwithanELISAreader405nm.

2.4. Invitrocellexperiment 2.4.1. Cellculture

Themonkeykidneyfibroblastcellline(Vero,KCKBNo.10081) was maintained at 37C in an incubator with a humidified atmosphereof5%CO2.ThecellswereculturedinDulbecco’smod- ifiedEagle‘smediumcontaining10%heat-inactivatedferalbovine serum,streptomycin(100␮g/mL),andpenicillin(100unit/mL).

2.4.2. Intracellularreactiveoxygenspecies(ROS)measurement invitroVerocells

ForthedetectionofintracellularROS,Verocellswereseededin 96-wellplatesataconcentrationof1×105cells/mL.After16h,the cellsweretreatedwithvariousconcentrationsofECFthenincu- batedat37Cunderahumidifiedatmosphere.After1h,AAPHwas addedatafinalconcentrationof10mM,andthecellswereincu- batedforanadditional30minat37C.Finallytheconcentration of 5␮g/mLof 2,7-dichlorodihydrofluoresceindiacetate (DCFH- DA)wasintroducedtothecells,andDCFH-DAfluorescencewas detectedatanexcitationwavelengthof485nmandanemission wavelengthof535nm,usingaPerkin-ElmerLS-5Bspectrofluo- rometer(LS-5B,Perkin-Elmer,CT,USA).

(3)

0 20 40 60 80 100

0.25 0.5 1

DPPH radicalscavenging activity (%)

0 20 40 60 80 100

0.25 0.5 1

Peroxylradical scavenging activity (%)

0 20 40 60 80 100

0.25 0.5 1

Hydrogen peroxide scavengingactivity (%)

ECF (mg/mL)

IC50: 0.78 mg/mL IC50: 0.48 mg/mL IC50> 1 mg/mL

ECF (mg/mL) ECF (mg/mL)

A B C

Fig.1.MeasurementoffreeradicalscavengingactivitiesofECFbyESR.(A)DPPHscavengingactivity;(B)peroxylradicalscavengingactivityand(C)hydrogenperoxide scavengingactivity.Valuesaremeans±SDoftriplicateexperiments.

2.5. Invivozebrafishmodel

2.5.1. Originandmaintenanceofparentalzebrafish

Adultzebrafishwereobtainedfromacommercialdealer(Seoul aquarium,Seoul,Korea)and15 fisheswerekeptin3.5Lacrylic tankwiththefollowingconditions;28.5±1C,andwerefedtwice timesaday(TetraGmgHD-49304MelleMadeinGermany)with a14/10hlight/darkcycle.Thedaybefore,breeding1femaleand 2malesinterbreed.Inthemorning(onsetoflight),embryoswere obtainedfromnaturalspawningcollectionofembryoswerecom- pletedwithin30mininpetriDishes(containingmedia).

2.5.2. WaterborneexposureofembryostoECFandAAPH

Theembryos(n=15)weretransferredtoindividualwellsof12- wellplatescontaining900␮Lembryomediafromapproximately 7–9hpf,ECFwasaddedtothewells. Aftertheincubation1h, a 15mMAAPHsolutionwastreatedtotheembryoexposedwithECF forupto24hpf.Then,embryoswererinsedusingfreshembryo media.

Fluorescence intensity Intracellular radical scavenging activity (%)

*

0 20 40 60 80 100

0 5000 10000 15000 20000 25000

Control 0 25 50 100 200

ECF (µg/mL) + AAPH 10 mM

*

*

*

*

Fig.2.EffectofECFonintracellularreactiveoxygenspecies(ROS)scavengingactiv- ity.IntracellularROSweredetectedbyDCFH-DAmethod.Thebar-graphshows fluorescenceintensityandthelinegraphexhibitsintracellularradicalscavenging activity.Experimentswereperformedintriplicateanddataaremean±SE.*p<0.01.

2.5.3. Measurementofheart-beat

Theheartbeatrateofbothatriumandventriclewasrecordedat 2dpffor1minunderthemicroscope.

2.5.4. Measurementofoxidativestress-inducedintracellularROS generationandimageanalysis

GenerationofROSproductionofzebrafishwasanalyzedusing anoxidation-sensitivefluorescentprobedye,DCFH-DA.At3dpf, a zebrafish larva was transferredto one well of 96-well plate, treatedwithDCFH-DAsolution(20␮g/mL)andincubatedfor1h inthedarkat28.5±1C.Aftertheincubation,thezebrafishlar- vae were rinsed by fresh embryo media and anaesthetizedby 2-phenoxyethanol(1/500dilutionsigma)beforeobservationand photographedunder themicroscopeCoolSNAP-Pro colordigital camera(Olympus, Japan).A fluorescenceintensityof individual larvawasquantifiedusingtheimageJprogram.

2.5.5. Measurementofoxidativestress-inducedlipidperoxidation generationandimageanalysis

Lipidperoxidationwasmeasuredtoassessthemembranedam- age in zebrafish model. Diphenyl-l-pyrenylphosphine (DPPP) is fluorescentprobefordetectionofcellmembranelipidperoxida- tion.DPPP is non-fluorescent,but it becomes fluorescentwhen oxidized.At3dpf,azebrafish larvawastransferredtoonewell of 96-well plates, treated with DPPP solution (25␮g/mL) and incubatedfor1hinthedarkat28.5±1C.Aftertheincubation, thezebrafishlarvaewererinsedusingfreshembryomediaand anaesthetizedby2-phenoxyethanol(1/500dilutionsigma)before observationandphotographedunderthemicroscopeCoolSNAP- Procolordigitalcamera(Olympus,Japan).Afluorescenceintensity ofindividualzebrafishlarvawasquantifiedusingtheimageJpro- gram.

2.5.6. Measurementofoxidativestress-inducedcelldeathand imageanalysis

Celldeathwasdetectedinliveembryosusingacridineorange staining.Acridineorangestaincellswithdisturbedplasmamem- branepermeability,therefore,itpreferentiallystainsnecroticor verylateapoptoticcells.At3dpf,azebrafishlarvawastransferred toonewellof96-wellplates,treatedwithacridineorangesolution (7␮g/mL)andincubatedfor30minunderthedarkat28.5±1C.

Afterthe incubation, the zebrafish larvaewere rinsed by fresh embryo mediaand anaesthetizedby 2-phenoxy ethanol (1/500 dilutionsigma)beforeobservationandphotographedunderthe

(4)

microscopeCoolSNAP-Procolordigitalcamera(Olympus,Japan).A fluorescenceintensityofindividualzebrafishlarvawasquantified usingtheimageJprogram.

2.6. Statisticalanalysis

Thedataareexpressedasthemean±standarderror(S.E.)and one-wayANOVAtest(usingSPSS11.5statisticalsoftware)wasused tocomparethemeanvaluesofeachtreatment.Significantdiffer- encesbetweenthemeansofparametersweredeterminedbythe Student’st-test(p<0.05,p<0.01).

3. Resultsanddiscussion

3.1. RadicalscavengingactivitiesofECF

ESR spin trapping provides a sensitive, direct and accurate methodtomonitorreactivespecies(Guoetal.,1999).Weused theESR technique tomeasure DPPH and peroxylradical scav- engingactivitiesofECF.HydrogenperoxideandDPPHhavebeen widely utilized to evaluate the antioxidant activity of natural compounds (Kang, Heo, Kim, Lee, & Jeon, 2012). The percent- agescavengingactivityofECFagainstDPPHisshowninFig.1A.

According to the results, ECF had an IC50value of 0.73mg/mL for DPPH radical scavengingactivity. Asshown in Fig. 1B, ECF reducedtheESRsignalintensitytoscavengetheperoxylradical in a dose-dependent manner.Peroxyl radical scavengingactiv- ityofECF(IC50value,0.48mg/mL)wasthehighestamongother radicalscavengingactivities.Further,Fig.1CshowsthatECFhad concentration-dependent scavenging activity against hydrogen peroxide.Howeverthehydrogenperoxidescavengingactivityof ECFwasverylow.TheseresultsindicatethatECFhasremarkable scavengingactivityontheperoxylradical.Theantioxidantability ofECFagainsttheperoxylradicalsuggestsapossiblebeneficialrole preventingvariouschronicdiseasesthatarelinkedwithoxidative stress.

3.2. MeasurementofintracellularROSinVerocellsinvitro

ECFstronglyscavengedperoxylradicalamongotherradicals.

ThuswedecidedtoinduceoxidativedamagetothecellswithAAPH.

ThelevelofROSproductionincellswasdetectedviathefluorescent

probeDCFtomeasurewhetherECFcouldpreventAAPH-induced ROSgenerationandtheresultingoxidativestressors(Kangetal., 2012).TheintracellularROSscavengingactivityofECFafteradmin- istration of AAPHto Vero cells is shown in Fig.2. The results showedthatintracellularradicalscavengingof thecells treated withECFat different concentrations(25–200␮g/mL) decreased withanincreasein ECFconcentration.In particularthehighest concentration(200␮g/mL)ofECFrevealedthestrongestROSscav- engingactivity,andtheIC50valuewas75␮g/mL.Previousstudies havereportedthathighsulfateandfucoseinalgalfucoidansare relatedtoradicalscavengingeffectswithgreaterpotentialforpre- ventingfreeradical-mediateddisease(Li,Lu,Wei,&Zhan,2008;

Vo&Kim,2012;Wangetal.,2008;Zhang,Yu,Zhou,Li,&Xu,2003).

Inthepresentstudy,ECFappearedtobeapotentialperoxylradi- calscavengeronROSgeneration.AccordinglyECFcouldprotectthe humanbodyagainstoxidativestress.

3.3. MeasurementofECFagainstAAPH-inducedoxidativestress invivozebrafishmodel

Zebrafish have becomea popularmodel in pharmacological studiessuchaschemical toxicity anddrugdiscovery (Ko etal., 2011).We observedthesurvival rateand heart-beating ratein zebrafishtodetermineAAPHtoxicityinzebrafishco-treatedwith ECF. The yolk is quickly exhausted after this point, with total absorptionoccurringby7hpf(Jardine&Litvak,2003).Therefore, wedecidedthat7dpfwastheendpointofthisexperimenttoassess survivalrateduetoECFtoxicity.Survivalratewas83%intheAAPH- treatedzebrafishcomparedtothecontrol(withoutECFandAAPH) group(Fig.3A).However,survivalrateswere91%and97%at100 and200␮g/mLECF,respectively.Forthisresult,itisprovedthatECF canprotectthezebrafishfromdamageinducedbyAAPH.Zebrafish larvaetypicallyhatchwithin2–3dpfat28.5C(Scholzetal.,2008).

Thereforetheheartbeatingwasmeasuredassoonasthezebrafish hatchedat2dpf.Heart-beatingwasobservedduringthefirstmin aszebrafish layona glassplates.The heart-beatingrateofthe AAPH-treatedzebrafishincreasedto114%,comparedwiththecon- trolgroup(Fig.3B).However,thetreatedconcentrationofECFat 100and200␮g/mLintheAAPH-treatedzebrafishreducedto106%

and103%inheart-beatingrate,respectively.Thus,survivalrateand heartbeatrateofECF-treatedzebrafishweresimilartothecontrol group.Therefore,ECFcouldbeconsideredalatentperoxylradical scavengingagent.

Survival rate (%)

ECF (µg/mL) + AAPH 15 mM

Heart Beating rate (%)

B

* * *

*

50 60 70 80 90 100 110

Control 0 100 200

50 60 70 80 90 100 110 120

Control 0 100 200

A

ECF (µg/mL) + AAPH 15 mM

Fig.3.MeasurementofAAPHtoxicityandAAPH-cotreatedwithECFonsurvivalandheartbeatingrates.(A)Survivalrateand(B)heartbeatingrate.Experimentswere performedintriplicateanddataaremean±SE.*p<0.01.

(5)

Fig.4.ProtectiveeffectofECFonAAPH-treatedreactiveoxygenspecies(ROS)productioninzebrafish.(A)ROSlevelsweremeasuredbyimageanalysisandfluorescence microscope.(i)Control(withoutECFandAAPH);(ii)AAPHonly;(iii)AAPH-cotreatedwith100␮g/mlECFand(iv)AAPH-cotreatedwith200␮g/mlECF.(B)ROSlevelswere measuredbyImageJ.Experimentswereperformedintriplicateanddataaremean±SE.*p<0.01.

We tested the capacity of ECF to detect changes in a physiological state using DCFH-DA to assess the accumula- tion of ROS, DPPP to assess lipid peroxidation and acridine orange to assess cell death caused by the AAPH treatment.

DCFH-DAisoxidation-dependentlyconvertedtonon-fluorescent 2,7-dichlorodihydrofluorescein(DCFH2)tothefluorescent2,7- dichlorofluorescein(DCF); thus fluorescence intensityincreases withROSproduction(Walkeretal.,2012).ROSlevelwas130%in AAPH-treatedzebrafishcomparedtothecontrolgroup.Incontrast, zebrafishexposedtoAAPHandECFatdifferentconcentrations(100 and200␮g/mL)showedsignificantlyreducedlevelsofROSpro- duction(106%and103%)(Fig.4).Thisresultsuggestsareduction ofROSgenerationbyECFtreatment.Diphenylpyrenylphosphine (DPPP) is a probe that detects hydroperoxides and DPPP oxide isstronglyfluorescent(Akasaka,Suzuki,Ohrui,&Meguro,1987).

AAPH-inducedlipidperoxidationbyDPPPfluorescentdyeisshown

inFig.5.TheAAPH-treatedzebrafishrevealed137%oflipidperoxi- dation,whereas,zebrafishgroupstreatedwith100and200␮g/mL ECFshoweddramaticallydecreasedlipidperoxidationto105%and 103%,respectively.Thisresultindicatesareductioninlipidperox- idationproductionbyECFtreatment.Acridineorangeisanucleic acidselectivefluorescentcationicdyeusefulfor apoptoticcells.

Lastly,Fig.6showsthatthecelldeathinducedbyAAPHtreatment wasconfirmedviaacridineorangeasfluorescenceintensity.The AAPH-inducedcelldeathinzebrafishwasmeasuredto118%com- paredtothecontrolgroup.However,celldeathwasreduced(101%

and 98%)by adding ECF(100 and 200␮g/mL) toAAPH-treated zebrafish.WhenzebrafishweretreatedwithECFpriortoAAPH treatment,adramaticdecreaseincelldeathwasobserved.These resultsindicatethatzebrafishcouldbeagoodanimalmodelfor antioxidantmaterial screening.Collectively,ourresultsdemon- stratethatECFhasexcellentantioxidantpropertiesinvitroand

Fig.5. ProtectiveeffectofECFonAAPH-treatedlipidperoxidationproductioninzebrafish.(A)Lipidperoxidationlevelsweremeasuredbyimageanalysisandfluorescence microscope.(i)Control(withoutECFandAAPH);(ii)AAPHonly;(iii)AAPH-cotreated100␮g/mlECFand(iv)AAPH-cotreated200␮g/mlECF.(B)Lipidperoxidationlevels weremeasuredbyImageJ.Experimentswasperformedintriplicateanddataaremean±SE.*p<0.01.

(6)

Fig.6.ProtectiveeffectofECFonAAPH-treatedcelldeathinzebrafish.(A)Celldeathlevelsweremeasuredbyimageanalysisandfluorescencemicroscope.(i)Control (withoutECFandAAPH);(ii)AAPHonly;(iii)AAPH-cotreatedwith100␮g/mlECFand(iv)AAPH-cotreatedwith200␮g/mlECF.(B)Celldeathlevelsweremeasuredby ImageJ.Experimentswasperformedintriplicateanddataaremean±SE.*p<0.05.

invivo.Therefore,ECFcanbeapotentialcandidateforfuturether- apeuticapplications.

4. Conclusion

ECFexhibited strongperoxyl radical scavenging activityvia ESRandintracellularROSscavengingactivityinVerocellsinvitro induced by AAPH. In addition, antioxidant ability was verified throughROSproduction,lipidperoxidationproduction, andcell deathintheAAPH-inducedoxidativestresszebrafishinvivomodel.

Inconclusion,thefucoidanisolatedfromE.cava(ECF)doesnot include a polyphenol or flavonoid,and does not have benzene ringsor conjugatedstructures.Nevertheless,ourstudiesclearly showthatECFpossessesantioxidantverifiedactivitiesusinginvivo zebrafishmodel.Therefore,zebrafishcouldbeaneffectiveinvivo modelandECFmaybeavaluablenaturalanti-oxidant.

Acknowledgment

ThisresearchwassupportedbyBasicScienceResearchProgram throughtheNationalResearchFoundationofKorea(NRF)funded bytheMinistryofEducation(2013-0611).

References

Akasaka,K.,Suzuki,T.,Ohrui,H.,&Meguro,H.(1987).Studyonaromaticphos- phinesfornovelfluorometryofhydroperoxides(II)Thedeterminationof lipidhydroperoxideswithdiphenyl-1-pyrenylphosphine.AnalyticalLetters,20, 797–807.

Athukorala,Y.,&Jeon,Y.J.(2005).Screeningforangiotensin1-convertingenzyme inhibitoryactivityofEckloniacava.JournalofFoodScienceandNutrition,10, 134–139.

Bradbury,J.(2004).Smallfish,bigscience.PLoSBiology,2(5),0568–0572.

Driever,W.,Solnica-Krezel,L.,Schier,A.F.,Neuhauss,S.C.,Malicki,J.,Stemple, D.L.,etal.(1996).Ageneticscreenformutationsaffectingembryogenesisin zebrafish.Development,123,37–46.

Fang,Y.Z.,Yang,S.,&Wu,G.(2002).Freeradicals,antioxidants,andnutrition.

Nutrition,18,872–879.

Guo,Q.,Zhao,B.,Shen,S.,Hou,J.,Hu,J.,&Xin,W.(1999).ESRstudyonthe structure–antioxidantactivityrelationshipofteacatechinsandtheirepomers.

BiochimicaetBiophysicaActa,1427,13–23.

Hayashi,K.,Nakano,T.,Hashimoto,M.,Kanekiyo,K.,&Hayashi,T.(2008).Defensive effectsofafucoidanfrombrownalgaUndariapinnatifidaagainstherpessimplex virusinfection.InternationalImmunopharmacology,8,109–116.

Heo,S.J.,Ko,S.C.,Cha,S.H.,Kang,D.H.,Park,H.S.,Choi,Y.U.,etal.(2009).Effectof phlorotanninsisolatedfromEckloniacavaonmelanogenesisandtheirprotective effectagainstphoto-oxidativestressinducedbyUV-Bradiation.Toxicologyin Vitro,23,1123–1130.

Heo,S.J.,Park,E.J.,Lee,K.W.,&Jeon,Y.J.(2005).Antioxidantactivitiesofenzymatics frombrownseaweeds.BioresourceTechnology,96,1613–1623.

Hertog,J.D.(2005).Chemicalgenetics:Drugscreensinzebrafish.BioscienceReports, 25,5–6.

Hiramoto,K.,Johkoh,H.,Sako,K.I.,&Kikugawa,K.(1993).DNAbreakingactivity ofthecarbon-centeredradicalgeneratedfrom2,2-azobis(2-amidinopropane) hydrochloride (AAPH). Free Radical Research Communication, 19, 323–332.

Jardine,D.,&Litvak,M.K.(2003).Directyolksacvolumemanipulationofzebrafish embryosandtherelationshipbetweenoffspringsizeandyolksacvolume.Jour- nalofFishBiology,3,388–397.

Kang,S.M.,Heo,S.J.,Kim,K.N.,Lee,S.H.,&Jeon,Y. J.(2012).Isolationand identificationofnewcompound,2,7-phlorogucinol-6,6bieckolfrombrown algae,Eckloniacavaanditsantioxidanteffect.JournalofFunctionalFoods,4, 158–166.

Kimmel,C.B.(1989).Geneticsandearlydevelopmentofzebrafish.TrendsinGenetics, 5(8),283–288.

Kishi,S.,Uchiyama,J.,Baughman,A.M.,Goto,T.,Lin,M.C.,&Tsai,S.B.(2003).The zebrafishasavertebratemodeloffunctionalagingandverygradualsenescence.

ExperimentalGerontology,38,777–786.

Ko,S.C.,Cha,S.H.,Heo,S.J.,Lee,S.H.,Kang,S.M.,&Jeon,Y.J.(2011).Protectiveeffect ofEckloniacavaonUVB-inducedoxidativestress:Invitroandinvivozebrafish model.JournalofAppliedPhycology,23,697–708.

Kotake-Nara,E.,Asai,A.,&Nagao,A.(2005).Neoxanthinandfucoxanthininduce apoptosisinPC-3humanprostatecancercells.CancerLetters,220,75–84.

Kovatcheva,E.G.,Koleva,I.I.,Ilieva,M.,Pavlov,A.,Mincheva,M.,&Konushlieva, M.(2001).AntioxidantactivityofextractsfromLavandulaveraMMcellcultures.

FoodChemistry,72,295–300.

Lee,S.H.,Ko,C.I.,Ahn,G.,You,S.G.,Kim,J.S.,Heu,M.H.,etal.(2012).Molecular characteristicsandanti-inflammatoryactivityofthefucoidanextractedfrom Eckloniacava.CarbohydratePolymer,89,599–606.

Li,B.,Lu,F.,Wei,X.,&Zhan,R.(2008).Fucoidan:Structureandbioactivity.Molecules, 13,1671–1695.

Li,Y.,Qian,Z.J.,Ryu,B.M.,Lee,S.H.,Kim,M.M.,&Kim,S.K.(2009).Chemical componentsanditsantioxidantpropertiesinvitro:Anediblemarinebrown alga,Eckloniacava.Bioorganic&MedicinalChemistry,17,1963–1973.

Lopaczynski,W.,&Zeisei,S.H.(2001).Antioxidant,programmedcelldeath,and cancer.NutritionResearch,21,295–307.

Mayer,A.M.S.,&Hamann,M.T.(2004).Marinepharmacologyin2000:Marine compound withantibacterial, anticoagulant,antifungal, anti-inflammatory, antimalarial,antiplatelet,antituberculosis,andantiviralactivities;affecting cardiovascular,immune,andnervoussystemsandothermiscellaneousmech- anismsofaction.MarineBiotechnology,1,37–52.

(7)

Müller,H.E.(1985).Detectionofhydrogenperoxideproducedbymicroorganisms onanABTSperoxidasemedium.ZentralblBakteriolMikrobiolHygA,259(2), 151–154.

Nagayama,K.,Iwamura,Y.,Shibata,T.,Hirayama,I.,&Nakamura,T.(2002).Bacteri- cidalactivityofphlorotanninsfromthebrownalgaEckloniakurome.Journalof AntimicrobialChemotherapy,50,889–893.

Nanjo,F.,Goto,K.,Seto,R.,Suzuki,M.,Sakai,M.,&Hara,Y.(1996).Scavengingeffects ofteacatechinsandtheirderivativeson1,1-diphenyl-2-picrylhydrazylradical.

FreeRadicalBiologyandMedicine,21,895–902.

Pichler,F.B.,Laurenson,S.,Williams,L.C.,Dodd,A.,Copp,B.R.,&Love,D.R.(2003).

Chemicaldiscoveryandglobalgeneexpressionanalysisinzebrafish.Nature Biotechnology,21,879–883.

Ruberto,G.,Baratta,M.T.,Biondi,D.M.,&Amico,V.(2001).Antioxidantactivityof extractsofthemarinealgalgenusCystoseirainamicellarmodelsystem.Journal ofAppliedPhycology,13,403–407.

Scholz, S., Fischer, S., & Gundel, U. (2008).The zebrafish embryo model in environmentalriskassessment-applicationsbeyondacutetoxicitytesting.Envi- ronmentalScienceandPollutionResearch,15,394–404.

Shi,B.J.,Nie,X.H.,Chen,L.Z.,Liu,Y.L.,&Tap,W.Y.(2007).Anticanceractivitiesofa chemicallysulfatedpolysaccharideobtainedfromGrifolafrondosaanditscombi- nationwith5-fluorouracilagainsthumangastriccarcinomacells.Carbohydrate Polymers,68,687–692.

Vo,T.S.,&Kim,S.K.(2012).Fucoidansasanaturalbioactiveingredientforfunctional foods.JournalofFunctionalFood,5,16–27.

Walker,S.L.,Ariga, J.,Mathias, J. R.,Coothankandaswamy, V.,Xie, X., Distel, M.,etal.(2012).Automatedreporterquantificationinvivo:High-throughput screening method for reporter-based assays in zebrafish. PLoS ONE, 7, e29916.

Wang,J.,Zhang,Q.,Zhang,Z.,&Li,Z.(2008).Antioxidantactivityofsulfatedpolysac- charidefractionsextractedfromLaminariajaponica.International Journalof BiologicalMacromolecules,42,127–132.

Zhang,Q.B.,Yu,P.Z.,Zhou,G.F.,Li,Z.E.,&Xu,Z.H.(2003).Studiesonantioxidnat activitiesoffucoidanfromLaminariajaponica.ChineseTraditionalandHerbal Drugs,34,824–826.

Referensi

Dokumen terkait

AmEV treatment increased tight junction protein expression in Caco-2 cells and ultimately improved intestinal barrier integrity in high-fat diet HFD-induced diabetic mice in an

For type 2 diabetes association, genotype counts for SNPs in the seven genes in type 2 diabetic case and control subjects were directly obtained or estimated from the five European GWA

Nursing and medical students’ perceptions of an interprofessional simulation-based education: a qualitative descriptive study Woosuck Lee1, Miran Kim2, Yun Kang1, Yu-Jin Lee1, So

The current study was conducted to determine whether HbA1c and fasting glucose levels correlate with hs-CRP in Koreans with undiagnosed diabetes, as well as to determine which of these

We compared NGS results from K-MASTER projects with those of non-NGS orthogonal methods KRAS, NRAS, and BRAF mutations in colorectal cancer [CRC]; epidermal growth factor receptor

To prove the concept, we evaluated the clinical efficacy, safety, and immunomodulatory effect of the intramuscular administration of autologous total immunoglobulin G IgG in 20 adult

The Initiating Dialysis Early and Late IDEAL study is a prospective, multicenter, randomized, controlled trial to compare outcomes in patients starting dialysis with a higher versus

Introduction Since the publication of several recent reports showing that imatinib IM discontinuation can be performed in patients who have had sufficient IM therapy and have