• Tidak ada hasil yang ditemukan

PDF Chapter 4. Multiple-beam interference Part 2

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF Chapter 4. Multiple-beam interference Part 2"

Copied!
13
0
0

Teks penuh

(1)

EE 430.423.001 2016. 2nd Semester

2016. 10. 13.

Changhee Lee

School of Electrical and Computer Engineering Seoul National Univ.

[email protected]

Chapter 4. Multiple-beam interference

Part 2

(2)

EE 430.423.001 2016. 2nd Semester

Optical surfaces having virtually any desired reflectance and transmittance characteristics may be produced by means of thin film coatings.

Examples: camera lens, high-reflecting mirrors, high-transmitting mirrors, one-way mirrors, optical filters, etc.

4.4 Theory of multilayer films

(3)

EE 430.423.001 2016. 2nd Semester

Boundary conditions

0 1 1

0 1

1 0

0 0

0

0 1

0 0 0 0

0 1

0 0

2 2

layer, dielectric

the of reflection of

index

1 cos

sin

sin ' cos

1 1

) cos sin

' (

) sin ' (cos

1

n

k n

E E kl n

kl in

n kl i n kl

E E n n

E kl E n

kl E in

n E n

E kl E n

i n E kl

E

T T

T

T T

T T



 





 



 

 



 

4.4 Theory of multilayer films

(4)

EE 430.423.001 2016. 2nd Semester

matrix er

transf cos

sin

sin cos

t coefficien ission

transm

t coefficien reflection

'

1 1

1

1

1 0

0 0

0 0





 



 

 



 

 



 

kl kl

in

n kl i n M kl

E t E

E r E

n t M n r

n

T T

T

4.4 Theory of multilayer films

matrix transfer

overall

film multilayer

for the 1

1 1

1

3 2 1

3 2 1 0

0



 

 



 

 



 

 

 

 

 



 

D C

B M A

M M

M M

n t M n t

M M

M M n r

n

N

T T

N

(5)

EE 430.423.001 2016. 2nd Semester

4.4 Theory of multilayer films

nce transmitta

e reflectanc

t coefficien ission

transm 2

t coefficien reflection

2 2 0

0

0 0 0

0 0

t T

r R Dn

C n

Bn An

t n

Dn C

n Bn An

Dn C

n Bn r An

T T

T T

T T

 

 

Antireflecting films

Suppose a single film of index n1 and thickness l is placed on a glass substrate of index nT.

T T

T

T T

T T

n n

R

kl n l

n

n r n

R

kl n

n i kl n

n

kl n

n i kl n

r n

 

 

 

1

2 2 1

2 2 2 1

2 1 1

2 1 1

if 0

2 4 , if

) (

) (

e reflectanc

sin ) (

cos ) 1

(

sin ) (

cos ) 1

t ( coefficien

reflection

(6)

EE 430.423.001 2016. 2nd Semester

Antireflecting films

MgF2, index nMgF2 =1.35, glass index nT~1.5

R can be reduced to zero by using multilayer films of low/high/…low/high index with the thickness /4.

(7)

EE 430.423.001 2016. 2nd Semester

Antireflecting with L/H-index films

0 2

0 2

2

2 0

2

2 0

2 2

2 0

2

2 0

2

0 0

0

if 0

) (

) (

) (

) (

n n n

n n n n

n R

n n n

n

n n n

r n R

n n n

n

n n n

n n n

n n n

n

n n n n

n n r

T L

H T

L H

T L H

T L H

T L H

T L H

T H

L L

H

T H

L L

H



 

 

 

 

 









 







H L L

H

H

H L

L

n n n

n

in

n i in

n i M

0

0 0

0 0

0

e reflectanc

t coefficien reflection

2 0

0

0 0

r R Dn C

n Bn An

Dn C

n Bn r An

T T

T T

(8)

EE 430.423.001 2016. 2nd Semester

Antireflecting with L/H/L-index films

T H

L L T

H

T H

T H

T H

T H

H T

H

H T

H

n n n

n n n

n n

n n R

n n n

n n

n n n

n r n

R

n n n

n n

n n n

n n n

n n in

n n n

in

n n n in

n n n

in r

0 2

2 1 2 2 1 0

2

2

2 2 2 1 0

2

2 2 2 1 0

2 2

2 2 2 1 0

2

2 2 2 1 0

2

2 1 0

2 1

2 1 0

2 1

0

if 0

) (

) (

) (

) (



 

 

 





















 











0 0

0

0 0

0 0

0 0

0 0

0

2 1

2 1

2 2

1

1 2

2 1

1

H

H

H H

H

H

n n in

n n

in

n n n

n

in

n i in

n i in

n i in

n i M

(9)

EE 430.423.001 2016. 2nd Semester

High-reflectance films

A high-reflectance film is made by reversing the order of deposition of the low - and high refractive index layers compared to an anti-reflecting film .

R can be high by using multilayer films of high/low/…/high/low index.

























 







N H

L N

L H N

H L L

H

H L L

H

H

H L

L

n n n

n

n n n

n M

n n n

n

in

n i in

n i

) (

0

0 )

( 0

0

0

0 0

0 0

0

(10)

EE 430.423.001 2016. 2nd Semester

High-reflectance films

2

2 2 2

2

1 )

(

1 )

( )

( )

(

) (

) (

















 

 

N L H

N L H

N H N L

L H

N H N L

L H

n n

n n

n n n

n

n n n

n r

R R 1 for large N

The reflectance approaches unity for large N.

Example:

• An 8-layer stack (N=4) of ZnS (nH=2.3) and MgF2 (nL=1.35)

gives a reflectance of ~0.97, which is higher than the reflectance of pure Ag in the visible region of the spectrum.

• A 30-layer stack results in a reflectance of better than 0.999.

(11)

EE 430.423.001 2016. 2nd Semester

Fabry-Perot Interference Filter

A Fabry-Perot type of filter (Fabry-Perot etalon with a very spacing) consists of a layer of dielectric having a thickness of /2 (for some wavelength 0) and bounded on both sides by partially reflecting surfaces.

http://www.dfisica.ubi.pt/~hgil/fotometria/HandBook/ch03.html

(12)

EE 430.423.001 2016. 2nd Semester

Fabry-Perot Interference Filter

A Fabry-Perot type of filter (Fabry-Perot etalon with a very spacing) consists of a layer of dielectric having a thickness of /2 (for some wavelength 0) and bounded on both sides by partially reflecting surfaces.

(13)

EE 430.423.001 2016. 2nd Semester

Homework set #3.

Solve Problems 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.10

Due date: 2016. 10. 20 (

)

Referensi

Dokumen terkait