Nanomaterials for Energy Group 1
Byungwoo Park
Nanomaterials for Energy Group
http://bp.snu.ac.kr
Cutting-Edge Nanomaterials for Energy:
Solar Cell ∙ Li + Battery
2
Humanity’s Top Ten Problems for the Next 50 Years
1. ENERGY
2. WATER 3. FOOD
4. ENVIRONMENT 5. POVERTY
6. TERRORISM & WAR 7. DISEASE
8. EDUCATION 9. DEMOCRACY 10. POPULATION
2003 6.5 Billion People 2050 8-10 Billion People
Prof. R. E. Smalley (1943 – 2005)
Nanomaterials for Energy Group 3
Nanoscale Control: Nanomaterials for Energy
Nanomaterials for Energy
Solar Cell
Li + Battery
Phosphor Fuel Cell
Water Pumping
Lighting Systems
Portable Devices
Electric Vehicles
Laptops
& Cell Phones
Household Energy Storage System
Portable Power Supply
Less Polluting Power Generation Transportation
Quantum Dot
LEDs LCD TVs
PDP
4 http://foreconomicjustice.org/3989
?
Semiconductor-Sensitized Solar Cells:
from Quantum Dots to Quantum Rods
DSSC SONY DSSC
KIST
6
하나의 광자에 의한 다중 전자 생성 나노입자 크기조절을 통한 광흡수 조절
Nozik, Science (2011).
Advantages of Quantum-Dot-Sensitized Solar Cells
Nanomaterials for Energy Group 7
양자점/전해질 계면처리
양자점의 전기화학적 안정성 확보
Core/Shell 및 불순물 첨가를 이용한 밴드갭 조절
양자점 → 전해질로의 광전하 재결합 억제양자점 전해질
산화물나노전극
TCO TCO
TiO 2 QD
Cu 2 S
Core/Shell Structure
Suppression of Recombination: Coating of QD
8
0.0 0.1 0.2 0.3 0.4 0.5
0 1 2 3 4
16 Cycles
12 Cycles 8 Cycles
4 Cycles Bare
0.4 0.5 0.6 0.7
16 Cycles
12 Cycles
8 Cycles
4 Cycles
Bare
(%)
ZnO Cycle Number
Curre nt Dens it y ( mA/cm 2 )
Voltage (V)
• Recombination of carrier electrons is significantly diminished by the ZnO layer.
• Enhanced adsorption behavior of CdS quantum dot.
300 400 500 600 700
0 20 40 60
4.0 3.5 3.0 2.5 2.0
Photon Energy (eV)
External Q uantum Eff ici ency (%)
Wavelength (nm)
400 450 500
0 1 2
8 Cycles
16 Cycles 4 Cycles
Wavelength (nm)
Enhancement Ratio
4 Cycles
8 Cycles
16 Cycles Bare
ZnO Passivation on TiO 2 Electrode in QDSC
J-V
IPCE
H. Choi, J. Kim, C. Nahm, C. Kim, S. Nam, J. Kang,
B. Lee, T. Hwang, S. Kang, D. J. Choi, Y.-H. Kim,
and B. Park, Nano Energy (2013).
Nanomaterials for Energy Group 9
Surface Ligand of Nanorod
Different ligands improve efficiency by affecting charge-transfer dynamics.
Polystyrene bead wt. %
Polystyrene Bead in TiO 2 Electrode
Beads in electrode are burnt to leave pores.
Rods go deeper through percolated pores.
1-Octanethiol (OT) Trioctylphosphine
oxide (TOPO)
Type-II Heterojunction Nanorods for Solar Cells
Type-II Band Offset
OT-CdSe/CdSe
0.4Te
0.6TOPO-CdSe/CdSe
0.4Te
0.6TOPO-CdSe/CdTe TOPO-CdSe
Composition Control of Nanorods
Type-II band results faster charge separation.
OT-CdSe/CdSe
0.4Te
0.6in Porosity-Tuned TiO
23.02 %
1.69 %
~25 nm
e
- S. Lee, + J. C. Flanagan, + J. Kang, J. Kim, M. Shim,
and B. Park, Sci. Rep. (2015).
10
Organo-Metal Halide Perovskite Solar Cells
B Site: Metal Cation A Site: Organic Cation
X Site: Anion
Y. Xiao* and Q. Meng* (Tianjin University), Chem. Commun. 50, 15239 (2014).
Transparent Conducting Oxide Electron Transporting Material Perovskite Absorption Layer
Hole Transporting Material Metal electrode
+
- e
-h
+Cell Architecture
ABX 3 Perovskite Unit Cell
Nanomaterials for Energy Group 11
Power Conversion Efficiency of 22.1%
(from National Renewable Energy Laboratory)
10 µm
Perovskite as the Next Generation Photovoltaics
A: CH
3NH
3+, C
2H
5NH
3+, HC(NH
2)
2+, . .
B: Pb
2+, Cs
2+, Sn
2+, . . X: I
-, Br
-, Cl
-, . .
ABX 3 Perovskite
CH 3 NH 3 PbI 3 (one-step)
10 µm
TCO ETL MAPbI
3HTL CE
1 μm 2 μm
Nanostructure control of organolead halides perovskite for performance improvement.
1 10 100 1000
10
-510
-410
-310
-2MAPbI
3(Cl)
S / I
2(Hz
-1)
Frequency (Hz)
1/f MAPbI
3 T. Hwang, D. Cho, J. Kim, J. Kim, S. Lee, B. Lee, K. H. Kim, S. Hong, C. Kim, and B. Park, Nano Energy, 26, 91 (2016).
Wavelength (nm)
1.60 1.65 1.70 1.75
1.60 1.65 1.70 1.75
0 2 8 6 4
on TiO2Blocking Layer
2(
107cm-2)
1.564 eV
1.586 eV 1.586 eV
Photon Energy (eV)
PS:TiO
2= 1:2
2
700
780 760 740 720
0 8 6 4 10
1.582 eV
1.589 eV
2( 10
.7
cm
-2) 1.596 eV
Photon Energy (eV)
12
Mechanism Control in the Perovskite Solar Cells
0.0 0.2 0.4 0.6 0.8 1.0
0 10 20
Maximum 11.23%
Current D ensity ( mA/cm
2)
Voltage (V) RXN 4
RXN 3 RXN 1 RXN 2
2 4 6 8 10 12
Initial 30 Days
Effic ie ncy Normali ze d
0.9 1.0
RXN 4 RXN 3 RXN 1 RXN 2
RXN 4
RXN 3 RXN 1 RXN 2
20 μm
20 μm 20 μm
20 μm
J. Kim, T. Hwang, S. Lee, B. Lee, J. Kim, G. S. Jang, S. Nam, and B. Park, Sci. Rep. (2016).
RXN 1 RXN 2
RXN 3 RXN 4
Nanomaterials for Energy Group 13
The Effects of Excess CH 3 NH 3 I on Perovskites
2 µm
Cou nts
0.0 0.6 1.2 1.8 2.4 3.0 3.6
PbI2:MAI = 2:3 1.46 0.04m
Grain Size
m) PbI
2:MAI = 1:1
0.53
0.01
m
Grain Size Distribution
10 20 30 40
PbI2FTO*(220) (310)*
PbI
2:MAI = 1:1
Intensity (arb. unit)
Scattering Angle 2
degree)
PbI
2:MAI = 2:3
(110)
*
XRD
• Toluene dripping during spinning of the excess CH 3 NH 3 I containing precursor.
Enlarged grain size and improved crystallinity with perfect film coverage.
Toluene Dripping in the Non-Stoichiometric Precursor
B. Lee, S. Lee, D. Cho, J. Kim, T. Hwang, K. H. Kim, S. Hong, T. Moon, and B. Park, ACS Appl. Mater. Interfaces (2016).
2 µm
PbI 2 :MAI = 1:1 PbI
2:MAI = 2:3
2 µm
300 nm
Perovskite HTM Au
BL-TiO2 FTO
0.0 0.2 0.4 0.6 0.8 1.0
0 5 10 15 20 25
PbI
2:MAI = 1:1 PbI
2:MAI = 2:3
Best 14.3%
C urrent D ensity ( mA/cm
2)
Voltage (V)
J-V Curve
A Power Supply
BL-TiO
2FTO Perovskite
Light
e
-h
+Laser Detector
0.0 0.2 0.4 0.6
Ph oto cu rr en t ( n A )
PbI
2:CH
3NH
3I = 2:3
PbI
2:CH
3NH
3I = 1:1
0 1 2 3
Grain Size ( m )
Noise Spectroscopy Photocurrent Analysis
100 1000
10
-710
-610
-5PbI
2:CH
3NH
3I = 2:3 PbI
2:CH
3NH
3I = 1:1
S / I
2( Hz
-1)
Frequency (Hz) Conductive AFM
PbI
2:MAI = 1:1
PbI
2:MAI = 1:1
PbI2:MAI = 2:3 PbI2:MAI = 2:3
14
- Superior light scattering with maintaining transparency and resistance.
- Due to effective crater formation with less amount of overall vertical etching.
0.0 10 20 30 40 50 60 70 80 90 100
26.1
34.2
30. 3 /
Haze (%)
20 30
10 0
80 100 120
350 400 450 500
Au tocor re lati on Length ( nm)
HCl
Vertical Roughness (nm) Oxalic Acid
20
10
10 20 30 40
0 5 10 15 20 25
Sheet Resistance ( / ) Oxalic Acid
120 s 90 s 60 s 20 min 15 min 10 min
HCl
Haz e (%)
by HCl
1 μm by Organic Acid
Light Trapping by Surface-Textured ZnO Layer
Texturing by Organic Acid
1 μm
W. Lee, T. Hwang, S. Lee, S.-Y. Lee, J. Kang, B. Lee, J. Kim, T. Moon, and B. Park, Nano Energy (2015).
-1.0 -0.5 0.0 0.5 1.0 -1.0
-0.5 0.0 0.5 1.0
C.(
x,
y)
Distancey(m)
0.0 0.20 0.40 0.60 0.80 1.00 1.0
Distance x x
(
m)
y
x y 1 0.8 0.6 0.4 0.2 0
σ
rms= 103 ± 5 nm, a
corr= 460 ± 3 nm
0 200 400 600 800 1000 0.0
0.2 0.4 0.6 0.8 1.0
Distance
(nm)
C()
1/e
Light trapping for thin-films solar cells.
Electrode Materials for
Li-Ion Battery
16
Discharge
Electrode Materials for Li-Ion Battery
e -
Cathode Anode
LUMO
HOMO Li +
Li + E g
Carbon Li 1-x CoO 2
ano
μ Li cat
μ Li
ELECTROLYTE
Electron
Energy Φ OC Φ
e -
# #
- Capacity (Volume + Mass) - Rate Capability
- Stability - Safety - Cost
Solution?
Nanomaterials for Energy Group 17
J. Cho, Y. J. Kim, T.-J. Kim, and B. Park, Angew. Chem. Int. Ed. 40, 3367 (2001). [Times Cited: 439]
J. Cho, Y. J. Kim, and B. Park, Chem. Mater. 12, 3788 (2000). [Times Cited: 403]
0 10 20 30 40 50 60 70
100 120 140 160 180
SiO
2Bare B
2
O
3
TiO
2Al
2O
3
ZrO
2D is ch a rg e C a p a ci ty ( m A h /g )
Cycle Number
C rate = 0.5 C
Improved electrochemical properties by nanoscale metal-oxide coating
Novel Electrochemistry by Nanoscale Coating
18
Metal-Phosphate Nanoparticle-Coated LiCoO 2
AlPO 4 nanoparticles (~3 nm) embedded in the coating layer (~15 nm)
J. Cho, Y.-W. Kim, B. Kim, J.-G. Lee, and B. Park Angew. Chem. Int. Ed. (2003).
E. Kim, D. Son, T.-G. Kim, J. Cho, B. Park, K.-S. Ryu, and S.-H. Chang
Angew. Chem. Int. Ed. (2004).
C. Kim, M. Noh, M. Choi, J. Cho, and B. Park Chem. Mater. (2005).
Bare LiCoO 2
AlPO 4 -Coated
LiCoO 2
Nanomaterials for Energy Group 19
Graphene Wrapping on Single-Crystal Li 4 Ti 5 O 12
Grain growth of LTO within the graphene sheets:
~32% volume increase.
20
Graphene-Wrapped Single-Crystal Li 4 Ti 5 O 12
Y. Oh, + S. Nam, + S. Wi, J. Kang, T. Hwang, S. Lee, H. H. Park, J. Cabana, C. Kim, and B. Park
J. Mater. Chem. A (2014). [Inside Back Cover]
Nanomaterials for Energy Group 21
Single-Layer Graphene Wrapping on LTO
1.8 wt. % G-LTO (Single Layer) 0.5 wt. % G-LTO
(Half Layer)
2.9 wt. % G-LTO (Three Layers)
0 10 20 30 40 50 60
0 40 80 120 160 200
1.8 wt. % G-LTO
2.9 wt. % G-LTO 0.5 wt. % G-LTO 5 C
1 C 10 C 30 C 0.5 C
Sp ec ific Cap aci ty (mA h g
-1)
Cycle Number
0.5 C
Bare LTO
Sample D
Li– CV
(× 10 -13 cm 2 s -1 )
R
ct(Ω g)
Conductivity (× 10 -3 S cm -1 )
0.5 wt. % Graphene
(Half Layer) 1.37 0.17 0.19
1.8 wt. % Graphene
(Single Layer) 0.22 0.11 1.85
2.9 wt. % Graphene
(Three Layers) 0.11 0.16 9.49
J. Kim, + K. E. Lee, + K. H. Kim, S. Wi, S. Lee, S. Nam,
C. Kim, S. O. Kim, and B. Park, Chem. Mater. (submitted).
22
3-D Porous Graphene Wrapping on SnO 2
S. Nam, S.-J. Yang, S. Lee, J. Kim, J. Kang, J.-Y. Oh,
C.-R. Park, T. Moon, K.-T. Lee, and B. Park, Carbon (2015).
Nanomaterials for Energy Group 23
Micron-Sized 3-D Porous LiMn 0.8 Fe 0.2 PO 4 Aggregates
LiMn 0.8 Fe 0.2 PO 4 Nanocrystallite
Carbon Layer
Electrolyte Permeable Pore
500 nm
20 nm
Advantages of the Micron-Sized 3-D Porous LiMn 0.8 Fe 0.2 PO 4 /C Aggregates
- Good electronic contact.
- Short Li-diffusion length.
- High-rate capability by pores filled with electrolyte.
- High volumetric energy density.
S. Wi, J. Kim, S. Lee, J. Kang, K. H. Kim, K. Park, K. Kim,
S. Nam, C. Kim, and B. Park, Electrochim. Acta (2016).
24
Ultrathin ZrS 2 Nanodiscs
Nanodiscs with various lateral sizes
Highly functional as host materials where nanoscale size effects are significant.
J.-T. Jang, S. Jeong, J.-W. Seo, M.-C. Kim, E. Sim, Y. Oh, S. Nam, B. Park, and J. Cheon, J. Am. Chem. Soc. (2011).
1 disc consists of 3 layers
(local equilibrium, magic number)
3 unit cells
Nanomaterials for Energy Group 25
Lithium-Air Battery: Promise and Challenges
Major challenges of Li-O 2 batteries (Carbon-based cathode)
Li-ion and non-aqueous Li–O 2 cells
Peter G. Bruce, Nat. Mater. (2011)
3.8 V (325 Wh/kg) 2.96 V (3,505 Wh/kg)
Electrode structure → Pore clogging (Li 2 O 2 )
Chemical instability → Side reaction (Li 2 CO 3 )
Problems
Lightweight electrodes with high conductivity
Porous structures with structural robustness (surface area, pore size and distribution)
Catalysts (OER/ORR)
Combination of electrode and electrolyte
Strategies
Review Paper: H. Woo, J. Kang, J. Kim, C. Kim, S. Nam, and B. Park, Electron. Mater. Lett. (2016).
Cycle
Capacit y ( m Ah /g) Cycle Life
Capacity (mAh/g)
Vol tag e (V)
Energy Efficiency
Capacity (mAh/g)
Vol tag e (V)
Capacity Improvement of
Electrochemical
Performance
26
Oxidation and Reduction
Nanomaterials for Energy Group 27
Nanoscale
Interface Control
- Compositions?
- Nanostructures?
- Mechanisms?
http://bp.snu.ac.kr
Solar Cell Li Battery
Future Nanomaterials for Energy
Luminescence
Catalyst
Saeromi Hong Seoul National University
Sun-Tae Hwang LG Electronics
Seonghyun Jin Samsung Electronics
Myunggoo Kang University of Michigan
Suji Kang Samsung Electro-Mechanics
Hoechang Kim SK Innovation
Hyemin Kim Y.P. Lee, Mock & Partners
Sungsoo Kim LG Chem
Dr. Taeseok Kim SunPower Corporation
Yumin Kim Samsung Electronics
Doyoung Lee LG. Philips LCD
Jin Sun Lee Samsung Electronics
Junhee Lee Samsung Display
Sangkeun Lee LG. Philips LCD
Sungjun Lee Seoul National University
Jungjin Park Seoul National University
Sungjin Shin LG Chem
Research Assistants
Woo Young Ahn Ohio State University
Dr. Dae-Han Choi HRL Laboratoties
Seung-Chul Ha SENKO
Kyounghwan Hwang Judge
Sang Uk Hyun University of Toronto
Prof. Kisuk Kang Seoul National University Prof. Sung Hoon Kang Johns Hopkins University
Heekyung Lee STX Institute of Technology
Prof. Hyukjae (Jay) Lee Andong University
Sang-Min Lee LS Mtron
Joonhee Moon Seoul National University
Prof. Byungha Shin KAIST
Dr. Jae Wook Shin National Institute of Standards and Technology
Jun Wen University of Toronto
Ph.D.
Dr. Donggi Ahn Samsung Electronics
Dr. Hongsik Choi Samsung Electro-Mechanics
Dr. Dae-Ryong Jung Samsung Advanced Institute of Technology
Dr. Byoungsoo Kim SKC
Dr. Chohui Kim Samsung Electronics
Prof. Chunjoong Kim Chungnam National University
Dr. Jae Ik Kim Samsung Display
Dr. Jongmin Kim Samsung Fine Chemicals
Dr. Tae-Gon Kim Samsung Advanced Institute of Technology
Dr. Tae-Joon Kim Samsung Electronics
Dr. Yong Jeong Kim KISTEP
Dr. Yongjo Kim Samsung Electronics
Dr. Byungjoo Lee JAFCO Investment Korea
Dr. Deok-Hyung (Doug) Lee AMD/IBM Alliance
Dr. Joon-Gon Lee Samsung Electronics
Dr. Seung-Yoon Lee LG Electronics
Dr. Woojin Lee Samsung Display
Dr. Changwoo Nahm Samsung Electronics
Dr. Seunghoon Nam Korea Institute of Machinery & Materials
Prof. Taeho Moon Dankook University
Dr. Jeongmin Oh Korea Technology Transfer Center
Dr. Yuhong Oh Samsung Electro-Mechanics
Dr. Yejun Park Samsung Electro-Mechanics
Dr. Dongyeon Son Ministry of Trade, Industry, and Energy
M.S.
Jiwoo Ahn Samsung SDI
Sujin Byun LG Chem
Yoon Sang Cho The Korea Development Bank
Alumni
Nanomaterials for Energy Group 29
Ten Selected Publications
Corresponding Author h-index = 46
Title Journal
연도SCI IF Citation
Investigation of Chlorine-Mediated Microstructural Evolution of
CH
3NH
3PbI
3(Cl) Grains for High Optoelectronic Responses Nano Energy 2016 11.553
Solvent and Intermediate Phase as Boosters for
the Perovskite Transformation and Solar Cell Performance Sci. Rep. 2016 5.228
Integration of CdSe/CdSe
xTe
1-xType-II Heterojunction Nanorods into
Hierarchically Porous TiO
2Electrode for Efficient Solar Energy Conversion Sci. Rep. 2015 5.228
Wrapping SnO
2with Porosity-Tuned Graphene as a Strategy for
High-Rate Performance in Lithium Battery Anodes Carbon 2015 6.198
Organic-Acid Texturing of Transparent Electrodes toward
Broadband Light Trapping in Thin-Film Solar Cells Nano Energy 2015 11.553
Critical Size of a Nano SnO
2Electrode for
Li-Secondary Battery Chem. Mater. 2005 9.407 444
A Mesoporous/Crystalline Composite Material Containing
Tin Phosphate for Use as the Anode in Lithium-Ion Batteries Angew. Chem. Int. Ed. 2004 11.709 132
A Breakthrough in the Safety of Lithium Secondary Batteries by Coating the
Cathode Material with AlPO
4Nanoparticles Angew. Chem. Int. Ed. 2003 11.709 250
LiCoO
2Cathode Material That Does Not Show a Phase Transition from
Hexagonal to Monoclinic Phase J. Electrochem. Soc. 2001 3.014 209
Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell Angew. Chem. Int. Ed. 2001 11.709 439
Novel LiCoO
2Cathode Material with
Al
2O
3Coating for a Li-Ion Cell Chem. Mater. 2000 9.407 403
30
Newspapers
http://bp.snu.ac.kr
동아 일보2014. 02. 03
한국 경제
2012. 12. 27
Nanomaterials for Energy Group 31
World Class University
32
MRS Organizer
Nanomaterials for Energy Group 33
International Meetings (MRS)
Nanomaterials for Energy Group 34
Graduation of Members
*
Nanomaterials for Energy Group 35
Homecoming Party
*
36
Teacher’s Day
Nanomaterials for Energy Group 37
House Party
38
Last Summer
Nanomaterials for Energy Group 39
40
What is My Goal?
Nanomaterials for Energy Group 41
• ??2009/04/01 Safety or Research?
• Title + 그림 from BP homepage??
42
Nanomaterials for Energy Group 43 Prof. Smalley’s Group
Google Earth