• Tidak ada hasil yang ditemukan

PDF Forces - atmdyn.org

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF Forces - atmdyn.org"

Copied!
8
0
0

Teks penuh

(1)

1. Rotating frame 2. Coriolis force

3. Centrifugal force

Forces

Pressure

gradient Coriolis

(2)

Rotating Frame

The earth rotates with a period about 24 hours (23h 56m; or 366 rotation per year), although we can not feel it (human love geocentric view).

Ω = 7.292 x 10-5 rad/s (directing the North star)

Ω !

v ! = !

Ω × ! r r !

R!

(3)

Coriolis force

Newtons’ laws of motion work only a inertial frame.

However, we can still use Newtons’ law in a rotating frame in a uniform rotation, if we introduce two apparent forces:

1) Coriolis and 2) Centrifugal forces

(4)

Ω !

v ! = !

Ω × ! r r !

R! relationship working


for any vector A

Inertial frame vs. rotation frame

Da ! A

Dt = Dr ! A

Dt + !

Ω × ! A

Can be obtatined through

(1) vector calculation - Holton(2) intuition - Vallis

Relationship between total differentiations in


a inertial frame (DaA/Dt) and a rotating frame (DrA/Dt)

(5)

Ω !

v ! = !

Ω × ! r r !

R! relationship working


for any vector A

Velocity (wind)

Da! r

Dt = Dr! r

Dt + !

Ω × ! r

Relationship between total differentiations in


a inertial frame (DaA/Dt) and a rotating frame (DrA/Dt) Da !

A

Dt = Dr ! A

Dt + !

Ω × ! A

v!a = !

vr + !

Ω × ! r

(6)

Ω !

v ! = !

Ω × ! r r !

R!

Acceleration

Relationship between total differentiations in


a inertial frame (DaA/Dt) and a rotating frame (DrA/Dt)

recall

relationship working
 for any vector A

v!a = !

vr + !

Ω × ! r Da!

va

Dt = Dr! va

Dt + !

Ω × ! va

Da! va

Dt = Dr !

vr + !

Ω × !

(

r

)

Dt + !

Ω × !

vr + !

Ω × !

(

r

)

Da! va

Dt = Dr! vr

Dt + 2 !

Ω × !

vr + !

Ω × !

Ω × !

(

r

)

Da ! A

Dt = Dr ! A

Dt + !

Ω × ! A

(7)

Acceleration

Coriolis force

Da! va

Dt = Dr! vr

Dt + 2 !

Ω × !

vr + !

Ω × !

Ω × !

(

r

)

Centrifugal force (= −Ω2 ! R)

Da! va

Dt = 1

ρ p kg*+ν2v!a Dr!

vr

Dt = 2 !

Ω × !

vr +Ω2 R!"

kg* 1

ρ p+ν2v!

a

D! v

Dt = 2 !

Ω × !

v 1

ρ p kg+ν2v!

Momentum equation in a rotating frame 
 (with rotation rate Ω)

Handle as one term using the concept of "geoid"

(max of Ω2R is ~0.034 m/s2; 
 just slightly modify g*g)

viscous force is local


cannot feel rotation va v

(8)

Equation set

Six equations with six known (u, v, w, T, p, ρ) Mathematically closed; and solvable

D! v

Dt = 1

ρ p 2

Ω! × !

v kg +ν2v!

cp DT

Dt 1 ρ

Dp

Dt = J

Dρ

Dt + ρ∇ ⋅ !

v = 0 p = ρRT

(momentume eq. for u, v, w)

(thermodynamic energy eq. for T) (continuity eq. for ρ)

(equation of state for p) 3

1

1 1 6

num. 


eq.

Referensi

Dokumen terkait