• Tidak ada hasil yang ditemukan

Physics of Solid Polymers Seoul National University 1

N/A
N/A
Protected

Academic year: 2024

Membagikan "Physics of Solid Polymers Seoul National University 1"

Copied!
4
0
0

Teks penuh

(1)

Physics of Solid Polymers

Seoul National University 1

¾Up to C390H782

¾Strictly uniform in length

¾Models for understanding crystalline polymers, e.g. polyethylene

Physics of Solid Polymers

Part 4

Ultralong Monodisperse n-Alkanes

- First synthesised by Marc Whiting, Bristol, 1985.

- Most samples in this work by Gerald Brooke, Durham

- See reviews:

- G. Ungar et al., Adv. Polym. Sci., 2005 180 45-87.

- G. Ungar, X.B. Zeng, Chem. Rev., 2001 101 4157-4188

Paths to Integer Folding from Solution Solution

High Tg cc Low Tc

Extended (E)

Once-Folded (F2)

“Integer” folding

chain conform.

paraffin C H

E F2 F3 F4 F5

+ C102H206 C150H302 C198H398 C246H494 C294H590 C390H782

+ + + + +

+ + + + +

+ + +

+ +

+ +

+ +

Pathways of melt crystallization of pure linear alkanes

NIF E td F ld d

Melt

T <<TmNIF NIF = “Non-Integer Folding”

Transient, semicrystalline

crystalline amorphous

Extended Extd-Folded (Double Layer)

Extd-Folded (Triple Layer)

T T > mNIF T T=mNIF T T <mNIF time

Folded (Single layer)

microfibril

Initial form NIF

Final form Triple-layer folded + extd

Neutron

X-ray

Binary mixtures of long alkanes

¾Model polymer systems with controlled polydispersity.

C162H326+C246H4941:1 w:w C162H326(208Å):

C246H494(315Å):

Short alkanes (<50 C-atoms) do not co-crystallize.

(2)

Physics of Solid Polymers

Seoul National University 2

Stable mixed Semicrystalline Form in binary alkanes

300

lc

lc la

(a)

lc la lc

(b)

121 123 125 127 129

L Ext.+ L

Ext. + SF

0 50 100 150 200 250 300

La Lc

C246 90:10 75:25 60:40 50:50 35:65 25:75 12:88 C162

L/Å

Long/short weight ratio

115 117 119 121

0 0.1 0.20.3 0.4 0.5 0.6 0.70.8 0.91 SF

C246H494 C162H326

Overcrowding limit if Folding not allowed

Pathways of melt crystallization of pure linear alkanes

NIF E td F ld d

Melt

T <<TmNIF NIF = “Non-Integer Folding”

Transient, semicrystalline

crystalline amorphous

Extended Extd-Folded (Double Layer)

Extd-Folded (Triple Layer)

T T > mNIF T T=mNIF T T <mNIF time

Folded (Single layer)

microfibril

(ms)Gμ-1 0.6 0.8 1

4.75% in octacosane

Crystal growth rate of n-C246H494from solution – Growth rate minimum

(similar minimum in melt-crystallization)

Temperature ( C)o Growth rate,

G 110

G100

0 0.2 0.4

105 110 115 120

Macromolecules, 2003 36 5214

Dramatic changes in crystal habit

Also:

Minimum in concentration dependence of growth rate

G110

(ms-)Gμ1

C246 in octacosane 106.3oC

G100

Growth rate, G

Concentration (wt %)

Binary phase diagram C246 + octacosane

115 125

C)

G

slow ure fast

95 105 115

0 1 2 3 4 5 6

Concentration (wt%)

Temperature (Co G

extended

folded

concentration

temperatu

(3)

Physics of Solid Polymers

Seoul National University 3

Binary phase diagram C246 + octacosane

115 125

C)

G

slow ure fast

95 105 115

0 1 2 3 4 5 6

Concentration (wt%)

Temperature (Co G

extended

folded

concentration

temperatu

2-stage crystallization Æ“dilution wave”

Dilution wave - Folded

Dilution wave – Folded + Extended Dilution wave - Extended

Differential imaging: Plane wave Differential imaging: Circular wave

(4)

Physics of Solid Polymers

Seoul National University 4

Solutions of Fisher’s reaction-diffusion equation

(c-cE)/(cF-cE)

ÆCan find diffusion rate through solution

Higgs PG, Ungar G J Chem Phys 2001, 114, 6958

“Coarse-grain” model of competing processes

A B A B

E F

• competing processes added

• “Coarse-grain” with “pinning”

step up forbidden A

BF

GE= (1 - A/BF)(A - BE) , if BE< A < BF, GF= A - BF, if BF< A.

Theoretical Growth Rates for C198 at Two Different Concentrations

0.6 0.8

90 100

0.0 0.2 0.4

J. Chem. Phys.,1994 100 640

Measured rate vs. concentration for C246 in octacosane, 106.3oC

G110

(ms-)Gμ1

0.4 0.6 0.8

Rate vs. concentration for C198 (theoretical)

G100

Growth rate, G

Concentration (wt %)

0 1 2 3 4 5

0.0 0.2

C (Wt%)

Phys. Rev. Lett. 2000, 85, 4397

Monte Carlo simulation of Self- Poisoning Crystallization

C cycle)

Front thickness >=4 bonds

16-segment chains

Wenbing Hu, Nanjing

Y Ma, B Qi, W Hu, G Ungar, J Hobbs J.

Phys. Chem. B, in press 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

1E-4 1E-3

Linear growth rate (units of sites/MC

Temperature (units of Ec/k) Front thickness >=10 bonds

higher barrier for sliding diffusion lower barrier for sliding diffusion

Monte Carlo simulation of Self- Poisoning Crystallization Average growth tip profile

8 10 12 14 16

em length

8 10 12 14 16

em length

8 10 12 14 16

em length

Folded chain has extended lifetime - “resting stage” in chain extension

Y Ma, B Qi, W Hu, G Ungar, J Hobbs submitted

0 2 4 6 8 101214161820

0 2 4 6

Mean ste

Distance from the growth front

0 2 4 6 8101214161820

0 2 4 6

Mean ste

Distance from the growth front

0 2 4 6 8 10 121416 1820

0 2 4 6

Mean ste

Distance to the growth front

Temperature

below TmF just above TmF well above TmF

Referensi

Dokumen terkait