건설안전역학
(Constructional Safety Mechanics)
토목안전환경공학과 안전트랙
옥승용
LN11: Deflection Computation
by using Energy Method (3)
Class Schedule
Week Topics Remarks
01 Introduction to class (1) & (2)
02 Analysis of Truss Structures (1) Homework #01
03 Analysis of Truss Structures (2)
04 Analysis of Horizontal Beams (1) Quiz #01
05 Analysis of Horizontal Beams (2)
06 Analysis of Frame Structures (1) Quiz #02
07 Analysis of Frame Structures (2)
08 Mid-Term Exam
09 Deflection Computation by using Energy Method (1) 10 Deflection Computation by using Energy Method (2)
11 Deflection Computation by using Energy Method (3) Quiz #03 12 Analysis of Indeterminate Structures (1)
13 Analysis of Indeterminate Structures (2) Quiz #04
14 Analysis of Indeterminate Structures (3)
Review on Principle of Virtual Work
Ue = 1 × = Ui = ∫ u dL
Real deformation to compute when the structure is subjected to real loads Pi
Internal forces caused by virtual unit load that is applied at the same point as & in the same direction as
Real internal deformation caused by real loads
U = 1 × q = U = ∫ u L
Unit load can be unit moment
• The principle of virtual work can be
applied to deflection problems for beam &
frame.
– In fact, the subsequent equation applies to the frame structure as well.
• Strains due to bending are the primary cause of beam & frame deflections.
– Here, we will see the deflection by the bending moment.
• Shear, axial and torsional loadings, and temperature may also provoke deflections in beam and frame, which will be
Principle of Virtual Work: Beams/Frames
dq
• To compute
• A virtual unit load acting in the direction of is placed on the beam at A.
• The internal virtual moment m is
determined by the method of sections at an arbitrary location x from the left
support.
• When real loads act on the beam, point A is displaced , the element dx deforms or rotates
dq = (M/EI)dx
M = the internal moment caused by real loads
Principle of Virtual Work: Beams/Frames
dq
• To compute ,
Principle of Virtual Work: Beams/Frames
dq e 1
U
i
dU m d m M dx q EI
External Work
Internal Work for dx
1 0L
e
U mM dx
EI1 = external virtual unit load in the direction of
= external displacement caused by real loads
m = internal virtual moment caused by external virtual load M = internal moment in beam or frame caused by real loads
• To compute q,
Principle of Virtual Work: Beams/Frames
q
1 e 1
U q
i
dU m d m M dx
q q q EI
External Work
Internal Work for dx
1 0L
e
U m M dx
EI q q
1 = external virtual unit moment in the direction of q q = external rotation caused by real loads
mq = internal virtual moment caused by external virtual load M = internal moment in beam or frame caused by real loads
• Center deflection of a simple beam subject to an uniform load
Example 4: Beam
q l
EI dx mM
L
0
1
EI dx M m x l
l
0
0 )
( 2 1
1 q
Example 4: Beam
Moment of virtual load Moment of real load
Deflection at the center of the span:
0 0
( ) 1 2
l l
l mM
dx dx
EI EI
q 1
ql2/8 l/4
q 1
ql2/8 l/4
위 식의 의미: 보의 각 위치(x)별 두 모멘트의 곱을 전체 보 의 길이에 대하여 더한다(적분한다).
• Tabular method for integration of moment product
Principle of Virtual Work: Beams/Frames
Do not forget to divide by EI
Example 4: Beam
Moment of virtual load Moment of real load
Deflection at the center of the span:
1 3
2 0
2 4
( ) 1 (1 )
2 3
1 5
(1 )
3 4 4 8 384
l l mM l ab
dx M M
EI EI l
l l ql ql
EI EI
q 1
ql2/8 l/4
q 1
ql2/8 l/4
• Determine the displacement of point B of the steel beam (E = 200GPa; I = 500106mm4)
Example 5: Cantilever Beam
EI dx mM
L
0
1
10 2
0 0
( 1 ) ( 6 )
1 kN B L mM x x
dx dx
EI EI
3 3 3 3 3
6 4
3 3 3
9 2 6 12 4
15 10 15 10 10
200 500 10
15 10 10
200 10 / 500 10 10
15 0.15 150
20 5
B
kNm Nm
EI GPa mm
Nm
N m m
m m mm
• Determine the tangential rotation at point A of the steel beam (E=200GPa;
I=60106mm4)
Example 6: Cantilever Beam
EI dx M m
L
0
1 q q
x dx dx EI
EI M m
L
A
3
0
3
0 3
) 1 kNm (
1 q q
rad 00563 .
0 qA
Principle of Virtual Work
1 × = u × L 1 × q = uq × L
Virtual loadings
Real deformations
T R U S S
B E A M
&
F R A M
1 NL
n AE
1 n T L
1 n L
0 L b
U m M dx
EI
0 L n
U n N dx
AE
0 L s
U v K V dx GA
0 L t
U t T dx GJ
Example 7
Bending:
Axial load:
Shear:
EI dx Ub
0L mM0 L n
U nN dx
AEνV dx K
U
L • Apply a unit horizontal load at C
• Free body diagrams for the real & virtual loadings
• Determine the horizontal displacement of point C on the frame
E = 200GPa G = 80GPa
I =235106mm4 A = 50103mm2
• Include the internal strain energy due to axial & shear forces
Example 7
E = 200GPa G = 80GPa I =235106mm4 A = 50103mm2
A
B C
60kN/m
A
B C
1kN
60kN/m
112.5kN 1.25kN 1kN
Real load Virtual unit load
• Determine the horizontal displacement of point C on the frame
• Include the internal strain energy due to axial load & shear
Moment?
Axial Force Shear Force?
Example 7
E = 200GPa G = 80GPa I =235106mm4 A = 50103mm2
• Determine the horizontal displacement of point C on the frame
• Include the internal strain energy due to axial load & shear
270kNm M(x)=112.5 x2
x1
x2
Real load
60kN/m
180kN 112.5kN
112.5kN
1kN 1.25kN
1.25kN 1kN
EI dx Ub
0L mMm(x)=1.25 x2
x2
x1
1.25 112.5
30 180
1
4 .
2 2 2
1 3
0
2 1 1
1
x dx x
EI dx
x x
Ub x Virtual unit load
Bending:
Example 7
E = 200GPa G = 80GPa I =235106mm4 A = 50103mm2
• Determine the horizontal displacement of point C on the frame
• Include the internal strain energy due to axial load & shear
Real load
60kN/m
180kN 112.5kN
112.5kN
1kN 1.25kN
1.25kN 1kN
Virtual unit load
AE Un nNL
N=112.5kN
n=1.25kN
n=1kN
1.25 112.5 3
0 0.0421875
kN kN
kNmm Un
AE
Axial Force:
Example 7
E = 200GPa G = 80GPa I =235106mm4 A = 50103mm2
• Determine the horizontal displacement of point C on the frame
• Include the internal strain energy due to axial load & shear
Real load
60kN/m
180kN 112.5kN
112.5kN
1kN 1.25kN
1.25kN 1kN
Virtual unit load
GA dx K νV
Us
0L V=112.5kN
v=1kN
v=1.25kN
) 5 . 112 )(
25 . 1 ( 2 . 1
) 60 180 )(
1 ( 2 . 1
4 .
2 2
3 0
1 1
dx GA
dx Us x
Shear Force:
Example 7
E = 200GPa G = 80GPa I =235106mm4 A = 50103mm2
• Determine the horizontal displacement of point C on the frame
• Include the internal strain energy due to axial load & shear
1
35.3 kN
kNmm 0.0421875kNmm 0.182kNmm 35.53mm
h
h
C b n s
C
U U U
negligible
where is the displacement in the direction of the applied unit concentrated load or moment in the virtual system.
Frame Problems
e
l l l
s
e e e
EA dx F dx F
GA V f V
EI dx M M
0 0 0
) (
l l
HA HB=P/4
RA=P/2 RB=P/2 P
Frame Problems
- Pl/4
- + + -
P/4 P/2
- -
- P/4 P/2
Moment Shear Axial
EI Pl l
Pl l
l Pl l
dx EI EI dx
l l
M ) 16
4 4 6 4 4 (3
) 2
2 ( /2 3
0 0
GA Pl f P
l l P
GA dx f
GA dx
fs l l s s
S 8
) 3 2 1 2 2 4 1 ( 4
) 2
2 ( /2
0 0
Pl/4 l/4
Pl/4 l/4
P/4 1/4
P/2 1/2
2 / 2 2 1 1 9
( )
2 2 2 4 4 16
l l
A
P l P Pl
dx dx l
EA EA EA
Frame Problems
- Pl/4
- + + -
P/4 P/2
- -
- P/4 P/2
Moment Shear Axial
EI Pl
M 16
3
GA
Pl fs
S 8
3
EA
Pl
A 16
9
) ) ( 75 . 0 )
( 56 . 1 1 16 (
) 9
6 1 16 (
2 2
3
2 2
3
l h l
h EI
Pl
EAl EI GAl
EI f EI
Pl s
A S
M
21 G E
3 .
0
2 .
1 fs
• In most cases, the deformation caused by the shear force and the axial force is negligibly small compared to that caused by the bending moment.
• If this is the case, the displacement of a frame can be approximated by considering only the bending moment.
Frame Problems
e
l l l
s
e e e
EA dx F dx F
GA V f V
EI dx M M
0 0 0
) (
e le
EI dx M M
0