• Tidak ada hasil yang ditemukan

PowerPoint Template

N/A
N/A
Protected

Academic year: 2024

Membagikan "PowerPoint Template"

Copied!
15
0
0

Teks penuh

(1)

Ch. 9. Statistical Mechanics Ch. 9. Statistical Mechanics

Maxwell-Boltzmann Distribution

- Classical statistics: distinguishable particles

Bose-Einstein Distribution

- QM statistics: indistinguishable particles

bosons (integer spin: 예 – photons)

Fermi-Dirac Distribution

- QM statistics: indistinguishable particles

(2)
(3)

확률

경우의 수

Most probable configuration 예 : Random walk problem

Based on …

Based on …

(4)

James Clerk Maxwell (1831-1879)

Ludwig Boltzmann (1844-1908)

Maxwell and Boltzmann

Maxwell and Boltzmann

(5)

Example

(6)
(7)

1 2

1 1 2 2

1 2

1 2

1 2

( , , , ) !

! ! !

ln ( , , , ) entropy

n

n n

n

n n

N N N N

U E N E N E N Q N N N N

N N N Q N N N

= + + ⋅⋅⋅ +

= + + ⋅⋅⋅ +

⋅⋅⋅ =

⋅⋅⋅

⋅⋅⋅

Most Probable Configuration

Most Probable Configuration

(8)

( )

( )

Lagrange's multiplier method

ln 0

Stirling's approximation

ln ! ln for 1

ln 0

1

i

i i i

i i i

i i

E i

B

Q f h

N N N

n n n n n

N N N

N E N e e

k T

β α

α β

α β

β

∂ + ∂ + ∂ =

∂ ∂ ∂

≈ − >>

∂ −

− + + =

=

= −

Most Probable Configuration

Most Probable Configuration

(9)

( )

0 0

exp

( ) ( ) ( )

( ) ( ) ( )

( / )

i MB i

B

i i MB MB

i MB

f E A E

k T

n g f n E dE g E f E dE

N n N n E dE g E f E dE

V

N V N

∞ ∞

⎛ ⎞

= ⎜ − ⎟

⎝ ⎠

= → =

= ∑ → = ∫ = ∫

경우에 따라서는 대신 사용

Maxwell-Boltzmann Distribution

Maxwell-Boltzmann Distribution

(10)

Example

(11)

[ ]

( )

2 2

2

3/ 2

3/ 2

0 0

( ) ( ) ( ) ( ) exp

1

2 2

( )

( ) ( ) 2

( ) exp

( ) exp

2

MB

B

B

B B

n E dE g E dE f E Ag E E dE k T E mv p

m g p dp Bp dp

g E dE g p dp m B EdE n E dE C E E dE

k T

E C

N n E dE C E dE k T

k T π

⎛ ⎞

= = ⎜ − ⎟

⎝ ⎠

= =

=

= =

⎛ ⎞

= ⎜ − ⎟

⎝ ⎠

⎛ ⎞

= = ⎜ − ⎟ =

⎝ ⎠

∫ ∫

Ideal Gas

Ideal Gas

(12)

( )

3/ 2 3/ 2

0 0

( ) 2 exp

3 2 3 2

B B

B

B

N E

E En E dE E dE

k T k T Nk T

E k T

π π

∞ ∞

⎛ ⎞

= = ⎜ − ⎟

⎝ ⎠

=

=

∫ ∫

Ideal Gas Ideal Gas

Total energy of N gas molecules

Average molecular

energy

(13)

Equipartition of Energy Equipartition of Energy

2

2 2 2

1 3

2 2

1 1 1 1

2 2 2 2

B

x y z B

m v K k T

m v m v m v k T

= =

= = =

A classical molecule in thermal equilibrium at temperature T has an average energy of k

B

T/2 for each independent mode of motion or so-called degree of freedom.

Each variable that occurs squared in the formula for the

(14)

2

3/ 2 2

2

2

1 2

( ) 4 exp

2 2

3

B B

B rms

E mv

dE mvdv

m mv

n v dv N v dv

k T k T

v v k T

m

π π

=

=

⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ − ⎟

⎝ ⎠ ⎝ ⎠

= =

Maxwell’s Speed Distribution

Maxwell’s Speed Distribution

(15)

Maxwell’s Speed Distribution

Maxwell’s Speed Distribution

Referensi

Dokumen terkait