• Tidak ada hasil yang ditemukan

PPT Why study Organic Synthesis? - Seoul National University

N/A
N/A
Protected

Academic year: 2024

Membagikan "PPT Why study Organic Synthesis? - Seoul National University"

Copied!
25
0
0

Teks penuh

(1)

Why study Organic Synthesis?

Heart of Chemistry

Broad applications

• Petrochemicals

• Pharmaceuticals

• Agrochemicals

• (Bio)Polymers

• Dyes & Pigments

• Cosmetics

• Food (Additives)

• Household products

• Electrochemicals

• Display materials

• Semiconductors

• Organic electronics

• and so on…..

“Chemists make new things and we st udy reactions. That’s the core of this profession” - D.G. Nocera (MIT) in C

&EN (Jan. 1998)

(2)

Petrochemicals

+ H+

cumene O2

OOH

cumene hydroperoxide cat.

H3O+ OH

+

O

phenol acetone

(3)

Pharmaceuticals & Medicinal Chemistry

OH

1. HNO3 2. Pd, H2

OH

NH2

Ac2O

OH

NHAc

Tylenol

N RCONH S

O CO2H

R = PhCH2; Pen G

R = PhCH(NH2); ampicillin R = (4-OH)-PhCH(CH2);

amoxycillin

(4)

Agrochemicals

O O

H H

multistriatin: a pheromone of the elm bark beetle

1. Lindlar, H2

3-pentanone O

H

O O H

H+ Aldrich, $20.0/500g

O H

OH

2. acetone, H+

O O

1. mCPBA 2. Me2CuLi

O O

Me OH 1. HCl

2. TsCl, py 3. NaI

O O

Me I H

LDA

(5)

Polymers & Biopolymers

O O

O O NH H

Ac(H) O

H

O O O

O NH HO NH

O H

Ac(H) Ac(H) O

H HO

CO2Me

MeO2C

CO2CH2CH2

O2C

n

+ - MeOH

polyester (Dacron)

chitin (chitosan)

HOCH2CH2OH

(6)

Biology & Biochemistry

CHO

opsin N

H2

N+ opsin H

-H2O

vitamin A CHO

(retinol)

11

retinol

dehydrogenase

h

H2O

all-trans-retinal 11-cis-retinal

retinal isomerase

nerve pulse

(7)

Electrochemicals

O O

O

O

(better electrolyte) (poor electrolyte)

ethylene carbonate THF

(8)

Display Materials

*

* n

PPP

* n *

polyacetylene

NH

* n *

polypyrrole

*

n *

PPV

* S n *

polythiophene

(9)

Components of Organic Synthesis

Synthetic work

Synthetic design

Retrosynthetic analysis

‘disconnection approach’

1. C-C bond formation 2. functional group

interconversion (FGI) experimental

procedures TARGET

(10)

O H O O H

- +

Disconnection Approach: An Example

O O

multistriatin: a pheromone of the elm bark beetle

O H O OH

acetal H+ (-H2O)

alkylation

LiN(iPr)2

O

O H O H X

synthons

synthetic equivalents

X

OsO4 oxidation

(11)

A Stereorandom Synthesis of Multistriatin

O H

TsCl, py

TsO

O LiN(iPr)2

O mCPBA

O O

O O

SnCl4 Aldrich, $31.50/g

1

2

4 3

(12)

A Stereoselective Synthesis of Multistriatin

1. Lindlar, H2

3-pentanone O

H

O O H

O O

H H

H+ Aldrich, $20.0/500g

1 8

O H

OH

2. acetone, H+

O O

1. mCPBA 2. Me2CuLi

O O

Me OH

1. HCl 2. TsCl, py 3. NaI

O Me I H

LDA

5 6

AcO

AcO

$42.9/25mL

(13)

Design and Synthesis

Retrosynthetic Analysis

1. recognise the functional groups in the target molecule 2. disconnect by known methods and reliable reactions

3. repeat 1 and 2 until the readily available starting materials are obtained

4. design as many alternative retrosynthetic routes as possible

Synthesis

1. write down the synthetic schemes containing the detailed reaction conditions according to the analyses

2. compare the pros and cons between the syntheses designed;

the number of steps, availability of reagents/starting materials, selectivity (chemo-/regio-/stereo-), economy, process, etc

3. modify the selected synthetic plan whenever unexpected problems are encountered

(14)

What to Know for Organic Synthesis

molecular structure

reaction mechanisms

stereochemistry

dependable reactions

availability of compounds

selectivity

analytical methods

lab technique

process

(15)

“ 그저 익숙하도록 읽는 것뿐이다

.

글을 읽는 사람이

,

비 록 글의 뜻은 알았으나

,

만약 익숙하지 못하면 읽자마자 곧 잊 어버리게 되어

,

마음에 간직할 수 없을 것은 틀림없다

.

이미 읽고 난 뒤에

,

또 거기에 자세하고 익숙해질 공부를 더한 뒤라야 비로소 마음에 간직할 수 있으며

,

흐뭇한 맛도 있을 것이다

.” -

퇴계 이황

(

금장태 著

)

(16)

Chapter 2 Functional Group Transformations

selectivity/specificity: chemo-, regio- & stereo-

functionalization of alkanes: unreactive

radical reaction: selectivity; 5 bottom

functionalization of alkenes: addition & substitution

addition to double bonds: 6 Scheme 2.1

‘(anti)Markovnikov’/oxymercuration/hydroboration/HBr: 7 top

stereoselectivity: 7 bottom

(17)

Chemoselectivity

regioselectivity & stereoselectivity

O OH

O H2, Pt NaBH4

Br Br

OAc

Nu Nu:, DMF OAc

Nu

Nu:, Pd(PPh3)4

(18)

Regioselectivity

OH OH

H3O+ 1. BH3•THF

2. H2O2, NaOH

more electropositive metals: Mo, W

Hg2+, H2O/NaBH4

OAc Mo(CO)6 malonate

CH(CO2Me)2 Pd(PPh3)4

malonate CH(CO2Me)2

(19)

Diastereoselectivity (I)

O H

MeMgI

OH +

OH

major minor

R1 O

O

R2 H2, 1 atm Pd/C or Rh

R1 O

O

R2 5.5:1 (Pd/C) 1:0 (Rh, MeOH) R1=R2=OH or -OC(CH3)2O-

(20)

Diastereoselectivity (II)

R CO2Me Si(OEt)3

(Ph3P)3RuH2(CO) R CO2Me

(CH2)2Si(OEt)3 H2O2 KHCO3

O

R O

OAc Pd(0) Nu- 1. Pd(0) Nu

2. RM R

(21)

Enantioselectivity

X*

O +

R H

O

N O

O

i-Pr R'2BOTf

R''3N R X* = O

OH

+

R H

R'CH2NO2 O cat.

R R'

NO2 OH

cat. = La

O O

O O

O

O OH

Li OH Li

Li R

R

R R

R R

R

R

(22)

Functionalization of Alkynes

addition / substitution reactions:

 9 Scheme 2.2

reduction to alkenes: 165 bottom – 166

C-C bond formation: 51 – 52 top

electrophilic addition: largely anti addition

a mixture of products: syn addition & participation of the reaction solvent, 8 bottom – 9 top

ketones with oxymercuration: 9 middle

(23)

Functionalization of Aromatic Hydrocarbons

electrophilic substitution: the ring;

 10 Scheme 2.3

substituted benzenes: depending on the substituents

the rate & the orientation: 11 Table 2.1 & 12

lower selectivity with a radical substitution: 13 top

nucleophilic substitution: p-chloronitrobenzene

Chichibabin reaction ( 14 & 44) & benzyne intermediate

benzylic oxidation: the side chain;

189~192

autoxidation of cumene: acetone & phenol; 11 top

chlorination/bromination: radical mechanism; 11 top

(24)

Functionalization of Aromatic Heterocycles

pyridine: weak base & e

-

-poor ring,

 14 Scheme 2.4

electrophilic substitution: difficult but higher e--density at C-3

nucleophilic substitution at C-2: ‘Chichibabin’; 14 Scheme 2.5

substitution of pyridine-N-oxide at C-4: 15 Scheme 2.6

pyrrole, furan, thiophene: e

-

-rich;

 16 Scheme 2.7

substitution at C-2 / C-5: resonance-stabilized

(25)

Interconversion of Functional Groups

alcohols & phenols: less basic;

 17 Scheme 2.8

amines: basic & nucleophilic;

 20 Scheme 2.9

amines as electrophiles: pyridinium ions; 18 bot & 19 top

halides: good leaving groups;

 21 Scheme 2.10

aryl nitro compounds:

 22 Scheme 2.11

aldehydes & ketones: addition, substitution, enolates

carboxylic acids:

23 Scheme 2.12

Referensi

Dokumen terkait