• Tidak ada hasil yang ditemukan

R n → R with domf, f∗(y) = sup {yT x

N/A
N/A
Protected

Academic year: 2024

Membagikan "R n → R with domf, f∗(y) = sup {yT x"

Copied!
2
0
0

Teks penuh

(1)

f :Rn→Rwith domf, f(y) = sup

x∈domf

{yTx−f(x)},

where domf={y|yTx−f(x)<+∞,∀x∈domf} is called the conjugate function off.

∀x∈domf,∀y∈domf, f(y)>yTx−f(x) ⇐⇒ yTx6f(x) +f(y) e.g. f(x) = 1

2xTQx⇒f(y) = 1

2yTQ−1y, whereQ∈Sn++

∀x, y, yTx61

2xTQx+1

2yTQ−1y

Observation. Forf(y) =1

2yTQ−1y, f∗∗(z) =1

2zT(Q−1)−1z= 1 2zTQz.

Then, is the statement,f∗∗ =f, true in general?

The answer is yes iff is a convex and closed function.

Note. f is a closed function if epif is a closed set.

When f is closed, f can be represented as the following:

f(x) = sup{h(x)|hare affine functions such that h(x)6f(x),∀x∈domf}

Proposition. f∗∗=f iff is a convex and closed function.

Proof.

1. f∗∗>f

Any affine function minorizingf ofxcan be represented asyTx+c, wherec is a constant.

⇒yTx+c6f(x),∀x∈domf

⇒yTx−f(x)6−c,∀x∈domf

⇒yTx−f(x) is bounded above over domf

⇒the supremum ofyTx−f(x) exists, andy∈domf

⇒y∈domf, f(y)6−c

⇒f(x) = sup

yTx+c6f(x)

∀xdomf

{yTx+c}= sup

ydomf f(y)6−c

{yTx+c}6 sup

y∈domf

{yTx−f∗(y)}=f∗∗(x)

2. f∗∗6f

Sincef(y) = sup

x∈domf

{yTx−f(x)}, xTy−f(y)6f(x),∀x∈domf,∀y∈domf.

⇒ sup

y∈domf

{xTy−f(y)}6f(x),∀x∈domf

The left-hand-side of the inequality above can be defined asf∗∗(x) if domf∗∗= domf. SincexTy−f(y)<+∞,∀x∈domf,∀y∈domf, domf∗∗⊇domf.

If there existsxo∈/ domf butxo∈domf∗∗, thenf∗∗(x)6f(x) = +∞.

It leads to contradiction, so domf∗∗⊆domf. Hence, domf∗∗= domf, and sup

y∈domf

{xTy−f(y)}=f∗∗(x).

Therefore,f∗∗(x)6f(x),∀x∈domf = domf∗∗

1

(2)

Legendre transformation

Letf be a convex and differentiable function with domf =Rn.

IfyTx−f(x) be maximized atx, theny=5f(x)⇒f(y) =Of(x)Tx−f(x)

Quasiconvex functions

f :Rn→Rwith domf is quasiconvex(unimodal) function

if its every sublevel set is convex, that is,Sα={x|f(x)6α}is convex, ∀α∈R. f is quasiconcave function if−f is quasiconvex.

f is quasilinear function iff is both quasiconvex and quasiconvex.

2

Referensi

Dokumen terkait