f :Rn→Rwith domf, f∗(y) = sup
x∈domf
{yTx−f(x)},
where domf∗={y|yTx−f(x)<+∞,∀x∈domf} is called the conjugate function off.
∀x∈domf,∀y∈domf∗, f∗(y)>yTx−f(x) ⇐⇒ yTx6f(x) +f∗(y) e.g. f(x) = 1
2xTQx⇒f∗(y) = 1
2yTQ−1y, whereQ∈Sn++
∀x, y, yTx61
2xTQx+1
2yTQ−1y
Observation. Forf∗(y) =1
2yTQ−1y, f∗∗(z) =1
2zT(Q−1)−1z= 1 2zTQz.
Then, is the statement,f∗∗ =f, true in general?
The answer is yes iff is a convex and closed function.
Note. f is a closed function if epif is a closed set.
When f is closed, f can be represented as the following:
f(x) = sup{h(x)|hare affine functions such that h(x)6f(x),∀x∈domf}
Proposition. f∗∗=f iff is a convex and closed function.
Proof.
1. f∗∗>f
Any affine function minorizingf ofxcan be represented asyTx+c, wherec is a constant.
⇒yTx+c6f(x),∀x∈domf
⇒yTx−f(x)6−c,∀x∈domf
⇒yTx−f(x) is bounded above over domf
⇒the supremum ofyTx−f(x) exists, andy∈domf∗
⇒y∈domf∗, f∗(y)6−c
⇒f(x) = sup
yTx+c6f(x)
∀x∈domf
{yTx+c}= sup
y∈domf∗ f∗(y)6−c
{yTx+c}6 sup
y∈domf∗
{yTx−f∗(y)}=f∗∗(x)
2. f∗∗6f
Sincef∗(y) = sup
x∈domf
{yTx−f(x)}, xTy−f∗(y)6f(x),∀x∈domf,∀y∈domf∗.
⇒ sup
y∈domf∗
{xTy−f∗(y)}6f(x),∀x∈domf
The left-hand-side of the inequality above can be defined asf∗∗(x) if domf∗∗= domf. SincexTy−f∗(y)<+∞,∀x∈domf,∀y∈domf∗, domf∗∗⊇domf.
If there existsxo∈/ domf butxo∈domf∗∗, thenf∗∗(x)6f(x) = +∞.
It leads to contradiction, so domf∗∗⊆domf. Hence, domf∗∗= domf, and sup
y∈domf∗
{xTy−f∗(y)}=f∗∗(x).
Therefore,f∗∗(x)6f(x),∀x∈domf = domf∗∗
1
Legendre transformation
Letf be a convex and differentiable function with domf =Rn.
IfyTx−f(x) be maximized atx∗, theny=5f(x∗)⇒f∗(y) =Of(x∗)Tx∗−f(x∗)
Quasiconvex functions
f :Rn→Rwith domf is quasiconvex(unimodal) function
if its every sublevel set is convex, that is,Sα={x|f(x)6α}is convex, ∀α∈R. f is quasiconcave function if−f is quasiconvex.
f is quasilinear function iff is both quasiconvex and quasiconvex.
2