• Tidak ada hasil yang ditemukan

Real hypersurfaces in the complex quadric with Reeb invariant shape operator

N/A
N/A
Protected

Academic year: 2023

Membagikan "Real hypersurfaces in the complex quadric with Reeb invariant shape operator"

Copied!
12
0
0

Teks penuh

(1)

Contents lists available atScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Real hypersurfaces in the complex quadric with Reeb invariant shape operator

Young Jin Suh

KyungpookNationalUniversity,Collegeof NaturalSciences,DepartmentofMathematics,Daegu 702-701,RepublicofKorea

a r t i c l e i n f o a b s t r a c t

Article history:

Received23March2014 Availableonlinexxxx CommunicatedbyV.Cortes

Keywords:

IsometricReebflow Reebinvariant Kählerstructure Complexconjugation Complexquadric

FirstweintroducethenotionofReebinvariantshapeoperatorforrealhypersurfaces in the complex quadric Qm = SOm+2/SOmSO2. Next we give a complete classificationofrealhypersurfacesinQm=SOm+2/SOmSO2withinvariantshape operator.

© 2014ElsevierB.V.All rights reserved.

1. Introduction

WhenweconsidersomeHermitiansymmetricspacesofrank2,usuallywecangiveexamplesofRieman- nian symmetric spaces SUm+2/S(U2Um) and SU2,m/S(U2Um), which are said to be complex two-plane Grassmanniansand complexhyperbolic two-plane Grassmanniansrespectively(see[1,2,12,13]).Those are saidtobeHermitiansymmetricspacesandquaternionicKählersymmetricspacesequippedwiththeKähler structureJ andthequaternionicKählerstructureJonSU2,m/S(U2Um).TherankofSU2,m/S(U2Um) is2 and thereare exactlytwo typesofsingulartangentvectorsX of SU2,m/S(U2Um) whichare characterized bythegeometric propertiesJ X JX andJ X⊥JX respectively.

As another kind of Hermitian symmetric space with rank2 of compact type different from the above ones,wecangiveanexample ofcomplexquadricQm=SOm+2/SOmSO2,whichisacomplexhypersurface in complexprojective space CPm+1 (seeBerndt and Suh [3], and Smyth[10]).The complex quadricalso can be regardedas akindof real Grassmannmanifolds of compact typewith rank2 (see Kobayashiand Nomizu[6]).Accordingly,thecomplexquadricadmitsbothacomplexconjugationstructureAandaKähler structure J,whichanti-commute witheachother,thatis,AJ=−J A.Thenform≥2 thetriple(Qm,J,g)

ThisworkwassupportedbygrantProj.No.NRF-2012-R1A2A2A-01043023fromNationalResearchFoundationofKorea.

E-mailaddress:yjsuh@knu.ac.kr.

http://dx.doi.org/10.1016/j.difgeo.2014.11.003 0926-2245/© 2014ElsevierB.V.All rights reserved.

(2)

isaHermitian symmetricspace ofcompacttype withrank2andits maximalsectionalcurvature isequal to4 (seeKlein[5]andReckziegel[9]).

Forthe complexprojective spaceCPm afullclassification wasobtainedby Okumurain[7].He proved thattheReebflow onareal hypersurfaceinCPm=SUm+1/S(UmU1) is isometricif andonlyif M is an open partofatubearound atotally geodesicCPk CPm forsomek∈ {0,. . . ,m−1}. Forthe complex 2-planeGrassmannian G2(Cm+2) =SUm+2/S(UmU2) the classification wasobtained byBerndt and Suh in[1].TheReebflowonarealhypersurfaceinG2(Cm+2) isisometric ifandonlyifM isanopen partofa tubearoundatotallygeodesicG2(Cm+1)⊂G2(Cm+2). But,whenwe consideranisometric Reebflow for real hypersurfacesinthecomplexquadric Qm=SOm+2/SOmSO2,the resultisquitedifferent from CPm andG2(Cm+2).InviewoftheprevioustworesultsinCPm andG2(Cm+2) anaturalexpectationmightbe that theclassification involves at least the totally geodesic Qm1 Qm. But, surprisingly, in [2] Berndt andSuhhaveprovedthefollowingresult:

Theorem 1.1. Let M be a real hypersurface of the complex quadric Qm, m 3. The Reeb flow on M is isometric if andonly ifm iseven, saym= 2k,andM isan open partof atube aroundatotally geodesic CPk⊂Q2k.

InapaperduetoPérez,SantosandSuh[8],wehaveconsideredanotionofLieξ-parallelstructureJacobi operator,LξRξ = 0,forreal hypersurfacesincomplexprojective spaceCPm,andinapaper[11], Suhhas givenacharacterizationofatubeofradiusr,0< r <π2,overatotallygeodesicG2(Cm+1) inG2(Cm+2) in termsofLieξ-parallel shapeoperator.

In this paper we consider anotion of Lie parallel shape operator S for real hypersurfaces in complex quadricQm alongthedirectionoftheReebvectorfieldξ,thatis,LξS= 0.Inthiscasetheshapeoperator S ofMinQm issaidtobeReebinvariant.Motivatedbytheresultsmentionedaboveandusingthenotion of isometric Reeb flow in Theorem 1.1, we give a new characterization of real hypersurfaces in complex quadricQmwithReebinvariant shapeoperatoras follows:

MainTheorem.LetM be arealhypersurfaceinthecomplex quadricQm,m≥3withReebinvariantshape operator. Then m = 2k, and M is locally congruent to a tube over a totally geodesic complex projective spaceCPk in Q2k.

2. Thecomplexquadric

Formoredetailsinthissectionwereferto[3–6,9].ThecomplexquadricQmisthecomplexhypersurface in CPm+1 which is defined by the equation z21 +. . .+zm+22 = 0, where z1,. . . ,zm+2 are homogeneous coordinatesonCPm+1.Weequip Qm withtheRiemannianmetricwhichisinducedfromtheFubiniStudy metriconCPm+1withconstantholomorphicsectionalcurvature4.TheKählerstructureonCPm+1induces canonicallyaKählerstructure (J,g) onthecomplexquadric.Foreachz∈Qmwe identifyTzCPm+1 with theorthogonalcomplementCm+2CzofCz inCm+2 (seeKobayashiandNomizu [6]).Thetangentspace TzQmcanthen beidentifiedcanonicallywiththeorthogonalcomplementCm+2(Cz⊕CN) ofCz⊕CN inCm+2,whereN ∈νzQmisanormalvectorofQminCPm+1 atthepointz.

The complex projective space CPm+1 is a Hermitian symmetric space of the special unitary group SUm+2, namely CPm+1 = SUm+2/S(Um+1U1). We denote by o = [0,. . . ,0,1] CPm+1 the fixed point oftheactionofthestabilizer S(Um+1U1).ThespecialorthogonalgroupSOm+2⊂SUm+2 actsonCPm+1 withcohomogeneityone.TheorbitcontainingoisatotallygeodesicrealprojectivespaceRPm+1CPm+1. ThesecondsingularorbitofthisactionisthecomplexquadricQm=SOm+2/SOmSO2.Thishomogeneous space modelleadsto thegeometric interpretationof thecomplexquadricQmas theGrassmannmanifold G+2(Rm+2) oforiented 2-planes in Rm+2. It also givesamodel ofQm as a Hermitian symmetric spaceof

(3)

rank2.ThecomplexquadricQ1isisometrictoasphereS2withconstantcurvature,andQ2isisometricto the Riemannianproduct of two 2-spheres withconstant curvature. Forthis reasonwe will assume m≥3 from nowon.

For aunitnormal vectorN ofQm atapointz ∈Qm wedenote byA=AN theshapeoperatorof Qm inCPm+1 withrespect toN.Theshapeoperatorisaninvolution onthetangentspaceTzQmand

TzQm=V(A)⊕J V(A),

whereV(A) isthe+1-eigenspaceandJ V(A) isthe(1)-eigenspaceofAN.Geometricallythismeansthatthe shapeoperatorAN definesarealstructureonthecomplexvectorspaceTzQm,orequivalently,isacomplex conjugation onTzQm.SincetherealcodimensionofQminCPm+1 is2,thisinducesanS1-subbundleAof theendomorphismbundle End(T Qm) consistingof complexconjugations.

Thereisageometricinterpretationoftheseconjugations.ThecomplexquadricQmcanbeviewedasthe complexificationofthem-dimensionalsphereSm.Througheachpointz∈Qmthereexistsaone-parameter family of realforms of Qm whichare isometric to thesphere Sm. These realforms are congruentto each other underaction of thecenterSO2 of theisotropysubgroup of SOm+2 at z. Theisometric reflection of Qm insucharealform Smisanisometry, andthedifferentialatz ofsuchareflectionisaconjugationon TzQm.InthiswaythefamilyAofconjugationsonTzQmcorrespondstothefamilyofrealformsSmofQm containing z, and the subspacesV(A) ⊂TzQm correspond to the tangentspaces TzSm of thereal forms SmofQm.

The Gauss equation for Qm CPm+1 implies thatthe Riemanniancurvature tensor R of Qm canbe described intermsofthecomplexstructureJ andthecomplexconjugationA∈A:

R(X, Y)Z =g(Y, Z)X−g(X, Z)Y +g(J Y, Z)J X−g(J X, Z)J Y 2g(J X, Y)J Z +g(AY, Z)AX−g(AX, Z)AY +g(J AY, Z)J AX−g(J AX, Z)J AY.

Note thatJ andeachcomplexconjugationAanti-commute,thatis,AJ=−J AforeachA∈A.

Recall that a nonzero tangent vector W TzQm is called singular if it is tangent to more than one maximal flatinQm.There aretwotypesofsingulartangentvectorsforthecomplexquadricQm:

1. Ifthere exists aconjugationA∈Asuch thatW ∈V(A), thenW issingular. Suchasingulartangent vectoriscalled A-principal.

2. If there exist aconjugation A∈A and orthonormalvectors X,Y V(A) such thatW/||W||= (X+ J Y)/√

2,thenW issingular.Suchasingulartangentvectoriscalled A-isotropic.

For every unit tangent vector W TzQm there exist a conjugation A A and orthonormal vectors X,Y ∈V(A) suchthat

W = cos(t)X+ sin(t)J Y

forsomet∈[0,π/4].Thesingulartangentvectorscorrespondtothevaluest= 0 andt=π/4.If0< t< π/4 thentheuniquemaximalflatcontainingW isRX⊕RJ Y.Laterwewillneedtheeigenvaluesandeigenspaces of theJacobioperatorRW =R(·,W)W forasingularunittangentvectorW.

1. IfW is anA-principalsingularunittangentvectorwithrespect toA∈A, thentheeigenvaluesofRW

are0 and 2 andthecorresponding eigenspaces areRW ⊕J(V(A)RW) and(V(A)RW)RJ W, respectively.

(4)

2. If W isanA-isotropic singularunittangentvectorwith respect to A∈A andX,Y ∈V(A),then the eigenvalues of RW are 0, 1 and 4 and thecorresponding eigenspaces are RW C(J X+Y), TzQm (CX⊕CY) andRJ W,respectively.

3. ThetotallygeodesicCPk Q2k

Wenowassumethatm iseven,saym= 2k.Themap

CPk →Q2kCP2k+1, [z1, . . . , zk+1][z1, . . . , zk+1, iz1, . . . , izk+1]

provides an embeddingof CPk into Q2k as atotally geodesiccomplex submanifold.We define acomplex structurej onC2k+2 by

j(z1, . . . , zk+1, zk+2, . . . , z2k+2) = (−zk+2, . . . ,−z2k+2, z1, . . . , zk+1).

Notethatij=ji.WecanthenidentifyC2k+2 withCk+1⊕jCk+1 andget TzCPk =

X+ijX|X Ck+1Cz .

NowconsiderthestandardembeddingofUk+1into SO2k+2whichisdeterminedbytheLiealgebraembed- ding

uk+1so2k+2, C+iD→

C −D

D C

,

whereC,D∈Mk+1,k+1(R).TheactionofUk+1 onQ2kisofcohomogeneityoneandCPkistheorbitofthis actioncontainingthepointz= [1,0,. . . ,0,i,0,. . . ,0]∈Q2k,where theisitsinthe(k+ 2)-ndcomponent.

WenowfixaunitnormalvectorN ofQ2k atzanddenotethecorrespondingcomplexconjugationANA byA.Thenwe canwritealternatively

TzCPk=

X+ijX|X ∈V(A) .

NotethatthecomplexstructureionC2m+2correspondstothecomplexstructureonTzQ2mviatheobvious identifications.

Weare nowgoing tocalculatetheprincipalcurvatures andprincipalcurvature spacesofthe tubewith radiusr aroundCPk inQ2k.Forthis weusethestandardJacobifieldmethodas describedinSection 8.2 of[4].LetN = (X+J Y)/√

2 beaunitnormalvectorofCPkinQ2k,whereX,Y ∈V(A) areorthonormal.

The normalJacobi operatorRN leavesthe tangentspace TzCPk and the normal spaceνzCPk invariant.

WhenrestrictedtoTzCPk,theeigenvaluesofRNare0 and1 withcorrespondingeigenspacesC(J X+Y) and TzCPkC(J X+Y).Thecorrespondingprincipalcurvaturesonthetubeofradiusrare0 andtan(r),andthe correspondingprincipalcurvaturespacesaretheparalleltranslatesofC(J X+Y) andTzCPkC(J X+Y) along thegeodesicγ inQ2k withγ(0)=z andγ(0)˙ =N from γ(0) toγ(r).We denote thelatterparallel translatebyW1. Whenrestrictedto νzCPkRN,the eigenvaluesofRN are 1 and4 with corresponding eigenspacesνzCPkCNandRJ N.WedenotethefirstparalleltranslatebyW2.Thecorrespondingprincipal curvatures onthetubeofradius rare cot(r) and2cot(2r),andthe correspondingprincipalcurvature spaces are the parallel translates of νzCPk CN and RJ N along γ from γ(0) to γ(r). This shows in particularthatthetubeisaHopfhypersurface.

For 0 < r < π/2 this process leads to real hypersurfaces in Q2k, whereas for r = π/2 we get an- other totally geodesic CPk Q2k. The two totally geodesic complex projective spaces are precisely the

(5)

two singular orbits of the Uk+1-action on Q2k, and the tubes of radius 0 < r < π/2 are the prin- cipal orbits of this action. Using the homogeneity of the tubes we can now conclude that the tube M of radius 0 < r < π/2 has four distinct constant principal curvatures and the property that the shape operator leaves invariant the maximal complex subbundle C of T M. Moreover, all principal cur- vature spaces in C are J-invariant. Summing upall the properties mentioned above, we have the follow- ing

Proposition3.1. (See[3].)LetM bethetubeof radius0< r < π/2aroundthetotallygeodesicCPk inQ2k. Then thefollowingstatementshold:

1. M isaHopfhypersurface.

2. Every unit normal vector N of M isA-isotropic and therefore can be written in the form N = (X+ J Y)/√

2withsome orthonormalvectors X,Y ∈V(A)andA∈A.

3. The principalcurvaturesandcorresponding principalcurvature spacesof M are

principal curvature eigenspace multiplicity

0 C(J X+Y) 2

tan(r) W1 2k2

cot(r) W2 2k2

2 cot(2r) RJ N 1

4. Each of thetwofocal sets ofM isatotally geodesicCPk⊂Q2k. 5. The Reebflow of M isan isometric flow.

6. The shapeoperator S andthestructuretensor fieldφsatisfy =φS.

7. M is a homogeneous hypersurface of Q2k. More precisely, it is an orbit of the Uk+1-action on Q2k isomorphic toUk+1/Uk−1U1,an S2k1-bundle overCPk.

4. Somegeneralequations

LetMbearealhypersurfaceinQmanddenoteby(φ,ξ,η,g) theinducedalmostcontactmetricstructure.

Note thatξ =−J N, where N is a (local) unitnormal vector fieldof M. Thetangent bundle T M of M splits orthogonally into T M = C ⊕Rξ, where C = ker(η) is the maximal complex subbundle of T M. The structure tensor field φ restricted to C coincides with the complex structure J restricted to C, and φξ= 0.

Wenow assumethatM isaHopfhypersurface.Thenwehave =αξ

withthesmoothfunctionα=g(Sξ,ξ) onM.Whenweconsider atransformJ X oftheKähler structureJ onQm foranyvectorfieldX onM inQm,wemayput

J X =φX+η(X)N

foraunitnormalN to M.Thenwenowconsider theCodazziequation g

(XS)Y (YS)X, Z

=η(X)g(φY, Z)−η(Y)g(φX, Z)2η(Z)g(φX, Y) +g(X, AN)g(AY, Z)−g(Y, AN)g(AX, Z) +g(X, Aξ)g(J AY, Z)−g(Y, Aξ)g(J AX, Z).

(6)

PuttingZ =ξweget g

(XS)Y (YS)X, ξ

=2g(φX, Y)

+g(X, AN)g(Y, Aξ)−g(Y, AN)g(X, Aξ)

−g(X, Aξ)g(J Y, Aξ) +g(Y, Aξ)g(J X, Aξ).

Ontheotherhand,wehave g

(XS)Y (YS)X, ξ

=g

(XS)ξ, Y

−g

(YS)ξ, X

= ()η(Y)(Y α)η(X) +αg

(+φS)X, Y

2g(SφSX, Y).

Comparingtheprevioustwo equationsandputtingX =ξyields

Y α= (ξα)η(Y)2g(ξ, AN)g(Y, Aξ) + 2g(Y, AN)g(ξ, Aξ).

Reinsertingthisintothepreviousequationyields g

(XS)Y (YS)X, ξ

=2g(ξ, AN)g(X, Aξ)η(Y) + 2g(X, AN)g(ξ, Aξ)η(Y) + 2g(ξ, AN)g(Y, Aξ)η(X)2g(Y, AN)g(ξ, Aξ)η(X) +αg

(φS+)X, Y

2g(SφSX, Y).

Altogetherthisimplies

0 = 2g(SφSX, Y)−αg

(φS+)X, Y

2g(φX, Y) +g(X, AN)g(Y, Aξ)−g(Y, AN)g(X, Aξ)

−g(X, Aξ)g(J Y, Aξ) +g(Y, Aξ)g(J X, Aξ)

+ 2g(ξ, AN)g(X, Aξ)η(Y)2g(X, AN)g(ξ, Aξ)η(Y)

2g(ξ, AN)g(Y, Aξ)η(X) + 2g(Y, AN)g(ξ, Aξ)η(X).

Ateachpoint z∈M wecanchooseA∈Az suchthat

N = cos(t)Z1+ sin(t)J Z2

for some orthonormal vectors Z1,Z2 V(A) and 0 ≤t π4 (see Proposition 3 in [9]). Note that t is a functiononM.Firstofall,sinceξ=−J N,wehave

N = cos(t)Z1+ sin(t)J Z2, AN = cos(t)Z1sin(t)J Z2, ξ= sin(t)Z2cos(t)J Z1, = sin(t)Z2+ cos(t)J Z1.

(7)

This impliesg(ξ,AN)= 0 andhence

0 = 2g(SφSX, Y)−αg

(φS+)X, Y

2g(φX, Y) +g(X, AN)g(Y, Aξ)−g(Y, AN)g(X, Aξ)

−g(X, Aξ)g(J Y, Aξ) +g(Y, Aξ)g(J X, Aξ)

2g(X, AN)g(ξ, Aξ)η(Y) + 2g(Y, AN)g(ξ, Aξ)η(X).

5. ProofofMainTheorem

BeforegoingtoproveourMainTheorem,firstletusshow thattheshapeoperatorofMwhichbecomes thetubeofradiusroveracomplexprojectivespaceCPk inQ2k isReebinvariantornot; thatis,LξS = 0 ornot.Infact,theLiederivativevanishingalongtheReebvectorfieldisgivenasfollows:

(LξS)X =Lξ(SX)−SLξX

= (ξS)X−φS2X+SφSX

= 0

forany vectorfieldX onM inQ2k.Thenthisisequivalent tothefollowing (ξS)X =φS2X−SφSX.

Inorder to dothis,letus mentionthattheshapeoperatorS ofthe tubeover CPk commuteswiththe structure tensorφ,thatis,=φS asinProposition 3.1.Sotherightsideoftheaboveequationvanishes.

Now letus check whetherthe leftside ξS = 0 ornot. Thenby apaperdue to Berndtand Suh (see[2], page1350050-14),theexpressionofcovariantderivativefortheshapeoperatorofMincomplexquadricQm becomes

(XS)Y =

(X)η(Y) +g

αSφ−S2φ X, Y

+δη(Y)ρ(X) +δg(BX, φY) +η(BX)ρ(Y)

ξ +

η(Y)ρ(X) +g(BX, φY)

+g(BX, Y)φBξ

−ρ(Y)BX−η(Y)φX−η(BY)φBX forany vectorfieldsX andY onM inQm,wherewehaveput

AY =BY +ρ(Y)N, ρ(Y) =g(AY, N)

foracomplexconjugationA∈A.PuttingX =ξandusingαconstantandρ(ξ)= 0 fortheA-isotropicunit normalvectorfieldN ofM inQ2k,wehave

(ξS)Y =δg(Bξ, φY) +η()ρ(Y) +

η(Y)ρ(ξ) +g(Bξ, φY)

+g(Bξ, Y)φBξ

−ρ(Y)Bξ−η(Y)φξ−η(BY)φBξ

=

g(Bξ, φY)−ρ(Y)

=

−g(φBξ, Y) +g(Y, φBξ) = 0,

(8)

whereinthethirdequalitywehaveused

ρ(Y) =g(AY, N) =g(Y, AN)

=g(Y, AJ ξ)

=−g(Y, J Aξ) =−g(Y, J Bξ)

=−g(Y, φBξ).

Asmentionedabove,areal hypersurfaceM inQ2k withcommutingshapeoperator,thatis, =φS,has aparallelshapeoperatoralongtheReebdirectionξS = 0.Accordingly,weknowthattheshapeoperator ofthetubeoverCPk isReebinvariant,thatis,LξS= 0.

Nowconversely,letusproveourMainTheoremintheintroduction.Letus assumeLξS = 0.

On the other hand, the equation of Codazzi in Section 4 can be written as follows (see Berndt and Suh[2]):

(XS)Y (YS)X =η(X)φY −η(Y)φX−2g(φX, Y)ξ +ρ(X)BY −ρ(Y)BX

+η(BX)φBY −η(BX)ρ(Y)ξ

−η(BY)φBX+η(BY)ρ(X)ξ,

where we haveput AY =BY +ρ(Y)N, and ρ(X)= g(AX,N) = g(J X,Aξ) for aunit normal N of M inQm.Thenweassertthefollowing

Proposition 5.1. Let M be a real hypersurface in complex quadrics Qm, m 3. If the Reeb flow on M satisfiesLξS = 0,thentheshape operatorS commutes with thestructuretensor φ,thatis, =φS.

Proof. Firstnotethat

(LξS)X =Lξ(SX)−ALξX

=ξ(SX)− ∇SXξ−S(ξX− ∇Xξ)

= (ξS)X− ∇SXξ+S∇Xξ

= (ξS)X−φS2X+SφSX

foranyvectorfieldX onM.ThentheassumptionLξS= 0 holdsifandonlyif(ξS)X =φS2X−SφSX.

Now, let us take an orthonormal basis {e1,e2,· · ·,e2m1} for the tangent space TxM, x M, of a real hypersurfaceM inQm.ThenbytheequationofCodazziwemayput

(eiS)Y (YS)ei=η(ei)φY −η(Y)φei2g(φei, Y)ξ

+ρ(ei)BY −ρ(Y)Bei+η(Bei)φBY −η(BY)ρ(ei)ξ

−η(BY)φBei+η(BY)ρ(ei)ξ, (5.1)

from which,togetherwiththefundamentalformulaswhichis introducedinSection2itfollowsthat

(9)

2m−1

i=1

g

(eiS)Y, φei

=(2m−2)η(Y)

+

2m1

i=1

ρ(ei)g(BY, φei)

2m1

i=1

ρ(Y)g(Bei, φei)

+

2m−1

i=1

η(Bei)g(φBY, φei)

2m−1

i=1

η(BY)ρ(ei)g(ξ, φei)

−η(BY)

2m−1

i=1

g(φBei, φei). (5.2)

NowletusdenotebyU thevectorξξ=φSξ.Thenusingtheequation(Xφ)Y =η(Y)AX−g(SX,Y)ξ, itsderivativecanbegivenby

eiU = (eiφ)+φ(eiS)ξ+φS∇eiξ

=η()Sei−g(Sei, Sξ)ξ+φ(eiS)ξ+φSφSei. Then itsdivergenceisgivenby

divU =

2m1

i=1

g(eiU, ei)

=()−η S2ξ

2m1

i=1

g

(eiS)ξ, φei

2m1

i=1

g(φSei, Sφei), (5.3) where hdenotes thetraceoftheshapeoperatorS ofM inQm.

Now wecalculatethesquarednormofthetensorSφ−φS as follows:

φS−Sφ2=

i

g

(φS−Sφ)ei,(φS−Sφ)ei

=

i,j

g

(φS−Sφ)ei, ej g

(φS−Sφ)ei, ej

=

i,j

g(φSej, ei) +g(φSei, ej)

g(φSej, ei) +g(φSei, ej)

= 2

i,j

g(φSej, ei)g(φSej, ei) + 2

i,jg(φSej, ei)g(φSei, ej)

= 2

j

g(φSej, φSej)2

j

g(φSej, Sφej)

=2

j

g

Sej, φ2Sej

2

j

g(φSej, Sφej)

= 2 TrS22η S2ξ

+ 2 divU 2η() TrS + 2η

S2ξ

+ 2

j

g

(ejS)ξ, φej

, (5.4)

where i (respectively, i,j)denotes thesummationfrom i= 1 to 2m−1 (respectively, from i,j= 1 to 2m−1) andinthefinal equalitywehaveused (5.3).

(10)

Fromthis, togetherwiththeformula(5.2),itfollowsthat divU = 1

2φS−Sφ2TrS2 +()

i

g

(eiS)ξ, φei

. (5.5)

By(5.5)andtheassumptionofLξS= 0,letusshowthatthestructuretensorφcommuteswiththeshape operatorS,thatis, φS=.

Ontheotherhand,weknowthatLξS = 0 isequivalentto (ξS)X =φS2X−SφSX.

ThenbytheequationofCodazzi,we knowthat

(XS)ξ= (ξS)X−φX+ρ(X)Bξ−ρ(ξ)BX+η(BX)φBξ

−η(BX)ρ(ξ)ξ−η()φBX+η()ρ(X)ξ

=φS2X−SφSX−φX+ρ(X)

+η(BX)φBξ−η()φBX+η()ρ(X)ξ. (5.6) Nowletustakeaninner product(5.6)withtheReebvectorfieldξ. Thenwehave

g

(XS)ξ, ξ

=−g(SφSX, ξ) +ρ(X)g(Bξ, ξ) +η()ρ(X)

=g(SX, U) + 2g(Bξ, ξ)ρ(X). (5.7)

Ontheotherhand,bythealmost contactstructureφwehave

φU =φ2=−Sξ+η()ξ=−Sξ+αξ,

wherethefunctionαdenotesη().Fromthis,differentiatingandusingtheformula(Xφ)Y =η(Y)AX− g(AX,Y)ξgives

−g(SX, U)ξ+φ∇XU = (Xφ)U+φ∇XU

=(XS)ξ−S∇Xξ+ ()ξ+α∇Xξ. (5.8) Fromthis, takinganinnerproduct withξ,itfollows that

−g(SX, U) =−g

(XS)ξ, ξ

+g(SX, U) +Xα.

Then,together with(5.7),itfollowsthat

g(SX, U)2g(Bξ, ξ)ρ(X) += 0. (5.9) Substituting(5.6)and(5.9)into(5.8),wehavethefollowing

φ∇XU =φX−φS2X+αφSX−ρ(X)

−η(BX)φBξ+η()φBX−η()ρ(X)ξ.

(11)

Now summingupwithrespectto1,· · ·,m−1 for anorthonormalbasisof TxM,x∈M,wehave

i

g(φ∇eiU, φei) = (2m−2)

TrS2−η S2ξ

+α{TrS−α}

i

ρ(ei)g(Bξ, φei)

i

η(Bei)g(φBξ, φei)

+

i

η()g(φBei, φei). (5.10)

Ontheother hand,weknow that

g(φ∇eiU, φei) =−g

eiU,−ei+η(ei)ξ

=

i

g(eiU, ei)−g(ξU, ξ)

= divU+U2

= divU+η S2ξ

−η()2, (5.11)

where U2=g(φSξ,φSξ)=η(S2ξ)−η()2.

Summingup(5.10)with(5.11),wegetthefollowing divU = (2m−2)TrS2+αTrS

i

ρ(ei)g(Bξ, φei)

i

η(Bei)g(φBξ, φei)

+

i

η()g(φBei, φei), (5.12)

where wehavedenotedthefunctionη() byα=η().

Ontheotherhand,(5.2)forY =ξgivesthefollowing

i

g

(eiS)ξ, φei

=(2m−2)

+

i

ρ(ei)g(Bξ, φei)

+

i

η(Bei)g(φBξ, φei)−η()

i

g(φBei, φei), (5.13) where wehaveused iρ(ξ)g(Bei,φei)= 0 and iη()ρ(ei)g(ξ,φei)= 0.Fromthis, togetherwith(5.5), (5.10) and(5.13), itfollows that

divU =1

2 φS−Sφ2TrS2+()

i

g

(eiS)ξ, φei

=1

2 φS−Sφ2TrS2+() + (2m−2)

i

ρ(ei)g(Bξ, φei)

i

η(Bei)g(φBξ, φei) +η()

i

g(φBei, φei)

(12)

= (2m−2)TrS2+()

i

ρ(ei)g(Bξ, φei)

i

η(Bei)g(φBξ, φei)

+

i

η()g(φBei, φei), (5.14)

where wehaveused (5.13) inthesecond equalityand (5.12)inthe thirdequalityrespectively.Then com- paringthe both sides inthe thirdequality of(5.14) gives φS−Sφ2 = 0, thatis, theshape operatorS commutes with the structure tensor φ. This means thatthe Reeb flow on M is an isometric flow, which givesacomplete proofofourProposition. 2

Byvirtueofthisproposition,togetherwithTheorem 1.1,wegiveacompleteproofofourMainTheorem intheintroduction.

References

[1]J.Berndt,Y.J.Suh,RealhypersurfaceswithisometricReebflowincomplextwo-planeGrassmannians,MonatshefteMath.

137(2002)87–98.

[2]J.Berndt,Y.J.Suh,HypersurfacesinnoncompactcomplexGrassmanniansofranktwo,Int.J.Math.23(2012)1250103, 35pp.

[3]J.Berndt,Y.J.Suh,RealhypersurfaceswithisometricReebflowincomplexquadrics,Int.J.Math.24(2013)1350050, 18pp.

[4]J.Berndt,S.Console,C.Olmos,SubmanifoldsandHolonomy,Chapman&Hall/CRC,BocaRaton,FL,2003.

[5]S.Klein,Totallygeodesicsubmanifoldsinthecomplexquadric,Differ.Geom.Appl.26(2008)79–96.

[6]S.Kobayashi,K.Nomizu,FoundationsofDifferentialGeometry,vol.II,AWiley-IntersciencePubl.,WileyClassicsLibrary Ed.,1996.

[7]M.Okumura,Onsomerealhypersurfacesofacomplexprojectivespace,Trans.Am.Math.Soc.212(1975)355–364.

[8]J.D.Pérez,F.G.Santos,Y.J.Suh,RealhypersurfacesincomplexprojectivespacewhosestructureJacobioperatorisLie ξ-parallel,Differ.Geom.Appl.22(2005)181–188.

[9]H.Reckziegel,Onthegeometryofthecomplexquadric,in:GeometryandTopologyofSubmanifoldsVIII,Brussels/Nord- fjordeid,1995,WorldSci.Publ.,RiverEdge,NJ,1995,pp. 302–315.

[10]B.Smyth,Differentialgeometryofcomplexhypersurfaces,Ann.Math.85(1967)246–266.

[11]Y.J. Suh,Realhypersurfaces incomplextwo-planeGrassmannianswithvanishingLiederivatives,Can.Math.Bull.49 (2006)131–143.

[12]Y.J.Suh,RealhypersurfaceswithisometricReebflowincomplexhyperbolictwo-planeGrassmannians,Adv.Appl.Math.

50(2013)645–659.

[13]Y.J.Suh,Realhypersurfacesincomplexhyperbolictwo-planeGrassmannianswithReebvectorfield,Adv.Appl.Math.

55(2014)131–145.

Referensi

Dokumen terkait

"Factors that Affect Construction Workers' Stress in Indonesia", Proceedings of the 2019 5th International Conference on Industrial and Business Engineering - ICIBE 2019, 2019