The Classical Statistical Treatment of an Ideal Gas
Chapter 14
Min Soo Kim
Seoul National University
Advanced Thermodynamics (M2794.007900)
๐ = ๐
๐ + ๐๐(ln ๐ โ ln ๐ + 1)
14.1
Thermodynamic Properties from the Partition Functionfor Maxwell-Boltzmann Distribution
เท ๐๐๐โ๐๐/๐๐ 6 ร 1023 molecules
๐ = ๐ ln ๐
cf. ๐๐น = โ๐๐๐ โ ๐๐๐ + ๐๐๐
๐ = ๐๐นแ ๐๐ ๐,๐
๐ = โ๐๐(ln ๐ โ ln ๐)
๐น = ๐ โ ๐๐ = โ๐๐๐(ln ๐ โ ln ๐ + 1) Helmholtz function
Partition function
14.1
Thermodynamic Properties from the Partition Function (1) Internal energy๐ = เท ๐๐๐๐ = เท ๐๐ ๐
๐ ๐โ๐๐/๐๐ ๐๐ ๐ = เท ๐๐๐โ๐๐/๐๐
๐๐แ
๐๐ ๐
= เท ๐๐ ๐๐
๐๐2 ๐โ๐๐/๐๐ ๐๐ fixed
โด ๐ = ๐
๐ ๐๐2 ๐๐แ
๐๐ = ๐๐๐2 ๐ ln ๐แ
๐๐ Partition function
14.1
Thermodynamic Properties from the Partition Function(2) Gibbs function
๐บ = ๐๐ = โ๐๐๐(ln ๐ โ ln ๐)
(3) Enthalpy
๐ป = ๐บ + ๐๐
= โ๐๐๐ ln ๐ โ ln ๐ + ๐ ๐
๐ + ๐๐(ln ๐ โ ln ๐ + 1)
= ๐ + ๐๐๐
= ๐๐๐ 1+๐ ๐ ln ๐
๐๐ ๐
14.1
Thermodynamic Properties from the Partition Function (4) Pressure๐ = โ๐๐นแ ๐๐ ๐,๐
= ๐๐๐ ๐ ln ๐แ
๐๐ ๐
cf. ๐๐น = โ๐๐๐ โ ๐๐๐ + ๐๐๐
๐ = เท ๐๐๐โ๐๐/๐๐
14.2 Partition Function for a Gas
โข Partition function
= เถฑ ๐(๐)๐โ๐/๐๐๐๐ = เถฑ
0
โ4 2๐๐
โ3 ๐3/2๐1/2๐โ๐/๐๐๐๐
= 4 2๐๐
โ3 ๐3/2 เถฑ
0
โ
๐1/2๐โ๐/๐๐๐๐
๐๐ฅ ๐๐ฆ
๐ + ๐๐
๐ ๐ ๐๐ : number of quantum state ๐ < < ๐ + ๐๐ ๐
cf.
g ๐ ๐๐ = ๐
6๐ 29/2๐2/3 โ3
3
2๐12๐๐ = 4 2๐๐
โ3 ๐32๐12๐๐ ๐๐
2 ๐๐๐
๐ = ๐ฝ ๐๐ ๐๐๐ป ๐๐
๐/๐
14.2 Partition Function for a Gas
Successive terms of the partition function sum for (a) low temperature;
and (b) high temperature. The energy level spacings are comparatively large for a small volume.
(a) (b)
14.3 Properties of a Monatomic Ideal gas
ln ๐ = 3
2ln ๐ + ln ๐ + 3
2ln 2๐๐๐ โ2
๐ = โ ๐๐น
๐๐ ๐
= ๐๐๐ ๐ ln ๐แ
๐๐ ๐
= ๐๐๐ ๐
๐ ln ๐
๐๐ ๐
= 1 ๐
๐ ln ๐
๐๐ ๐
= 3 2 โ 1
๐
The partition function depends on both volume and temperature
๐ = ๐๐๐2 ๐ ln ๐แ
๐๐ ๐
= ๐๐๐2 3 2๐
๐๐ = ๐๐๐
๐ = 3
2๐๐๐
14.3 Properties of a Monatomic Ideal gas
๐ = ๐
๐ + ๐๐(ln ๐ โ ln ๐ + 1)
= ๐
๐ + ๐๐ 3
2ln ๐ + ln ๐ + 3
2ln 2๐๐๐
โ2 โ ln ๐ + 1
The calculation of entropy
= 5
2๐๐ + ๐๐ ln ๐(2๐๐๐๐)3/2
๐โ3 Sackur-Tetrode Equation
14.3 Properties of a Monatomic Ideal gas
Statistical approach
๐ = ๐๐ฃ ln ๐ + ๐ ln ๐ฃ + ๐ 0
๐๐๐ = ๐๐ข + ๐๐๐ฃ ๐๐ = ๐๐ฃ ๐๐
๐ + ๐ ๐๐ฃ ๐ฃ Classical approach
๐ = ๐/๐, ๐๐ = ๐ เดค๐ ๐๐ฃ = 3 2๐
14.4 Applicability of MB Distribution
๐ = ๐๐๐ = ๐ 2๐๐๐๐ โ2
3/2
๐๐ โซ ๐๐
๐๐
๐1
๐๐ ๐๐
๐1 ๐1
Maxwell-Boltzmann distribution: valid under dilute gas
Maxwell-Boltzmann distribution ๐๐
๐๐ = ๐
๐ ๐โ๐๐/๐๐ = ๐ ๐
1
๐๐ ๐โ๐๐/๐๐
14.4 Applicability of MB Distribution
For Helium,
๐ = 6.65 ร 10โ27 kg ๐ = 273 K
k = 1.381 ร 10โ23 J/K โ = 6.626 ร 10โ34 Jโs
๐
๐๐
๐= ๐
๐ ๐
โ๐๐/๐๐= ๐ ๐
1
๐
๐๐
โ๐๐/๐๐~ 4 ร 10
โ6๐
๐ = 6 ร 1026
22.4 m3 โ 3 ร 1025 ๐โ3
Number of particles per unit volume
๐๐ = 7 ร 1030 ๐โ3
14.5 Distribution of Molecular Speed
๐ ๐ = ๐ ๐
๐ ๐ = ๐
๐ ๐โ๐๐/๐๐
๐ ๐ ๐๐ : # of particles ๐ < < ๐ + ๐๐
๐ = ๐ 2๐๐๐๐ โ2
3/2
๐(๐) = 4 2๐๐
โ3 ๐3/2๐1/2 For an ideal gas,
The density of states is given by
Maxwell-Boltzmann distribution
14.5 Distribution of Molecular Speed
๐ ๐ ๐๐ = ๐๐โ๐/๐๐ ๐ 2๐๐๐๐
โ2
3/2 โ 4 2๐๐
โ3 ๐3/2๐1/2๐๐
= 2๐๐
๐๐๐ 3/2๐1/2๐โ๐/๐๐๐๐
๐ = 1
2๐๐ฃ2, ๐๐ = ๐๐ฃ๐๐ฃ ๐1/2๐๐ = (๐๐ฃ2)1/2
2 ๐๐ฃ๐๐ฃ = 1
2๐3/2๐ฃ2๐๐ฃ ๐ is the single particle kinetic energy. Thus
14.5 Distribution of Molecular Speed
๐ ๐ฃ ๐๐ฃ : # of particles ๐ฃ < < ๐ฃ + ๐๐ฃ ๐ ๐ฃ ๐๐ฃ = 2๐๐
2๐๐๐ 3/2 โ 1
2๐3/2๐ฃ2๐๐ฃ โ ๐โ๐๐ฃ2/2๐๐
= 4๐๐ ๐ 2๐๐๐
3/2
๐ฃ2๐โ๐๐ฃ2/2๐๐๐๐ฃ
๐๐๐ฃ = ๐๐ผ3๐โ๐ฝ2๐ฃ2 ร 4๐๐ฃ2๐๐ฃ = 4๐๐๐ผ3๐ฃ2๐โ๐ฝ2๐ฃ2๐๐ฃ
๐ ๐
cf. from kinetic theory,
๐๐ = 4๐๐( ๐
)3/2๐ฃ2๐โ๐๐ฃ2/2๐๐๐๐ฃ
14.7 Entropy Change of Mixing ๐
๐
1๐
2โข Effect of mixing
โ๐ = โ๐ เดค๐ (๐ฅ1 ln ๐ฅ1 + ๐ฅ2 ln ๐ฅ2)
โ๐ = ๐!
๐1! ๐2! = ๐!
(๐ฅ1๐)! (๐ฅ2๐)!
14.7 Entropy Change of Mixing
โ๐ = ๐ ln ๐ = ๐[lnN! โ ln ๐ฅ1๐ ! โ ln ๐ฅ2๐ !]
โ๐
๐ = ๐ ln ๐ โ ๐ โ ๐ฅ1๐ln ๐ฅ1๐ โ ๐ฅ1๐ โ {๐ฅ2๐ln ๐ฅ2๐ โ ๐ฅ2๐}
= โ๐(๐ฅ1ln๐ฅ1 + ๐ฅ2ln๐ฅ2)