• Tidak ada hasil yang ditemukan

The Classical Statistical Treatment of an Ideal Gas

N/A
N/A
Protected

Academic year: 2024

Membagikan "The Classical Statistical Treatment of an Ideal Gas"

Copied!
17
0
0

Teks penuh

(1)

The Classical Statistical Treatment of an Ideal Gas

Chapter 14

Min Soo Kim

Seoul National University

Advanced Thermodynamics (M2794.007900)

(2)

๐‘† = ๐‘ˆ

๐‘‡ + ๐‘๐‘˜(ln ๐‘ โˆ’ ln ๐‘ + 1)

14.1

Thermodynamic Properties from the Partition Function

for Maxwell-Boltzmann Distribution

เท ๐‘”๐‘—๐‘’โˆ’๐œ€๐‘—/๐‘˜๐‘‡ 6 ร— 1023 molecules

๐‘† = ๐‘˜ ln ๐‘Š

cf. ๐‘‘๐น = โˆ’๐‘†๐‘‘๐‘‡ โˆ’ ๐‘ƒ๐‘‘๐‘‰ + ๐œ‡๐‘‘๐‘

๐œ‡ = ๐‘‘๐นแ‰‡ ๐‘‘๐‘ ๐‘‡,๐‘‰

๐œ‡ = โˆ’๐‘˜๐‘‡(ln ๐‘ โˆ’ ln ๐‘)

๐น = ๐‘ˆ โˆ’ ๐‘‡๐‘† = โˆ’๐‘๐‘˜๐‘‡(ln ๐‘ โˆ’ ln ๐‘ + 1) Helmholtz function

Partition function

(3)

14.1

Thermodynamic Properties from the Partition Function (1) Internal energy

๐‘ˆ = เท ๐‘๐‘—๐œ€๐‘— = เท ๐‘”๐‘— ๐‘

๐‘ ๐‘’โˆ’๐œ€๐‘—/๐‘˜๐‘‡ ๐œ€๐‘— ๐‘ = เท ๐‘”๐‘—๐‘’โˆ’๐œ€๐‘—/๐‘˜๐‘‡

๐œ•๐‘แ‰‡

๐œ•๐‘‡ ๐‘‰

= เท ๐‘”๐‘— ๐œ€๐‘—

๐‘˜๐‘‡2 ๐‘’โˆ’๐œ€๐‘—/๐‘˜๐‘‡ ๐œ€๐‘— fixed

โˆด ๐‘ˆ = ๐‘

๐‘ ๐‘˜๐‘‡2 ๐œ•๐‘แ‰‡

๐œ•๐‘‡ = ๐‘๐‘˜๐‘‡2 ๐œ• ln ๐‘แ‰‡

๐œ•๐‘‡ Partition function

(4)

14.1

Thermodynamic Properties from the Partition Function

(2) Gibbs function

๐บ = ๐œ‡๐‘ = โˆ’๐‘๐‘˜๐‘‡(ln ๐‘ โˆ’ ln ๐‘)

(3) Enthalpy

๐ป = ๐บ + ๐‘‡๐‘†

= โˆ’๐‘๐‘˜๐‘‡ ln ๐‘ โˆ’ ln ๐‘ + ๐‘‡ ๐‘ˆ

๐‘‡ + ๐‘๐‘˜(ln ๐‘ โˆ’ ln ๐‘ + 1)

= ๐‘ˆ + ๐‘๐‘˜๐‘‡

= ๐‘๐‘˜๐‘‡ 1+๐‘‡ ๐œ• ln ๐‘

๐œ•๐‘‡ ๐‘‰

(5)

14.1

Thermodynamic Properties from the Partition Function (4) Pressure

๐‘ƒ = โˆ’๐‘‘๐นแ‰‡ ๐‘‘๐‘‰ ๐‘‡,๐‘

= ๐‘๐‘˜๐‘‡ ๐œ• ln ๐‘แ‰‡

๐œ•๐‘‰ ๐‘‡

cf. ๐‘‘๐น = โˆ’๐‘†๐‘‘๐‘‡ โˆ’ ๐‘ƒ๐‘‘๐‘‰ + ๐œ‡๐‘‘๐‘

(6)

๐‘ = เท ๐‘”๐‘—๐‘’โˆ’๐œ€๐‘—/๐‘˜๐‘‡

14.2 Partition Function for a Gas

โ€ข Partition function

= เถฑ ๐‘”(๐œ€)๐‘’โˆ’๐œ€/๐‘˜๐‘‡๐‘‘๐œ€ = เถฑ

0

โˆž4 2๐œ‹๐‘‰

โ„Ž3 ๐‘š3/2๐œ€1/2๐‘’โˆ’๐œ€/๐‘˜๐‘‡๐‘‘๐œ€

= 4 2๐œ‹๐‘‰

โ„Ž3 ๐‘š3/2 เถฑ

0

โˆž

๐œ€1/2๐‘’โˆ’๐œ€/๐‘˜๐‘‡๐‘‘๐œ€

๐‘›๐‘ฅ ๐‘›๐‘ฆ

๐œ€ + ๐‘‘๐œ€

๐‘” ๐œ€ ๐‘‘๐œ€ : number of quantum state ๐œ€ < < ๐œ€ + ๐‘‘๐œ€ ๐œ€

cf.

g ๐œ€ ๐‘‘๐œ€ = ๐œ‹

6๐‘‰ 29/2๐‘š2/3 โ„Ž3

3

2๐œ€12๐‘‘๐œ€ = 4 2๐œ‹๐‘‰

โ„Ž3 ๐‘š32๐œ€12๐‘‘๐œ€ ๐‘˜๐‘‡

2 ๐œ‹๐‘˜๐‘‡

๐’ = ๐‘ฝ ๐Ÿ๐…๐’Ž๐’Œ๐‘ป ๐’‰๐Ÿ

๐Ÿ‘/๐Ÿ

(7)

14.2 Partition Function for a Gas

Successive terms of the partition function sum for (a) low temperature;

and (b) high temperature. The energy level spacings are comparatively large for a small volume.

(a) (b)

(8)

14.3 Properties of a Monatomic Ideal gas

ln ๐‘ = 3

2ln ๐‘‡ + ln ๐‘‰ + 3

2ln 2๐œ‹๐‘š๐‘˜ โ„Ž2

๐‘ƒ = โˆ’ ๐œ•๐น

๐œ•๐‘‰ ๐‘‡

= ๐‘๐‘˜๐‘‡ ๐œ• ln ๐‘แ‰‡

๐œ•๐‘‰ ๐‘‡

= ๐‘๐‘˜๐‘‡ ๐‘‰

๐œ• ln ๐‘

๐œ•๐‘‰ ๐‘‡

= 1 ๐‘‰

๐œ• ln ๐‘

๐œ•๐‘‡ ๐‘‰

= 3 2 โˆ™ 1

๐‘‡

The partition function depends on both volume and temperature

๐‘ˆ = ๐‘๐‘˜๐‘‡2 ๐œ• ln ๐‘แ‰‡

๐œ•๐‘‡ ๐‘‰

= ๐‘๐‘˜๐‘‡2 3 2๐‘‡

๐‘ƒ๐‘‰ = ๐‘๐‘˜๐‘‡

๐‘ˆ = 3

2๐‘๐‘˜๐‘‡

(9)

14.3 Properties of a Monatomic Ideal gas

๐‘† = ๐‘ˆ

๐‘‡ + ๐‘๐‘˜(ln ๐‘ โˆ’ ln ๐‘ + 1)

= ๐‘ˆ

๐‘‡ + ๐‘๐‘˜ 3

2ln ๐‘‡ + ln ๐‘‰ + 3

2ln 2๐œ‹๐‘š๐‘˜

โ„Ž2 โˆ’ ln ๐‘ + 1

The calculation of entropy

= 5

2๐‘๐‘˜ + ๐‘๐‘˜ ln ๐‘‰(2๐œ‹๐‘š๐‘˜๐‘‡)3/2

๐‘โ„Ž3 Sackur-Tetrode Equation

(10)

14.3 Properties of a Monatomic Ideal gas

Statistical approach

๐‘  = ๐‘๐‘ฃ ln ๐‘‡ + ๐‘… ln ๐‘ฃ + ๐‘ 0

๐‘‡๐‘‘๐‘  = ๐‘‘๐‘ข + ๐‘ƒ๐‘‘๐‘ฃ ๐‘‘๐‘  = ๐‘๐‘ฃ ๐‘‘๐‘‡

๐‘‡ + ๐‘… ๐‘‘๐‘ฃ ๐‘ฃ Classical approach

๐‘  = ๐‘†/๐‘›, ๐‘๐‘˜ = ๐‘› เดค๐‘… ๐‘๐‘ฃ = 3 2๐‘…

(11)

14.4 Applicability of MB Distribution

๐‘ = ๐‘‰๐‘›๐‘„ = ๐‘‰ 2๐œ‹๐‘š๐‘˜๐‘‡ โ„Ž2

3/2

๐‘”๐‘— โ‰ซ ๐‘๐‘—

๐œ€๐‘—

๐œ€1

๐‘”๐‘— ๐‘๐‘—

๐‘”1 ๐‘1

Maxwell-Boltzmann distribution: valid under dilute gas

Maxwell-Boltzmann distribution ๐‘๐‘—

๐‘”๐‘— = ๐‘

๐‘ ๐‘’โˆ’๐œ€๐‘—/๐‘˜๐‘‡ = ๐‘ ๐‘‰

1

๐‘›๐‘„ ๐‘’โˆ’๐œ€๐‘—/๐‘˜๐‘‡

(12)

14.4 Applicability of MB Distribution

For Helium,

๐‘š = 6.65 ร— 10โˆ’27 kg ๐‘‡ = 273 K

k = 1.381 ร— 10โˆ’23 J/K โ„Ž = 6.626 ร— 10โˆ’34 Jโˆ™s

๐‘

๐‘—

๐‘”

๐‘—

= ๐‘

๐‘ ๐‘’

โˆ’๐œ€๐‘—/๐‘˜๐‘‡

= ๐‘ ๐‘‰

1

๐‘›

๐‘„

๐‘’

โˆ’๐œ€๐‘—/๐‘˜๐‘‡

~ 4 ร— 10

โˆ’6

๐‘

๐‘‰ = 6 ร— 1026

22.4 m3 โ‰ˆ 3 ร— 1025 ๐‘šโˆ’3

Number of particles per unit volume

๐‘›๐‘„ = 7 ร— 1030 ๐‘šโˆ’3

(13)

14.5 Distribution of Molecular Speed

๐‘“ ๐œ€ = ๐‘ ๐œ€

๐‘” ๐œ€ = ๐‘

๐‘ ๐‘’โˆ’๐œ€๐‘—/๐‘˜๐‘‡

๐‘ ๐œ€ ๐‘‘๐œ€ : # of particles ๐œ€ < < ๐œ€ + ๐‘‘๐œ€

๐‘ = ๐‘‰ 2๐œ‹๐‘š๐‘˜๐‘‡ โ„Ž2

3/2

๐‘”(๐œ€) = 4 2๐œ‹๐‘‰

โ„Ž3 ๐‘š3/2๐œ€1/2 For an ideal gas,

The density of states is given by

Maxwell-Boltzmann distribution

(14)

14.5 Distribution of Molecular Speed

๐‘ ๐œ€ ๐‘‘๐œ€ = ๐‘๐‘’โˆ’๐œ€/๐‘˜๐‘‡ ๐‘‰ 2๐œ‹๐‘š๐‘˜๐‘‡

โ„Ž2

3/2 โˆ™ 4 2๐œ‹๐‘‰

โ„Ž3 ๐‘š3/2๐œ€1/2๐‘‘๐œ€

= 2๐œ‹๐‘

๐‘๐‘˜๐‘‡ 3/2๐œ€1/2๐‘’โˆ’๐œ€/๐‘˜๐‘‡๐‘‘๐œ€

๐œ€ = 1

2๐‘š๐‘ฃ2, ๐‘‘๐œ€ = ๐‘š๐‘ฃ๐‘‘๐‘ฃ ๐œ€1/2๐‘‘๐œ€ = (๐‘š๐‘ฃ2)1/2

2 ๐‘š๐‘ฃ๐‘‘๐‘ฃ = 1

2๐‘š3/2๐‘ฃ2๐‘‘๐‘ฃ ๐œ€ is the single particle kinetic energy. Thus

(15)

14.5 Distribution of Molecular Speed

๐‘ ๐‘ฃ ๐‘‘๐‘ฃ : # of particles ๐‘ฃ < < ๐‘ฃ + ๐‘‘๐‘ฃ ๐‘ ๐‘ฃ ๐‘‘๐‘ฃ = 2๐œ‹๐‘

2๐œ‹๐‘˜๐‘‡ 3/2 โˆ™ 1

2๐‘š3/2๐‘ฃ2๐‘‘๐‘ฃ โˆ™ ๐‘’โˆ’๐‘š๐‘ฃ2/2๐‘˜๐‘‡

= 4๐œ‹๐‘ ๐‘š 2๐œ‹๐‘˜๐‘‡

3/2

๐‘ฃ2๐‘’โˆ’๐‘š๐‘ฃ2/2๐‘˜๐‘‡๐‘‘๐‘ฃ

๐‘‘๐‘๐‘ฃ = ๐‘๐›ผ3๐‘’โˆ’๐›ฝ2๐‘ฃ2 ร— 4๐œ‹๐‘ฃ2๐‘‘๐‘ฃ = 4๐œ‹๐‘๐›ผ3๐‘ฃ2๐‘’โˆ’๐›ฝ2๐‘ฃ2๐‘‘๐‘ฃ

๐œŒ ๐‘‰

cf. from kinetic theory,

๐‘‘๐‘ = 4๐œ‹๐‘( ๐‘š

)3/2๐‘ฃ2๐‘’โˆ’๐‘š๐‘ฃ2/2๐‘˜๐‘‡๐‘‘๐‘ฃ

(16)

14.7 Entropy Change of Mixing ๐‘

๐‘

1

๐‘

2

โ€ข Effect of mixing

โˆ†๐‘† = โˆ’๐‘› เดค๐‘…(๐‘ฅ1 ln ๐‘ฅ1 + ๐‘ฅ2 ln ๐‘ฅ2)

โˆ†๐‘Š = ๐‘!

๐‘1! ๐‘2! = ๐‘!

(๐‘ฅ1๐‘)! (๐‘ฅ2๐‘)!

(17)

14.7 Entropy Change of Mixing

โˆ†๐‘† = ๐‘˜ ln ๐‘Š = ๐‘˜[lnN! โˆ’ ln ๐‘ฅ1๐‘ ! โˆ’ ln ๐‘ฅ2๐‘ !]

โˆ†๐‘†

๐‘˜ = ๐‘ ln ๐‘ โˆ’ ๐‘ โˆ’ ๐‘ฅ1๐‘ln ๐‘ฅ1๐‘ โˆ’ ๐‘ฅ1๐‘ โˆ’ {๐‘ฅ2๐‘ln ๐‘ฅ2๐‘ โˆ’ ๐‘ฅ2๐‘}

= โˆ’๐‘(๐‘ฅ1ln๐‘ฅ1 + ๐‘ฅ2ln๐‘ฅ2)

Referensi

Dokumen terkait