Thermodynamic and Kinetic Modeling
to Predict the Lifetime of Thermal Barrier Coating on Superalloys
High Temperature Thermochemistry Laboratory
&
Korea Institute of Materials Science
Date: 13th April 2021
Yeon Woo Yoo
High Temperature Thermochemistry Laboratory
Contents
2I. Introduction about Thermal Barrier Coatings II. Kinetic Modeling
III. Thermodynamic Modeling
3
I. Introduction about Thermal Barrier Coatings
High Temperature Thermochemistry Laboratory
Introduction
4- Thermal Barrier Coatings
β’ Top coating
- Yttria stabilized zirconia (8YSZ), GZO(Gd2Zr2O7), LZO(La2Zr2O7) - Thermal insulation from high temperature environment
- Low thermal conductivity and porous microstructure
β’ Bond coating
- MCrAlX M= Ni and/or Co , X = Y, Ta, Hf, and/or Si, other minor elements
- Intermediate thermal expansion coefficient between top coating and bottom Ni based superalloys
- Directly related to the thermal lifetime of thermal barrier coatings
β’ Ni based superalloys
- Maintain excellent mechanical strength at high temperature (Ξ³and Ξ³` phase)
High Temperature Thermochemistry Laboratory
Introduction
5- Failure of Thermal Barrier Coatings
Thermal strain caused by CTE mismatch ππ = β πΌπΌππππππππ β πΌπΌπ π π π π π ππ β ππ0 =βΞπΌπΌΞππ Repeating heating and cooling in TBCs as the gas turbine operation
Thermal stress caused by CTE mismatch between bond coating and top coating
Failure
High Temperature Thermochemistry Laboratory
Introduction
6- Thermodynamics and Kinetics in Thermal Barrier Coatings
Concentration
Top coat TGO Bond coat Superalloy
O O
Al Al
Ni, Cr, Co Al Al
Al Al
O Cr, Co
Al Al
Other Elements
Ni Ni
Al
Al Al
Co, Cr
Co, Cr
Distance
Outer Beta Depletion Zone
Inner Beta Depletion Zone
Secondary Reaction Zone
7
II. Kinetic Modeling
High Temperature Thermochemistry Laboratory
Diffusion Equation
8π½π½ππ = βπ·π·ππ πππΆπΆππ ππππ
- Fickβs first law
- Fickβs second law
πππΆπΆππ
ππππ = π·π·ππ ππ2πΆπΆππ ππππ2
πΆπΆπ»π» πΆπΆπΏπΏ
πΆπΆπ»π»
πΆπΆπΏπΏ πΆπΆ
For multi-components,
πππΆπΆππ
ππππ
= π·π·ππ,ππππ2πΆπΆππ
ππππ2 + πππ·π·ππ,ππ
πππΆπΆππ
πππΆπΆππ
ππππ +πππ·π·ππ,ππ
πππΆπΆππ
πππΆπΆππ
ππππ +πππ·π·ππ,ππ
πππΆπΆππ
πππΆπΆππ
ππππ
πππΆπΆππ
ππππ + π·π·ππ,ππ ππ2πΆπΆππ
ππππ2 + πππ·π·ππ,ππ
πππΆπΆππ
πππΆπΆππ
ππππ +πππ·π·ππ,ππ
πππΆπΆππ
πππΆπΆππ
ππππ + πππ·π·ππ,ππ
πππΆπΆππ
πππΆπΆππ
ππππ
πππΆπΆππ
ππππ +π·π·ππ,ππππ2πΆπΆππ
ππππ2 + πππ·π·ππ,ππ
πππΆπΆππ
πππΆπΆππ
ππππ +πππ·π·ππ,ππ
πππΆπΆππ
πππΆπΆππ
ππππ +πππ·π·ππ,ππ
πππΆπΆππ
πππΆπΆππ
ππππ
πππΆπΆππ
ππππ
High Temperature Thermochemistry Laboratory
Finite Difference Method
9 - Finite Difference Methodβππ πΉπΉππ πΉπΉππ+1 πΉπΉ0 πΉπΉ1
πππΉπΉ
ππππ = πΉπΉππ+1 β πΉπΉππβ1 2βππ
πΉπΉππβ1
πππΉπΉ
ππππ = πΉπΉππ+1β πΉπΉππ
βππ
πππΉπΉ
ππππ = πΉπΉππ β πΉπΉππβ1
βππ
: Forward
ππ2πΉπΉ
ππππ2 = πΉπΉππ+2 β2πΉπΉππ+1 +πΉπΉππ (βππ)2
ππ2πΉπΉ
ππππ2 = πΉπΉππ β2πΉπΉππβ1+πΉπΉππβ2 (βππ)2
ππ2πΉπΉ
ππππ2 = πΉπΉππ+1 β2πΉπΉππ +πΉπΉππβ1 (βππ)2
: Backward
: Central
10
III. Thermodynamic Modeling
High Temperature Thermochemistry Laboratory
Gibbβs Free Energy & Phase Diagram
11G = H β TS
- Gibbβs free energy
- Gibbβs free energy and phase diagram
- At temperature T, the phase which has lowest G is the most stable
Porter, D.A., and Easterling, K.E., Phase Transformation in Metals and Alloys, 2nd Ed.
CHAMAN & HALL (1992)
High Temperature Thermochemistry Laboratory
Gibbβs Free Energy of Solution
12- Gibbβs free energy of solution
πΊπΊπ π πππ π ππ = πππ΄π΄πΊπΊπ΄π΄ +πππ΅π΅πΊπΊπ΅π΅ +π π ππ πππ΄π΄lnπππ΄π΄ +πππ΅π΅ lnπππ΅π΅
πΊπΊπ π πππ π ππ = πππ΄π΄πΊπΊπ΄π΄ +πππ΅π΅πΊπΊπ΅π΅ + Ξ©πππ΄π΄πππ΅π΅ +π π ππ πππ΄π΄lnπππ΄π΄ +πππ΅π΅lnπππ΅π΅
πΊπΊπ π πππ π ππ = πππ΄π΄πΊπΊπ΄π΄ + πππ΅π΅πΊπΊπ΅π΅ + οΏ½
ππ,ππβ₯1
πππ΄π΄π΅π΅ππππ πππ΄π΄πππππ΅π΅ππ + π π ππ πππ΄π΄lnπππ΄π΄ + πππ΅π΅ lnπππ΅π΅
: Ideal solution
: Regular solution
: General solution
βπ»π»ππππππ = 0
βπ»π»ππππππ =Ξ©πππ΄π΄πππ΅π΅
βππππππππ = π π (πππ΄π΄lnπππ΄π΄ +πππ΅π΅lnπππ΅π΅)
βππππππππ =π π (πππ΄π΄lnπππ΄π΄ +πππ΅π΅lnπππ΅π΅)
High Temperature Thermochemistry Laboratory
Solution Mixing Model
13 - Random Mixing ModelπΊπΊπ π πππ π ππ = πππ΄π΄πΊπΊπ΄π΄ +πππ΅π΅πΊπΊπ΅π΅ +π π ππ πππ΄π΄lnπππ΄π΄ +πππ΅π΅lnπππ΅π΅ + ππ οΏ½ πππ΄π΄π΅π΅ππππ πππ΄π΄πππππ΅π΅ππ
πΊπΊπ π πππ π ππ = πππ΄π΄πΊπΊπ΄π΄ +πππ΅π΅πΊπΊπ΅π΅ β ππβππππππππππ +πππ΄π΄π΅π΅(βπππ΄π΄π΅π΅/2)
βππππππππππ = βπ π πππ΄π΄lnπππ΄π΄ +πππ΅π΅lnπππ΅π΅ β π π πππ΄π΄π΄π΄ ln(πππ΄π΄π΄π΄
πππ΄π΄2 ) + πππ΅π΅π΅π΅ln(πππ΅π΅π΅π΅
πππ΅π΅2 ) + πππ΄π΄π΅π΅ln( πππ΄π΄π΅π΅ 2πππ΄π΄πππ΅π΅) ππππ = ππππππππ
ππππππππ +ππππππππ
οΏ½
πππ΄π΄π΅π΅2 πππ΄π΄π΄π΄πππ΅π΅π΅π΅ = 4 exp(βΞπππ΄π΄π΅π΅βπ π ππ)
βπππ΄π΄π΅π΅ = ππ ππ,ππ = πππ΄π΄π΅π΅Β° β πππ΄π΄π΅π΅Β° ππ + οΏ½
(ππ+ππβ₯1)
(πππ΄π΄π΅π΅ππππ β πππ΄π΄π΅π΅ππππ ππ)πππ΄π΄πππππ΅π΅ππ
- Modified Quasichemical Model(MQM)
- Random mixing model : βπππ π πππ π ππ =Ξπππππππππππ π
- Quasichemical model : βπππ π πππ π ππ β Ξπππππππππππ π , varied with A-B interaction energy
High Temperature Thermochemistry Laboratory
Thermodynamic Modeling
14Thermodynamic modeling is optimization of parameters related to all solutions
I.H. Jung, et al, CALPHAD, 2007, vol. 31 (2), pp. 192-200
High Temperature Thermochemistry Laboratory
Application of Thermodynamic Calculation
15FCC#1
FCC#1
BCC#1 BCC2#1 L12#1
HCP#1
Liquid
Co + Ni + Cr + Al + Y
Temperature [ oC ]
Weight percent [ % ]
600 700 800 900 1000 1100 1200 1300 1400 1500 0
10 20 30 40 50 60 70 80 90 100
1500
Hf2Ni7
Liquid
FCC#1
FCC#1
BCC#1 SIGMA
BCC2#1
BCC2#1 L12#1
L12#1
Ni + Co + Cr + Al + Y + Hf + Si
Temperature [ oC ]
Weight percent [ % ]
600 700 800 900 1000 1100 1200 1300 1400 0
10 20 30 40 50 60 70 80 90 100
FCC#1
FCC#1
BCC#1 SIGMA
BCC2#1
BCC2#1 L12#1
Liquid
Ni + Co + Cr + Al + Y
Temperature [ oC ]
Weight percent [ % ]
600 700 800 900 1000 1100 1200 1300 1400 1500 0
10 20 30 40 50 60 70 80 90 100
FCC#1
BCC#1 BCC2#1
L12#1
IN792 - NiCoCrAlY 1000 oC
Weight percent [ % ]
IN792 NiCoCrAlY
0 10 20 30 40 50 60 70 80 90 100
β’ Phase fractions of MCrAlY bond coats as function of a temperature
FCC#1
BCC2#1
IN792 - CoNiCrAlY 1000 oC
Weight percent [ % ]
IN792 CoNiCrAlY
0 10 20 30 40 50 60 70 80 90 100
β’ Secondary reaction expectation in interface between MCrAlY bond coats and Ni superalloys
Substrate SRZ Bond coat
Ni, Ta, Re, etc.
Al, Cr, Co, Y
High Temperature Thermochemistry Laboratory
Summary
161. Lifetime prediction of thermal barrier coatings were required due to the difficulty of real parts experiment and long time experiment.
2. Thermodynamics and kinetics should be considered to predict lifetime of thermal barrier coatings.
3. Kinetic modeling of multicomponent diffusion could be solved by finite difference method.
4. Thermodynamic modeling can be used to predict stable phase at high temperature and reaction between bond coat and superalloys.