• Tidak ada hasil yang ditemukan

Thermodynamic and Kinetic Modeling to Predict the Lifetime of Thermal Barrier Coating on Superalloys

N/A
N/A
Protected

Academic year: 2024

Membagikan "Thermodynamic and Kinetic Modeling to Predict the Lifetime of Thermal Barrier Coating on Superalloys"

Copied!
17
0
0

Teks penuh

(1)

Thermodynamic and Kinetic Modeling

to Predict the Lifetime of Thermal Barrier Coating on Superalloys

High Temperature Thermochemistry Laboratory

&

Korea Institute of Materials Science

Date: 13th April 2021

Yeon Woo Yoo

(2)

High Temperature Thermochemistry Laboratory

Contents

2

I. Introduction about Thermal Barrier Coatings II. Kinetic Modeling

III. Thermodynamic Modeling

(3)

3

I. Introduction about Thermal Barrier Coatings

(4)

High Temperature Thermochemistry Laboratory

Introduction

4

- Thermal Barrier Coatings

β€’ Top coating

- Yttria stabilized zirconia (8YSZ), GZO(Gd2Zr2O7), LZO(La2Zr2O7) - Thermal insulation from high temperature environment

- Low thermal conductivity and porous microstructure

β€’ Bond coating

- MCrAlX M= Ni and/or Co , X = Y, Ta, Hf, and/or Si, other minor elements

- Intermediate thermal expansion coefficient between top coating and bottom Ni based superalloys

- Directly related to the thermal lifetime of thermal barrier coatings

β€’ Ni based superalloys

- Maintain excellent mechanical strength at high temperature (Ξ³and Ξ³` phase)

(5)

High Temperature Thermochemistry Laboratory

Introduction

5

- Failure of Thermal Barrier Coatings

Thermal strain caused by CTE mismatch πœ€πœ€ = βˆ’ 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 βˆ’ 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇 βˆ’ 𝑇𝑇0 =βˆ’Ξ”π›Όπ›ΌΞ”π‘‡π‘‡ Repeating heating and cooling in TBCs as the gas turbine operation

Thermal stress caused by CTE mismatch between bond coating and top coating

Failure

(6)

High Temperature Thermochemistry Laboratory

Introduction

6

- Thermodynamics and Kinetics in Thermal Barrier Coatings

Concentration

Top coat TGO Bond coat Superalloy

O O

Al Al

Ni, Cr, Co Al Al

Al Al

O Cr, Co

Al Al

Other Elements

Ni Ni

Al

Al Al

Co, Cr

Co, Cr

Distance

Outer Beta Depletion Zone

Inner Beta Depletion Zone

Secondary Reaction Zone

(7)

7

II. Kinetic Modeling

(8)

High Temperature Thermochemistry Laboratory

Diffusion Equation

8

𝐽𝐽𝑖𝑖 = βˆ’π·π·π‘–π‘– 𝑑𝑑𝐢𝐢𝑖𝑖 𝑑𝑑𝑑𝑑

- Fick’s first law

- Fick’s second law

𝑑𝑑𝐢𝐢𝑖𝑖

𝑑𝑑𝑑𝑑 = 𝐷𝐷𝑖𝑖 𝑑𝑑2𝐢𝐢𝑖𝑖 𝑑𝑑𝑑𝑑2

𝐢𝐢𝐻𝐻 𝐢𝐢𝐿𝐿

𝐢𝐢𝐻𝐻

𝐢𝐢𝐿𝐿 𝐢𝐢

For multi-components,

πœ•πœ•πΆπΆπ‘–π‘–

πœ•πœ•π‘‘π‘‘

= 𝐷𝐷𝑖𝑖,π‘–π‘–πœ•πœ•2𝐢𝐢𝑖𝑖

πœ•πœ•π‘‘π‘‘2 + πœ•πœ•π·π·π‘–π‘–,𝑖𝑖

πœ•πœ•πΆπΆπ‘–π‘–

πœ•πœ•πΆπΆπ‘–π‘–

πœ•πœ•π‘‘π‘‘ +πœ•πœ•π·π·π‘–π‘–,𝑖𝑖

πœ•πœ•πΆπΆπ‘—π‘—

πœ•πœ•πΆπΆπ‘—π‘—

πœ•πœ•π‘‘π‘‘ +πœ•πœ•π·π·π‘–π‘–,𝑖𝑖

πœ•πœ•πΆπΆπ‘˜π‘˜

πœ•πœ•πΆπΆπ‘˜π‘˜

πœ•πœ•π‘‘π‘‘

πœ•πœ•πΆπΆπ‘–π‘–

πœ•πœ•π‘‘π‘‘ + 𝐷𝐷𝑖𝑖,𝑗𝑗 πœ•πœ•2𝐢𝐢𝑗𝑗

πœ•πœ•π‘‘π‘‘2 + πœ•πœ•π·π·π‘–π‘–,𝑗𝑗

πœ•πœ•πΆπΆπ‘–π‘–

πœ•πœ•πΆπΆπ‘–π‘–

πœ•πœ•π‘‘π‘‘ +πœ•πœ•π·π·π‘–π‘–,𝑗𝑗

πœ•πœ•πΆπΆπ‘—π‘—

πœ•πœ•πΆπΆπ‘—π‘—

πœ•πœ•π‘‘π‘‘ + πœ•πœ•π·π·π‘–π‘–,𝑗𝑗

πœ•πœ•πΆπΆπ‘˜π‘˜

πœ•πœ•πΆπΆπ‘˜π‘˜

πœ•πœ•π‘‘π‘‘

πœ•πœ•πΆπΆπ‘—π‘—

πœ•πœ•π‘‘π‘‘ +𝐷𝐷𝑖𝑖,π‘˜π‘˜πœ•πœ•2πΆπΆπ‘˜π‘˜

πœ•πœ•π‘‘π‘‘2 + πœ•πœ•π·π·π‘–π‘–,π‘˜π‘˜

πœ•πœ•πΆπΆπ‘–π‘–

πœ•πœ•πΆπΆπ‘–π‘–

πœ•πœ•π‘‘π‘‘ +πœ•πœ•π·π·π‘–π‘–,π‘˜π‘˜

πœ•πœ•πΆπΆπ‘—π‘—

πœ•πœ•πΆπΆπ‘—π‘—

πœ•πœ•π‘‘π‘‘ +πœ•πœ•π·π·π‘–π‘–,π‘˜π‘˜

πœ•πœ•πΆπΆπ‘˜π‘˜

πœ•πœ•πΆπΆπ‘˜π‘˜

πœ•πœ•π‘‘π‘‘

πœ•πœ•πΆπΆπ‘˜π‘˜

πœ•πœ•π‘‘π‘‘

(9)

High Temperature Thermochemistry Laboratory

Finite Difference Method

9 - Finite Difference Method

βˆ†π‘‹π‘‹ 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛+1 𝐹𝐹0 𝐹𝐹1

πœ•πœ•πΉπΉ

πœ•πœ•π‘‹π‘‹ = 𝐹𝐹𝑛𝑛+1 βˆ’ πΉπΉπ‘›π‘›βˆ’1 2βˆ†π‘‹π‘‹

πΉπΉπ‘›π‘›βˆ’1

πœ•πœ•πΉπΉ

πœ•πœ•π‘‹π‘‹ = 𝐹𝐹𝑛𝑛+1βˆ’ 𝐹𝐹𝑛𝑛

βˆ†π‘‹π‘‹

πœ•πœ•πΉπΉ

πœ•πœ•π‘‹π‘‹ = 𝐹𝐹𝑛𝑛 βˆ’ πΉπΉπ‘›π‘›βˆ’1

βˆ†π‘‹π‘‹

: Forward

πœ•πœ•2𝐹𝐹

πœ•πœ•π‘‹π‘‹2 = 𝐹𝐹𝑛𝑛+2 βˆ’2𝐹𝐹𝑛𝑛+1 +𝐹𝐹𝑛𝑛 (βˆ†π‘‹π‘‹)2

πœ•πœ•2𝐹𝐹

πœ•πœ•π‘‹π‘‹2 = 𝐹𝐹𝑛𝑛 βˆ’2πΉπΉπ‘›π‘›βˆ’1+πΉπΉπ‘›π‘›βˆ’2 (βˆ†π‘‹π‘‹)2

πœ•πœ•2𝐹𝐹

πœ•πœ•π‘‹π‘‹2 = 𝐹𝐹𝑛𝑛+1 βˆ’2𝐹𝐹𝑛𝑛 +πΉπΉπ‘›π‘›βˆ’1 (βˆ†π‘‹π‘‹)2

: Backward

: Central

(10)

10

III. Thermodynamic Modeling

(11)

High Temperature Thermochemistry Laboratory

Gibb’s Free Energy & Phase Diagram

11

G = H βˆ’ TS

- Gibb’s free energy

- Gibb’s free energy and phase diagram

- At temperature T, the phase which has lowest G is the most stable

Porter, D.A., and Easterling, K.E., Phase Transformation in Metals and Alloys, 2nd Ed.

CHAMAN & HALL (1992)

(12)

High Temperature Thermochemistry Laboratory

Gibb’s Free Energy of Solution

12

- Gibb’s free energy of solution

𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛 = 𝑋𝑋𝐴𝐴𝐺𝐺𝐴𝐴 +𝑋𝑋𝐡𝐡𝐺𝐺𝐡𝐡 +𝑅𝑅𝑇𝑇 𝑋𝑋𝐴𝐴ln𝑋𝑋𝐴𝐴 +𝑋𝑋𝐡𝐡 ln𝑋𝑋𝐡𝐡

𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛 = 𝑋𝑋𝐴𝐴𝐺𝐺𝐴𝐴 +𝑋𝑋𝐡𝐡𝐺𝐺𝐡𝐡 + Ω𝑋𝑋𝐴𝐴𝑋𝑋𝐡𝐡 +𝑅𝑅𝑇𝑇 𝑋𝑋𝐴𝐴ln𝑋𝑋𝐴𝐴 +𝑋𝑋𝐡𝐡ln𝑋𝑋𝐡𝐡

𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛 = 𝑋𝑋𝐴𝐴𝐺𝐺𝐴𝐴 + 𝑋𝑋𝐡𝐡𝐺𝐺𝐡𝐡 + οΏ½

𝑖𝑖,𝑗𝑗β‰₯1

πœ”πœ”π΄π΄π΅π΅π‘–π‘–π‘—π‘— 𝑋𝑋𝐴𝐴𝑖𝑖𝑋𝑋𝐡𝐡𝑗𝑗 + 𝑅𝑅𝑇𝑇 𝑋𝑋𝐴𝐴ln𝑋𝑋𝐴𝐴 + 𝑋𝑋𝐡𝐡 ln𝑋𝑋𝐡𝐡

: Ideal solution

: Regular solution

: General solution

βˆ†π»π»π‘šπ‘šπ‘–π‘–π‘šπ‘š = 0

βˆ†π»π»π‘šπ‘šπ‘–π‘–π‘šπ‘š =Ω𝑋𝑋𝐴𝐴𝑋𝑋𝐡𝐡

βˆ†π‘†π‘†π‘šπ‘šπ‘–π‘–π‘šπ‘š = 𝑅𝑅(𝑋𝑋𝐴𝐴ln𝑋𝑋𝐴𝐴 +𝑋𝑋𝐡𝐡ln𝑋𝑋𝐡𝐡)

βˆ†π‘†π‘†π‘šπ‘šπ‘–π‘–π‘šπ‘š =𝑅𝑅(𝑋𝑋𝐴𝐴ln𝑋𝑋𝐴𝐴 +𝑋𝑋𝐡𝐡ln𝑋𝑋𝐡𝐡)

(13)

High Temperature Thermochemistry Laboratory

Solution Mixing Model

13 - Random Mixing Model

𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛 = 𝑋𝑋𝐴𝐴𝐺𝐺𝐴𝐴 +𝑋𝑋𝐡𝐡𝐺𝐺𝐡𝐡 +𝑅𝑅𝑇𝑇 𝑋𝑋𝐴𝐴ln𝑋𝑋𝐴𝐴 +𝑋𝑋𝐡𝐡ln𝑋𝑋𝐡𝐡 + 𝑍𝑍 οΏ½ 𝑔𝑔𝐴𝐴𝐡𝐡𝑖𝑖𝑗𝑗 𝑋𝑋𝐴𝐴𝑖𝑖𝑋𝑋𝐡𝐡𝑗𝑗

𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛 = 𝑋𝑋𝐴𝐴𝐺𝐺𝐴𝐴 +𝑋𝑋𝐡𝐡𝐺𝐺𝐡𝐡 βˆ’ π‘‡π‘‡βˆ†π‘†π‘†π‘π‘π‘π‘π‘›π‘›π‘π‘ +𝑛𝑛𝐴𝐴𝐡𝐡(βˆ†π‘”π‘”π΄π΄π΅π΅/2)

βˆ†π‘†π‘†π‘π‘π‘π‘π‘›π‘›π‘π‘ = βˆ’π‘…π‘… 𝑛𝑛𝐴𝐴ln𝑋𝑋𝐴𝐴 +𝑛𝑛𝐡𝐡ln𝑋𝑋𝐡𝐡 βˆ’ 𝑅𝑅 𝑛𝑛𝐴𝐴𝐴𝐴 ln(𝑋𝑋𝐴𝐴𝐴𝐴

π‘Œπ‘Œπ΄π΄2 ) + 𝑛𝑛𝐡𝐡𝐡𝐡ln(𝑋𝑋𝐡𝐡𝐡𝐡

π‘Œπ‘Œπ΅π΅2 ) + 𝑛𝑛𝐴𝐴𝐡𝐡ln( 𝑋𝑋𝐴𝐴𝐡𝐡 2π‘Œπ‘Œπ΄π΄π‘Œπ‘Œπ΅π΅) π‘Œπ‘Œπ‘–π‘– = 𝑍𝑍𝑖𝑖𝑋𝑋𝑖𝑖

𝑍𝑍𝑖𝑖𝑋𝑋𝑖𝑖 +𝑍𝑍𝑗𝑗𝑋𝑋𝑗𝑗

οΏ½

𝑋𝑋𝐴𝐴𝐡𝐡2 𝑋𝑋𝐴𝐴𝐴𝐴𝑋𝑋𝐡𝐡𝐡𝐡 = 4 exp(βˆ’Ξ”π‘”π‘”π΄π΄π΅π΅β„π‘…π‘…π‘‡π‘‡)

βˆ†π‘”π‘”π΄π΄π΅π΅ = 𝑓𝑓 𝑑𝑑,𝑇𝑇 = πœ”πœ”π΄π΄π΅π΅Β° βˆ’ πœ‚πœ‚π΄π΄π΅π΅Β° 𝑇𝑇 + οΏ½

(𝑖𝑖+𝑗𝑗β‰₯1)

(πœ”πœ”π΄π΄π΅π΅π‘–π‘–π‘—π‘— βˆ’ πœ‚πœ‚π΄π΄π΅π΅π‘–π‘–π‘—π‘— 𝑇𝑇)π‘Œπ‘Œπ΄π΄π‘–π‘–π‘Œπ‘Œπ΅π΅π‘—π‘—

- Modified Quasichemical Model(MQM)

- Random mixing model : βˆ†π‘†π‘†π‘ π‘ π‘π‘π‘ π‘ π‘›π‘› =Δ𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑠𝑠

- Quasichemical model : βˆ†π‘†π‘†π‘ π‘ π‘π‘π‘ π‘ π‘›π‘› β‰  Δ𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑠𝑠, varied with A-B interaction energy

(14)

High Temperature Thermochemistry Laboratory

Thermodynamic Modeling

14

Thermodynamic modeling is optimization of parameters related to all solutions

I.H. Jung, et al, CALPHAD, 2007, vol. 31 (2), pp. 192-200

(15)

High Temperature Thermochemistry Laboratory

Application of Thermodynamic Calculation

15

FCC#1

FCC#1

BCC#1 BCC2#1 L12#1

HCP#1

Liquid

Co + Ni + Cr + Al + Y

Temperature [ oC ]

Weight percent [ % ]

600 700 800 900 1000 1100 1200 1300 1400 1500 0

10 20 30 40 50 60 70 80 90 100

1500

Hf2Ni7

Liquid

FCC#1

FCC#1

BCC#1 SIGMA

BCC2#1

BCC2#1 L12#1

L12#1

Ni + Co + Cr + Al + Y + Hf + Si

Temperature [ oC ]

Weight percent [ % ]

600 700 800 900 1000 1100 1200 1300 1400 0

10 20 30 40 50 60 70 80 90 100

FCC#1

FCC#1

BCC#1 SIGMA

BCC2#1

BCC2#1 L12#1

Liquid

Ni + Co + Cr + Al + Y

Temperature [ oC ]

Weight percent [ % ]

600 700 800 900 1000 1100 1200 1300 1400 1500 0

10 20 30 40 50 60 70 80 90 100

FCC#1

BCC#1 BCC2#1

L12#1

IN792 - NiCoCrAlY 1000 oC

Weight percent [ % ]

IN792 NiCoCrAlY

0 10 20 30 40 50 60 70 80 90 100

β€’ Phase fractions of MCrAlY bond coats as function of a temperature

FCC#1

BCC2#1

IN792 - CoNiCrAlY 1000 oC

Weight percent [ % ]

IN792 CoNiCrAlY

0 10 20 30 40 50 60 70 80 90 100

β€’ Secondary reaction expectation in interface between MCrAlY bond coats and Ni superalloys

Substrate SRZ Bond coat

Ni, Ta, Re, etc.

Al, Cr, Co, Y

(16)

High Temperature Thermochemistry Laboratory

Summary

16

1. Lifetime prediction of thermal barrier coatings were required due to the difficulty of real parts experiment and long time experiment.

2. Thermodynamics and kinetics should be considered to predict lifetime of thermal barrier coatings.

3. Kinetic modeling of multicomponent diffusion could be solved by finite difference method.

4. Thermodynamic modeling can be used to predict stable phase at high temperature and reaction between bond coat and superalloys.

(17)

Thank you for

your attention!

Referensi

Dokumen terkait