• Tidak ada hasil yang ditemukan

Tungsten Alloys as a Structural Materials in Extreme Environment

N/A
N/A
Protected

Academic year: 2024

Membagikan "Tungsten Alloys as a Structural Materials in Extreme Environment"

Copied!
42
0
0

Teks penuh

(1)

Tungsten Alloys as a Structural Materials in Extreme Environment

2017. 03. 13

ESPark Research Group Il Hwan Kim

(2)

NANO STRUCTURED MATERIALS LAB. 2

“tokamak”: fusion reactor

(3)

NANO STRUCTURED MATERIALS LAB. 3

Operation of “tokamak”

: Severe radiation & high temperature condition

(4)

Contents

1. Introduction: Requirements and Design Concept of Tungsten alloys 2. Mechanical properties: High Temperature Compressive Tests

3. Thermal properties: Electrostatic Levitation & Thermal Conductivity 4. Irradiation properties: Outline

5. Conclusion

(5)

1. Introduction:

Requirements and Design Concept of Tungsten alloys

(6)

Characteristics of Tungsten Element

W

74

183.84

VIB

Transition Metal

Crystal Structure: BCC

Density: 19.25g/cm3

Melting Point: 3422

Thermal Conductivity: 173W/m-K

One of the most promising candidates for fusion reactor materials!

(7)

Fusion Reactor as a Future Energy Source

• D + T → He + n + E (17.6MeV)

• Safe and clear energy source

• Infinite energy source Fusion Reaction

Tokamak

> 100,000,000℃

(8)

Plasma Facing Components

http://www.iter.org/mach/divertor

http://www.efda.org/fusion/focus-on/limiters-and-divertors Dome

Internal vertical

target Outer

vertical target

Plasma Facing Components(PFC) : divertor, first wall

1) High Melting Point 2) High Plasma & Neutron resistivity 3) High Thermal Conductivity 4) Low DBTT & good high T strength

<Requirements>

(9)

Plasma Facing Components

W “Dome” component for divertor

(http://www.iter.org/newsline/48/645)

CFC-Cu alloy joint test sample

(Appendino, J. Nuc. Mater. 329-333 (2004) 1563)

“High-Z”

Plasma-facing materials (W & W alloys)

-High melting point -Low plasma erosion

-Low tritium confinement effect -High DBTT

“Low-Z”

Plasma-facing materials (Be, CFCs)

-High melting point -High plasma erosion

-High tritium confinement effect (→ Decrease in efficiency)

W alloys are promising for plasma-facing materials

(10)

Limitation of pure W as Divertor Materials

D. T. Blagoeva, et. al., Jour. Nucl. Mater., 2013

0 200 400 600 800 1000 1200

0 200 400 600

Pure W

Yield stress (MPa)

Temperature (°C)

Severe high temperature softening

Poor ductility, High DBTT

Decreasing thermal conductivity at high temperature

W

74

183.84

VIB

MP: 3422

Low Deuterium Retention

Low Ductility

(High DBTT: 800℃)

→ DBTT? (Ductile to Brittle Trans. Temp.)

Characteristics of BCC metal

Dramatically increased fracture toughness

Affected by processing, purity, etc..

(11)

Methods for improving properties of tungsten

W

74

183.84

VIB

1. Ultra fine grained tungsten

2. Tungsten fiber reinforced

tungsten

3. Severe plastic deformed

tungsten

4. Particle dispersed tungsten (ODS, CDS…) Methods for controlling extrinsic properties of tungsten

MP: 3422

Low Deuterium Retention

Low Ductility (High DBTT)

To Improve

Mechanical property

Methods for controlling extrinsic property of tungsten could not change tungsten’s original brittle nature.

Research of controlling tungsten’s intrinsic nature is needed

(12)

High Entropy Alloy Concept for Changing Intrinsic Property

Yun Jun Zhou et al., (2008)

Tungsten, W

O.N. Senkov et al., Intermetallics, 2011

• Maintaining high yielding stability until high temperature

• Although V had lower Tm compared with other elements, yield strength increased.

• Reduced DBTT(~600)compared to W (~1000)

• Nb, Mo is restricted to few ppm in fusion reactor. (high activation elements)

W-TM solid solutions W-TM1-TM2-TM3-TM4 HEA Features of refractory high-entropy alloys

(13)

Low Activation Elements – Remote Handling Concept of Fusion Reactor

1) Dose rate↑

2) Decay heat ↓

<Requirements>

(14)

Induced radioactivity for selected elements

Recycling limit (conservative)

Hands-on limit Nb, Mo, Al, Ni x

Using Low

Activation Elements!

(15)

Elements Selection for W-based solid solution alloys

at.% W

Solid solubility of W-Transition metal binary system

W-Cr: strong brittleness

High price S.S. Formation low

activation elements

Control requires few ppm level

Solid solubility of W-TM binary system

1) Low activation elements

2) High solubility with W Ti, V, Cr, Ta

Elements Melting (℃)

Boiling (℃)

W 3410 5700

Ta 2996 5427

V 1900 3407

Ti 1668 3260

Cr 1875 2680 W

Tungsten tip

High current(Arc)

Water cooled Cu mould

Arc melting process

(16)

Characterization of W-based Multicomponent Alloys

W Ta V Ti Cr

WTaVTiCr 18.14 18.64 23.94 20.8 20.68 WTaVTi 40.16 21.08 20.25 18.51 0

WTaV 59.75 20.07 20.19 0 0

EDS composition analysis (at. %)

WTaVTiCr HEA 100μm 100μm 100μm

SDAS:40μm SDAS:40μm SDAS:40μm

Dendrite structure

BCC solid solution W60Ta20V20 W40Ta20V20Ti20 W20Ta20V20Ti20Cr20

30 40 50 60 70 80 90

WTaVTiCr WTaVTi WTaV WTa W

Intensity (a.u.)

2 theta (degree)

(110) (200) (211) (220)

BCC

(17)

2. Mechanical properties:

High Temperature Compressive Tests

(18)

Hardness Results of W-Ta binary alloy

0 20 40 60 80 100

0 100 200 300 400 500 600 700

Micro-Vickers hardness (HV)

Amount of Ta in W100-xTax alloys (at%)

200g 1kg

소결법으로 제조된 W-Ta합금 (1kg, R. Kieffer, et al)↗

• Higher hardness than sintered sample

• Affected by solid solution hardening

(19)

Results of Room Temperature Compression Tests

0 2 4 6 8 10 12 14 16 18 20 22

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

WTaVTiCr WTaVTi WTaV W60Ta40 Pure W

Engineering stress (MPa)

Engineering strain (%)

σy, ductility ↑

• Unary to Quinary : Yield strength and elongation increased!

Dimension: 2 x 2 x 4 mm3 Strain rate: 10-3 s-1

Room temperature

(20)

Results of Compression Tests at Various Temperatures (up to 800℃)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

2200 RT 200°C 400°C 600°C 800°C

Pure W

Engineering stress (MPa)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

RT 200°C 400°C 600°C 800°C

W

60

Ta

40

Engineering stress (MPa)

0 5 10 15 20 25 30 35

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

RT 200°C 400°C 600°C 800°C

WTaVTiCr

Engineering stress (MPa)

Engineering strain (%)

0 5 10 15 20 25 30 35

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

RT 200°C 400°C 600°C 800°C

Engineering stress (MPa)

Engineering strain (%)

WTaVTi

Rapid high temperature

softening

Maintaining strength until high temperature

Rapid high temperature

softening

Maintaining strength until high temperature

(21)

YS comparison with various high temp. materials (up to 800 ℃ )

0 200 400 600 800 1000 1200 1400 1600

0 200 400 600 800 1000

1200 Pure W W

60Ta40 WTaVTi WTaVTiCr VNbMoTaW NbMoTaW Inconel 718 Haynes 230

Y iel d s tr es s ( M P a)

Temperature (°C)

(22)

Discussion: Yield Strength Anomalous

Yield strength (YS)

Temperature

Yield strength

Temperature Thermal

Softening

Saturated

Particular mechanism.

Athermal strength

Yield Strength Anomalous

For Hardening

1) Athermal strength ↑

2) Inducing yield strength anomalous

(23)

Hardening Mechanism in Alloys

1. Solid Solution Hardening

K. Lu et al. (2009)

Solute atom

Atomic size mismatch parameter, 𝜺a

∴ 𝜺a = (𝟏 𝒂⁄ )(𝒅𝒂 𝒅𝒄)⁄

2. Dynamic Strain Aging (Mechanism of Portevin Le-Chatelier effect)

Low Temp. High Temp.

(24)

Solid Solution Hardening Factor

0 20 40 60 80 100

0 100 200 300 400 500 600

Micro-Vickers hardness (HV)

solute concentration (at.%)

W-Ta W-Nb

Sintered W-Ta alloy (1kg, R. Kieffer, et al)

0 20 40 60 80 100

0 100 200 300 400 500 600

Micro-Vickers hardness (HV)

solute concentration (at.%)

W-Mo Ta-Nb

W-Ta/ W-Nb alloy W-Mo, Ta-Nb alloy

Elements W Ta Mo Nb

Atom size (pm) 139 146 139 146

-6 kJ/mol 0 kJ/mol 0 kJ/mol

W

Mo Nb Ta

W

Ta, Nb

고용 강화

Solid solution x -8 kJ/mol
(25)

Hardening effect by atomic size mismatch

W-Ta, W-Mo, Ta-Nb

a. Atomic size parameter b. Atomic size mismatch, 𝜹𝒊

0 20 40 60 80 100

3.14 3.16 3.18 3.20 3.22 3.24 3.26 3.28 3.30 3.32

Lattice parameter (A)

Composition of Ta (%)

W-Ta

W-Mo W Mo

Ta

Nb Nb-Ta

0 20 40 60 80 100

-0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06

W Ta W

Mo Ta

1/a*δac

Composition (%)

WTa WMo TaNb

Nb

High solid solution strengthening effect

W-Ta

Nb-Ta

W-Mo

Atomic size mismatch 𝜹𝒊 = 𝟏𝒂𝝏𝒂𝝏𝒄 (a: lattice parameter, c: concentration)

Hardening is induced by difference of atom size

Elements W Ta V Ti Cr

Atom size (pm) 139 146 134 147 128

(26)

Factor of Ductility in BCC alloy

3d:

4d:

5d:

4.0 5.0 6.0 Brittle Ductile

Valence electron configuration (VEC)

Relating to ductility

Easily manipulated by compositional change

Ta, Ti, V can be promising elements for decreasing VEC

Shear instability (intrinsically ductile) ↑

Fracture! Deformation

Qi, Liang, et al., PRL, 2014

(27)

Results of Compression test of W-Ta binary alloy

0 20 40 60 80 100

0 200 400 600 800 1000 1200 1400 1600 1800

Yield strength Fracture strength

Yi el d st re ng th (M Pa )

Atomic fraction of Ta (at.%)

ε > 30 %

0 5 10 15 20 25 30 35

Plastic strain

Co m pr essi ve st ra in (% )

Dimension: 2 x 2 x 4 mm3 Strain rate: 10-3 s-1

Room temperature

High elongation

(VEC ↑ ) High strength

(entropy ↑ )

(28)

0 10 20 50 0.0

0.2 0.4 0.6 0.8 1.0

AlNbTiV AlNbTiVZr0.5

AlMo0.5NbTa0.5TiZr CrNbTiVZr

NbTiVZr HfNbTaTiZr WTaVTiCr WTaTiV WTaMoNbV WTaMoNb Pure W

σ

800°C

/ σ

RT

Ductility (%)

σ

800℃

/ σ

RT

>

70%

Superior sustainability than other HTMs

This work

Comparison of YS reduction and ductility with various HTMs

(29)

3. Thermal properties:

Electrostatic Levitation & Thermal Conductivity

(30)

Electrostatic Levitation : measurement of T

m

and ΔT

N

Position sensitive detector (PSD : x) HV (z-axis)

HV (x-axis)

HV (y-axis)

He-Ne laser He-Ne laser

Heating laser

Feedback

Feedback

Temperature : ~ 4000 oC Pressure : ~ 10-7 Torr

Sample

Heating laser

Position sensitive detector (PSD : y) Upper electrode (minus charge)

+ - KRISS ESL equipment

(31)

Electrostatic Levitation : measurement of T

m

and ΔT

N

- Contact with container for high temperature measurement

Problems…

• Contamination

• Container melting

• Oxidation

• Difficult to increase temperature

- Contactless method for high temperature measurement O2

vacuum No

contact!

(32)

Maximum undercooling study for pure elements

• Undercooling is important for study of phase transformation

• Undercooling increases as melting temperature

• Refractory metals have its melting point >2200℃

• Few results published of high temperature alloys

Slope : 0.18

?

0 500 1000 1500 2000 2500 3000 3500 4000 0

200 400 600 800 1000

Undercooling (K)

Melting Temperature(K)

W Re

Ta Mo Nb Ir Ru Hf Rh PtZr Fe

PdTi Co Ni

Cu Mn Au Ag Ge

Al TeSb Pb

Cd Bi

Sn

Se In Ga Hg

(33)

Measurement of maximum undercooling (ΔT

N

)by ESL

W100-xTax (x=0,10,20,30,40,50)

W-Ta alloys exhibit high melting temperature above 3000

Measuring cooling curves

W10Ta90 alloy - Recalescence

(34)

Measurement of maximum undercooling (ΔT

N

)by ESL

140 142 144 146 148

2400 2600 2800 3000 3200 3400 3600

2606 K

Tm=3293 K

T=687 K

Pure Ta

0 2 4 6 8 10 12 14

2100 2400 2700 3000 3300 3600

0%

10%

20%

30%

40%

50%

W at.%

W contents

(at.%) Undercooling (K)

0 687

10 718

20 700

30 741

40 713

50 730

Ta-rich W-Ta binary alloy exhibit deep undercooling (~700K)

Plateau region was shorter than low melting elements (~0.1s)

(35)

Maximum undercooling vs. Melting temperature

0 500 1000 1500 2000 2500 3000 3500 4000 0

200 400 600 800 1000

Os

W Re

Ta Mo

Nb Ir Ru Hf Rh Zr Pt Fe

Pd Ti Co Ni

Cu Mn Au Ag Ge

Al Sb Te Pb

Cd Bi

Sn

Se In Ga

Hg

Melting temperature > 3000K : Ta, Re, Os, W measured by ESL

Slope : 0.18

JAXA(2007)

JAXA(2005) JAXA(2003)

JAXA(2003)

Δ = 55.9 + 1.83 x 10-1T Measuring high temperature properties!

(36)

Thermal Conductivity

CuCrZr RT

W monoblock

Plasma Heat flux

-2 0 2 4 6 8 10 12 14

0 10 20 30 40 50 60 70 80 90 100

Thermal conductivity (W m-1 K-1 )

Smix (J mol-1 K-1)

298 K 323 K 373 K 423 K 473 K 523 K

0 100 200 300 400 500

Lattice friction stress (MPa)

Lattice friction stress

Ni

NiCoFe NiCo

NiCoFeCr

NiCoFeCrMn

• Thermal conductivity is important factor for durability

• Alloying can deteriorate thermal conductivity severely

• High entropy alloy concept will recover these thermal conductivity

(37)

0 500 1000 1500 2000 2500 3000 3500 50

100 150

200 Pure W

W80Ta20 W60Ta40 W40Ta60 W20Ta80 Pure Ta

Pure W (ref.) Pure Ta (ref.) W-90Ta (ref.) W40Ta20V20Ti20

T her m al c onduc tiv ity ( W /m K )

Temperature ( ° C)

TC (κ) = α·C

p

·d

Operating Temperature

Results of Thermal Conductivity

(38)

3. Irradiation properties: Outline

(39)

Ion beam effect on tungsten

Jaemin Song, et al., Fusion Engineering and Design, 2016

fuzz-like nanostructures

Yu. Gasparyan, Nuclear Fusion, 2016

D ion irradiation

He ion irradiation

• Microstructure change by plasma irradiation must be investigated

(40)

Ion beam effect on tungsten alloys

Pure W

W-5wt.%Ta Unexposed

Unexposed

1 shot 7 shot 20 shot

7 shot 20 shot

D2 retention↑

Blistering↑

D2 retention measurement (TDS; Thermal Desorption Spectroscopy)

: Measuring interstitial D2

(41)

Conclusion

• 핵융합로는 미래 에너지원으로 각광을 받고 있고 현재 사용화를 위한 여러 연구가 진행 중에 있다.

• 텅스텐 합금의 핵융합로 플라즈마 대면소재로의 사용 가능성을 알아보 았다.

• 순텅스텐의 기계적 성질 향상을 위한 intrinsic property의 조절로 활용 가능한 원소들을 선정하였으며, 저방사화 원소인 Ta, V, Ti, Cr 원소를 선 정하였다.

• 하이엔트로피 합금 컨셉을 이용하여 아크 멜팅을 통하여 합금화하였으 며, 이에 따른 물성 측정을 실행하였다.

• 고온 물성의 경우 순텅스텐 보다 큰 강화효과를 관찰하였으며, 이는 고 용강화효과에 영향을 받으며, Dynamic strain aging 효과도 있는 것으 로 보고 연구를 진행 중에 있다.

• 고온 열물성 측정을 위한 Electrostatic Levitation 측정을 진행하였으며, 고온 영역에서 과냉각 영역을 측정하는데 성공하였다.

• 고온 열전도도 실험을 통하여 순텅스텐은 고온에서 열전도도가 감소하 는데 반하여, 합금화 정도가 커질 수록 열전도도가 증가함을 이용하여 Operating Temperature에서의 열물성을 조절 가능할 것으로 보인다.

• 이온 조사 실험을 통하여 조사 성질이 크게 변하지 않는 합금제작에 가 능성이 있을 것으로 판단된다.

(42)

Decay heat

Refractory elements have higher decay heat than Low-Z elements Ta has 1000 times higher decay heat than other elements

: active cooling needed

Referensi

Dokumen terkait