• Tidak ada hasil yang ditemukan

XRD (X-ray Powder Diffraction) or PXRD

N/A
N/A
Protected

Academic year: 2024

Membagikan "XRD (X-ray Powder Diffraction) or PXRD"

Copied!
30
0
0

Teks penuh

(1)XRD (X-ray Powder Diffraction) or PXRD 1. Wavelength of 1 Å is required to probe structure. at the atomic level because the atomic radii are in the range of ~ 1 Å 2. X-ray is generated by the bombardment of accelerated electrons on metal target (Cu or Mo); K-shell ionization 3. Cu K = 1.54178 Å and Mo K = 0.71069 Å. (2) 서울대 화학생물공학부 무기화학. 2. (3) X-rays are scattered by their interaction with atomic electrons and interference takes place. between X-rays scattered from different part of an atom - Scattering factor fx  1/2 (1+cos2). - Decrease with increasing 2 - fx  Z  H, Li very weak. (4) Scattering factor fx  1/2 (1+cos2) 서울대 화학생물공학부 무기화학. 4. (5) Crystals 1. Unit cell: the simplest repeating unit of a crystalline Structure, defined by a, b, c and , , .. 2. Lattice planes and Miller indices: parallel and equally spaced 3. Bragg equation: constructive interference. 2d hkl sin   n 2. 2. 2. 1 h k l  2  2  2 2 d hkl a b c. (6) 서울대 화학생물공학부 무기화학. 6. (7) 2d hkl sin   n 2. 2. 2. 1 h k l  2  2  2 2 d hkl a b c. 서울대 화학생물공학부 무기화학. 7. (8) PXRD Powder sample contains an infinite number of 1. randomly oriented crystallites Each set of lattice planes hkl will scatter at the appropriate 2 angle, according to the Bragg eq. Since all possible orientation of crystallite should be present, a cone of scattering will be formed at each value. (9) 서울대 화학생물공학부 무기화학. 9. (10) 서울대 화학생물공학부 무기화학. 10. (11) XRD applications Reference: B. D. Cullity Elements of X-ray Diffraction - Routine identification of materials. JCPDS files. (12) XRD of 11 nm -Fe2O3 Nanocrystallites 2500. (311). Intensity. 2000. 1500. (440) 1000. (220) (511). (400). (111) 500. (422). 0. 10. 20. 30. 40. 2. 50. 60. 70. (13) Comparison of d-spacing values of our sample, standard -Fe2O3 and Fe3O4 Our sample. -Fe2O3. Fe3O4. 2.52. 2.518. 2.532. 2.95. 2.953. 2.967. 2.11. 2.089. 2.099. 1.70. 1.705. 1.715. 1.60. 1.607. 1.616. 1.47. 1.476. 1.485. 1.27. 1.273. 1.281. (14) -Quantitative analysis of mixtures  Need standard. -Determination of lattice parameters ex) intercalation. 서울대 화학생물공학부 무기화학. 14. (15) -Particle size measurement: Debye-Scherrer eq.. 0.9 t B cos . B  FWHM. - Crystalline vs. Amorphous. (16) Electron Microscopy (EM) 1. Electron-matter interactions. -Electrons are generated by thermionic emission from a cathode field and monochromated by acceleration. through a potential E Scattering factor fe ~ 104 fx very strong scattering. (17) Electron beam X-ray (EDX). Secondary Electron SEM. sample. Diffracted electrons (TEM and ED). (18) Electron Microscopy (EM) Transmission Electron Microscopy (TEM). -Obtain images with atomic resolution by permitting an optimum number of diffracted beam. to contribute to the image -Resolving power depends on  and quality of objective lens; extremely thin film crystal are ideal. -Electron diffraction (ED). (19) (20) 서울대 화학생물공학부 무기화학. 20. (21) 1-nm-level size-controlled synthesis of monodisperse nanocrystals without size selection process. 6 nm. 10 nm. 7 nm. 11 nm. 8 nm. 12 nm. 9 nm. 13 nm. Angew. Chem. Int. Ed. (selected as a Frontispiece article) 2005. 서울대 화학생물공학부 무기화학. 21. (22) TEM image of Aligned 11 nm -Fe2O3. Nanocrystals. Photo by G. Markovich and Dr. P. Poddar. 서울대 화학생물공학부 무기화학. 22. (23) 서울대 화학생물공학부 무기화학. 23. (24) TEM of the Proline-derivative on SBA-15. (25) TEM image of Pd hollow spheres. S.-W. Kim, M. Kim, W. Y. Lee, T. Hyeon J. Am. Chem. Soc. 2002, 124, 7642. 서울대 화학생물공학부 무기화학. 25. (26) Electron Diffraction. BCC Iron. -Fe2O3 d x r = instrument constant. (27) EDX or EDS (Energy dispersive X-ray spectroscopy). Elemental analysis in micrometer to nanometer scale STEM (Scanning Transmission Electron Microscopy). 서울대 화학생물공학부 무기화학. 27. (28) Elemental analysis (EDS and ICP-AES) of 9nm Cobalt Ferrite Nanocrystallites. • Co:Fe = 1:2.3 in 5nm×5nm area (averaged for 10 points). • ICP-AES result (Co:Fe = 1:2.2) match with EDS data. • Cobalt deficient cobalt ferrite : CoFe2.2O4 T. Hyeon, et al. J. Phys. Chem. B. 2002, 106, 6831.. (29) Scanning Electron Microscopy (SEM) -Low energy (< 50 eV) secondary electrons emitted. from the surface of the specimen. -The beam can be concentrated to a small probe (~20 A diameter). (30) 500 nm. 500 nm. Hollow Sphere Size. 200nm. 200 nm. 220 nm Sphere Size 340 nm. Shell Thickness 60 nm. Shell Thickness 60 nm. S. B. Yoon, K. Sohn, J. Y. Kim, C.-H. Shin, J.-S. Yu, and T. Hyeon, Adv. Mater. 2002, 14, 19.. (31)

Referensi

Dokumen terkait

Tensile test, flexural test, hardness test and scanning electron microscopy (SEM) are used to analysis performance of stone wool reinforced PP. 1.3 Objectives.

This sample has been tested in corrosion test experiment to collecting and analysing the data gain from Tafel slope analysis, Optical Microscopy (OM) and Scanning

Study of igneous rocks derived from Ogowele Village and Village Toli-Toli Bajugan has been conducted to determine the magnetic minerals contained in the igneous