• Tidak ada hasil yang ditemukan

ИЗВЕСТИЯ N E W S Х А Б А Р Л А Р Ы 1 (457)

N/A
N/A
Protected

Academic year: 2023

Membagikan "ИЗВЕСТИЯ N E W S Х А Б А Р Л А Р Ы 1 (457)"

Copied!
18
0
0

Teks penuh

(1)

ИЗВЕСТИЯ

НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ

КАЗАХСТАН Satbayev University

N E W S

OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN Satbayev University ISSN 2518-170X (Online)

ISSN 2224-5278 (Print)

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫ

Satbayev University

Х А Б А Р Л А Р Ы

SERIES

OF GEOLOGY AND TECHNICAL SCIENCES

1 (457)

JANUARY – FEBRUARY 2023

THE JOURNAL WAS FOUNDED IN 1940 PUBLISHED 6 TIMES A YEAR

ALMATY, NAS RK

(2)

NAS RK is pleased to announce that News of NAS RK. Series of geology and technical sciences scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, authors, publishers, and institutions sets it apart from other research databases.

The inclusion of News of NAS RK. Series of geology and technical sciences in the Emerging Sources Citation Index demonstrates our dedication to providing the most relevant and influential content of geology and engineering sciences to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы «ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы» ғылыми журналының Web of Science-тің жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды.

Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан әрі the Science Citation Index Expanded, the Social Sciences Citation Index және the Arts & Humanities Citation Index-ке қабылдау мәселесін қарастыруда. Webof Science зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті және беделді геология және техникалық ғылымдар бойынша контентке адалдығымызды білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и технических наук» был принят для индексирования в Emerging Sources Citation Index, обновленной версии Web of Science. Содержание в этом индексировании находится в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину контента для исследователей, авторов, издателей и учреждений. Включение Известия НАН РК. Серия геологии и технических наук в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному контенту по геологии и техническим наукам для нашего сообщества.

(3)

«ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы».

ISSN 2518-170X (Online), ISSN 2224-5278 (Print)

Меншіктеуші: «Қазақстан Республикасының Ұлттық ғылым академиясы» РҚБ (Алматы қ.).

Қазақстан Республикасының Ақпарат және қоғамдық даму министрлiгiнің Ақпарат комитетінде 29.07.2020 ж. берілген № KZ39VPY00025420 мерзімдік басылым тіркеуіне қойылу туралы куәлік.

Тақырыптық бағыты: геология, мұнай және газды өңдеудің химиялық технологиялары, мұнай химиясы, металдарды алу және олардың қосындыларының технологиясы.

Мерзімділігі: жылына 6 рет.

Тиражы: 300 дана.

Редакцияның мекен-жайы: 050010, Алматы қ., Шевченко көш., 28, 219 бөл., тел.: 272-13-19 http://www.geolog-technical.kz/index.php/en/

© Қазақстан Республикасының Ұлттық ғылым академиясы, 2023 Типографияның мекен-жайы: «Аруна» ЖК, Алматы қ., Мұратбаев көш., 75.

Бас редактор

ЖҰРЫНОВ Мұрат Жұрынұлы, химия ғылымдарының докторы, профессор, ҚР ҰҒА академигі, Қазақстан Республикасы Ұлттық Ғылым академиясының президенті, АҚ «Д.В.

Сокольский атындағы отын, катализ және электрохимия институтының» бас директоры (Алматы, Қазақстан) H = 4

Ғылыми хатшы

АБСАДЫКОВ Бахыт Нарикбайұлы, техника ғылымдарының докторы, профессор, ҚР ҰҒА жауапты хатшысы, А.Б. Бектұров атындағы химия ғылымдары институты (Алматы, Қазақстан) H = 5

Р е д а к ц и я л ы қ а л қ а:

ӘБСАМЕТОВ Мәліс Құдысұлы (бас редактордың орынбасары), геология-минералогия ғылымдарының докторы, профессор, ҚР ҰҒА академигі, «У.М. Ахмедсафина атындағы гидрогеология және геоэкология институтының» директоры (Алматы, Қазақстан) H = 2

ЖОЛТАЕВ Герой Жолтайұлы (бас редактордың орынбасары), геология-минералогия ғылымдарының докторы, профессор, Қ.И. Сатпаев тындағы геология ғылымдары институтының директоры (Алматы, Қазақстан) Н=2

СНОУ Дэниел, Рһ.D, қауымдастырылған профессор, Небраска университетінің Су ғылымдары зертханасының директоры (Небраска штаты, АҚШ) H = 32

ЗЕЛЬТМАН Реймар, Рһ.D, табиғи тарих мұражайының Жер туралы ғылымдар бөлімінде петрология және пайдалы қазбалар кен орындары саласындағы зерттеулердің жетекшісі (Лондон, Англия) H = 37

ПАНФИЛОВ Михаил Борисович, техника ғылымдарының докторы, Нанси университетінің профессоры (Нанси, Франция) Н=15

ШЕН Пин, Рһ.D, Қытай геологиялық қоғамының тау геологиясы комитеті директорының орын- басары, Американдық экономикалық геологтар қауымдастығының мүшесі (Пекин, Қытай) H = 25 ФИШЕР Аксель, Ph.D, Дрезден техникалық университетінің қауымдастырылған профессоры (Дрезден, Берлин) Н = 6

КОНТОРОВИЧ Алексей Эмильевич, геология-минералогия ғылымдарының докторы, профессор, РҒА академигі, А.А. Трофимука атындағы мұнай-газ геологиясы және геофизика институты (Новосибирск, Ресей) H = 19

АГАБЕКОВ Владимир Енокович, химия ғылымдарының докторы, Беларусь ҰҒА академигі, Жаңа материалдар химиясы институтының құрметті директоры (Минск, Беларусь) H = 13

КАТАЛИН Стефан, Рһ.D, Дрезден техникалық университетінің қауымдастырылған профессоры (Дрезден, Берлин) H = 20

СЕЙТМҰРАТОВА Элеонора Юсуповна, геология-минералогия ғылымдарының докторы, профессор, ҚР ҰҒА корреспондент-мүшесі, Қ.И. Сатпаев атындағы Геология ғылымдары институты зертханасының меңгерушісі (Алматы, Қазақстан) Н=11

САҒЫНТАЕВ Жанай, Ph.D, қауымдастырылған профессор, Назарбаев университеті (Нұр- Сұлтан, Қазақстан) H = 11

ФРАТТИНИ Паоло, Рһ.D, Бикокк Милан университеті қауымдастырылған профессоры (Милан, Италия) H = 28

(4)

«Известия НАН РК. Серия геологии и технических наук».

ISSN 2518-170X (Online), ISSN 2224-5278 (Print)

Собственник: Республиканское общественное объединение «Национальная академия наук Республики Казахстан» (г. Алматы).

Свидетельство о постановке на учет периодического печатного издания в Комитете информации Министерства информации и общественного развития Республики Казахстан № KZ39VPY00025420, выданное 29.07.2020 г.

Тематическая направленность: геология, химические технологии переработки нефти и газа, нефтехимия, технологии извлечения металлов и их соеденений.

Периодичность: 6 раз в год.

Тираж: 300 экземпляров.

Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28, оф. 219, тел.: 272-13-19 http://www.geolog-technical.kz/index.php/en/

© Национальная академия наук Республики Казахстан, 2023 Адрес типографии: ИП «Аруна», г. Алматы, ул. Муратбаева, 75.

Главный редактор

ЖУРИНОВ Мурат Журинович, доктор химических наук, профессор, академик НАН РК, президент Национальной академии наук Республики Казахстан, генеральный директор АО

«Институт топлива, катализа и электрохимии им. Д.В. Сокольского» (Алматы, Казахстан) H = 4 Ученный секретарь

АБСАДЫКОВ Бахыт Нарикбаевич, доктор технических наук, профессор, ответственный секретарь НАН РК, Институт химических наук им. А.Б. Бектурова (Алматы, Казахстан) H = 5

Р е д а к ц и о н н а я к о л л е г и я:

АБСАМЕТОВ Малис Кудысович, (заместитель главного редактора), доктор геологомине ра ло- гических наук, профессор, академик НАН РК, директор Института гидрогеологии и геоэкологии им.

У.М. Ахмедсафина (Алматы, Казахстан) H = 2

ЖОЛТАЕВ Герой Жолтаевич, (заместитель главного редактора), доктор геологоминерало- ги ческих наук, профессор, директор Института геологических наук им. К.И. Сатпаева (Алматы, Казахстан) Н=2

СНОУ Дэниел, Ph.D, ассоциированный профессор, директор Лаборатории водных наук универ- ситета Небраски (штат Небраска, США) H = 32

ЗЕЛЬТМАН Реймар, Ph.D, руководитель исследований в области петрологии и месторождений полезных ископаемых в Отделе наук о Земле Музея естественной истории (Лондон, Англия) H = 37

ПАНФИЛОВ Михаил Борисович, доктор технических наук, профессор Университета Нанси (Нанси, Франция) Н=15

ШЕН Пин, Ph.D, заместитель директора Комитета по горной геологии Китайского геологического общества, член Американской ассоциации экономических геологов (Пекин, Китай) H = 25

ФИШЕР Аксель, ассоциированный профессор, Ph.D, технический университет Дрезден (Дрезден, Берлин) H = 6

КОНТОРОВИЧ Алексей Эмильевич, доктор геолого-минералогических наук, профессор, академик РАН, Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН (Новосибирск, Россия) H = 19

АГАБЕКОВ Владимир Енокович, доктор химических наук, академик НАН Беларуси, почетный директор Института химии новых материалов (Минск, Беларусь) H = 13

КАТАЛИН Стефан, Ph.D, ассоциированный профессор, Технический университет (Дрезден, Берлин) H = 20

СЕЙТМУРАТОВА Элеонора Юсуповна, доктор геолого-минералогических наук, профессор, член-корреспондент НАН РК, заведующая лаборатории Института геологических наук им. К.И.

Сатпаева (Алматы, Казахстан) Н=11

САГИНТАЕВ Жанай, Ph.D, ассоциированный профессор, Назарбаев университет (Нурсултан, Казахстан) H = 11

ФРАТТИНИ Паоло, Ph.D, ассоциированный профессор, Миланский университет Бикокк (Милан, Италия) H = 28

(5)

News of the National Academy of Sciences of the Republic of Kazakhstan. Series of geology and technology sciences.

ISSN 2518-170X (Online), ISSN 2224-5278 (Print)

Owner: RPA «National Academy of Sciences of the Republic of Kazakhstan» (Almaty).

The certificate of registration of a periodical printed publication in the Committee of information of the Ministry of Information and Social Development of the Republic of Kazakhstan No. KZ39VPY00025420, issued 29.07.2020.

Thematic scope: geology, chemical technologies for oil and gas processing, petrochemistry, technologies for extracting metals and their connections.

Periodicity: 6 times a year.

Circulation: 300 copies.

Editorial address: 28, Shevchenko str., of. 219, Almaty, 050010, tel. 272-13-19 http://www.geolog-technical.kz/index.php/en/

© National Academy of Sciences of the Republic of Kazakhstan, 2023 Address of printing house: ST «Aruna», 75, Muratbayev str, Almaty.

Editorial chief

ZHURINOV Murat Zhurinovich, doctor of chemistry, professor, academician of NAS RK, president of the National Academy of Sciences of the Republic of Kazakhstan, general director of JSC “Institute of fuel, catalysis and electrochemistry named after D.V. Sokolsky» (Almaty, Kazakhstan) H = 4

Scientific secretary

ABSADYKOV Bakhyt Narikbaevich, doctor of technical sciences, professor, executive secretary of NAS RK, Bekturov Institute of chemical sciences (Almaty, Kazakhstan) H = 5

E d i t o r i a l b o a r d:

ABSAMETOV Malis Kudysovich, (deputy editor-in-chief), doctor of geological and mineralogical sciences, professor, academician of NAS RK, director of the Akhmedsafin Institute of hydrogeology and hydrophysics (Almaty, Kazakhstan) H=2

ZHOLTAEV Geroy Zholtaevich, (deputy editor-in-chief), doctor of geological and mineralogical sciences, professor, director of the institute of geological sciences named after K.I. Satpayev (Almaty, Kazakhstan) Н=2

SNOW Daniel, Ph.D, associate professor, director of the labotatory of water sciences, Nebraska University (Nebraska, USA) H = 32

ZELTMAN Reymar, Ph.D, head of research department in petrology and mineral deposits in the Earth sciences section of the museum of natural history (London, England) H = 37

PANFILOV Mikhail Borisovich, doctor of technical sciences, professor at the Nancy University (Nancy, France) Н=15

SHEN Ping, Ph.D, deputy director of the Committee for Mining geology of the China geological Society, Fellow of the American association of economic geologists (Beijing, China) H = 25

FISCHER Axel, Ph.D, associate professor, Dresden University of technology (Dresden, Germany) H = 6 KONTOROVICH Aleksey Emilievich, doctor of geological and mineralogical sciences, professor, academician of RAS, Trofimuk Institute of petroleum geology and geophysics SB RAS (Novosibirsk, Russia) H = 19

AGABEKOV Vladimir Enokovich, doctor of chemistry, academician of NAS of Belarus, honorary director of the Institute of chemistry of new materials (Minsk, Belarus) H = 13

KATALIN Stephan, Ph.D, associate professor, Technical university (Dresden, Berlin) H = 20 SEITMURATOVA Eleonora Yusupovna, doctor of geological and mineralogical sciences, professor, corresponding member of NAS RK, head of the laboratory of the Institute of geological sciences named after K.I. Satpayev (Almaty, Kazakhstan) Н=11

SAGINTAYEV Zhanay, Ph.D, associate professor, Nazarbayev University (Nursultan, Kazakhstan) H = 11 FRATTINI Paolo, Ph.D, associate professor, university of Milano-Bicocca (Milan, Italy) H = 28

(6)

NEWS of the National Academy of Sciences of the Republic of Kazakhstan SERIES OF GEOLOGY AND TECHNICAL SCIENCES

ISSN 2224-5278

Volume 1, Number 457 (2023), 260-269 https://doi.org/10.32014/2023.2518-170X.274

UDC 622. 2

K.T. Sherov1*, B.N. Absadykov2, M.R.Sikhimbayev3, B.B. Togizbayeva4, A. Esirkepov1

1S. Seifullin Kazakh Agro Technical University, Astana, Kazakhstan;

2A.B. Bekturov Institute of Chemical Sciences, Almaty, Kazakhstan;

3Karaganda Economic University of Kazpotrebsoyuz, Karaganda, Kazakhstan;

4Eurasian national university named after L.N. Gumilyov, Astana, Kazakhstan.

E-mail: [email protected]

INVESTIGATION OF THE STRESS-STRAIN STATE OF COMPONENTS OF A HYDRAULIC IMPACT DEVICE

Abstract. One of the most important problems facing the exploration, oil, gas and mining industry is increasing productivity and quality of used machinery and technology.

This paper presents the results of the study of the stress-strain state of parts of a hydraulic impact device. The investigated device has a source of low-frequency vibrations in the form of a hydraulic vibrating module, including a base machine, an actuating element, an electro-hydraulic control unit, and an electronic block for monitoring a technological process. The electronic block for monitoring of technological process receives signals from the sensor of flow and concentration of metal, installed at the outlet of the pumping well, converts them with a recorder, a decoder, and a corrector, and transmits them to the electro-hydraulic control unit, where electronic signals are transformed into hydraulic ones and transmitted to the actuator. The purpose of the study is to investigate the stress-strain state of components of a hydraulic impact device and its further use in the exploration industry in good drilling. The ANSYS Explicit Dynamics module was used to study the stress-strain state of hydraulic impact device components, which makes it possible to analyze the physical picture of high-speed processes for objects subjected to strictly non-linear, alternating dynamic loads. The strength verification was carried out using the Mises maximum stress criterion. The criteria are based on the Mises-Hencky theory, also known as the energy theory of deformation. As a result, the strength and stiffness of the hydraulic impactor element are ensured. For the more loaded element, the striker, the safety margin is 1.57, which is within the permissible range (1.5-2.0).

Key words. Stress-strain state, hydraulic impact device, vibration module, finite- element mesh, borehole drilling, safety margin.

(7)

К.Т. Шеров1*, Б.Н. Абсадыков2, М.Р. Сихимбаев3, Б.Б. Тоғызбаева4, А. Есиркепов1

1С. Сейфуллин атындағы Қазақ агротехникалық университеті, Астана, Қазақстан;

2Ә.Б. Бектұров атындағы химия ғылымдары институты, Алматы, Қазақстан;

3Қазтұтынуодағы Қарағанды экономикалық университеті, Қарағанды, Қазақстан;

4Л.Н. Гумилев атындағы Еуразия ұлттық университеті, Астана, Қазақстан.

ГИДРАВЛИКАЛЫҚ СОҚҚЫ ҚҰРЫЛҒЫСЫ БӨЛШЕКТЕРІНІҢ КЕРНЕУЛІ ДЕФОРМАЦИЯЛАНҒАН КҮЙІН ЗЕРТТЕУ

Аннотация. Геологиялық барлау, мұнай-газ және тау-кен өнеркәсібі алдында тұрған маңызды проблемалардың бірі – пайдаланылатын техника мен технологияның өнімділігі мен жұмыс сапасын арттыру. Бұл мақалада гидравликалық соққы құрылғысының бөлшектерінің кернеулі деформацияланған күйін зерттеу нәтижелері келтірілген. Зерттелетін құрылғыда гидравликалық діріл модулі түріндегі төмен жиілікті тербеліс көзі бар, оның ішінде негізгі машина, атқарушы элемент, электронды гидравликалық басқару блогы және электронды технологиялық бақылау блогы бар. Бұл ретте технологиялық үрдістің электрондық мониторинг блогы айдау ұңғымасынан шығуда орнатылған металл шығыны мен концентрациясы датчигінен сигналдар алады, оларды тіркеушінің, дешифратордың және түзеткіштің көмегімен түрлендіреді, электрондық сигналдар гидравликалық сигналдарға түрлендірілетін және атқарушы элементке берілетін электрондық- гидравликалық басқару блогына береді. Зерттеудің мақсаты гидравликалық соққы құрылғысының бөлшектерінің кернеулі деформацияланған күйін зерттеу, сондай-ақ оны ұңғымаларды бұрғылау кезінде геологиялық барлау саласында одан әрі пайдалану болып табылады. Гидравликалық соққы құрылғысының бөлшектерінің кернеулі деформацияланған күйін зерттеу үшін ANSYS Explicit Dynamics модулі пайдаланылды, ол таза сызықты емес, айнымалы динамикалық жүктемелерге ұшыраған объектілер үшін өтпелі үрдістердің физикалық көрінісін талдауға мүмкіндік береді. Беріктікке тексеру Мизес бойынша максималды кернеу критерийімен жүргізілді. Критерийлер қалыптасу энергиясының теориясы деп те аталатын Мизес-Хенки (Mises-Hencky) теориясына негізделген. Нәтижесінде гидравликалық соққы құрылғысы элементтерінің беріктігі мен қаттылығы қамтамасыз етіледі. Неғұрлым жүктелген соққы элементі үшін қауіпсіздік шегі 1,57 болды, бұл рұқсат етілген шектерде (1,5-2,0) орналасқан.

Түйінді сөздер. Кернеулі деформацияланған күй, гидравликалық соққы құрылғысы, діріл модулі, ақырлы тор, ұңғымаларды бұрғылау, қауіпсіздік шегі.

(8)

К.Т. Шеров1*, Б.Н. Абсадыков2, М.Р. Сихимбаев3, Б.Б. Тоғызбаева4, А. Есиркепов1

1Казахский агротехнический университет им. С. Сейфуллина, Астана, Казахстан;

2Институт химических наук имени А.Б. Бектурова, Алматы, Казахстан;

3Карагандинский экономический университет Казпотребсоюза, Казахстан;

4Евразийский национальный университет им. Л.Г. Гумилева, Астана, Казахстан.

ИССЛЕДОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ДЕТАЛЕЙ ГИДРАВЛИЧЕСКОГО УДАРНОГО

УСТРОЙСТВА

Аннотация. Одной из важнейших проблем, стоящих перед геологоразведочной, нефтегазовой и горнодобывающей промышленностью, является повышение производительности и качества работы используемой техники и технологии. В данной статье приводятся результаты исследования напряженно-деформированного состояния (НДС) деталей гидравлического ударного устройства. Исследуемое устройство имеет источник низкочастотных колебаний в виде гидравлического вибрационного модуля, включающий базовую машину, исполнительный элемент, электронно-гидравлический блок управления и электронный блок мониторинга технологического процесса. При этом электронный блок мониторинга технологического процесса получает сигналы от датчика расхода и концентрации металла, установленного на выходе из откачивающей скважины, преобразует их с помощью регистратора, дешифратора и корректора, передаёт их в электронно- гидравлический блок управления, где электронные сигналы преобразуются в гидравлические и передаются в исполнительный элемент. Целью исследования является исследование НДС-деталей гидравлического ударного устройства, а также дальнейшее использование его в геологоразведочной отрасли при бурении скважин. Для исследования НДС-деталей гидравлического ударного устройства использован модуль ANSYS Explicit Dynamics, который дает возможность анализировать физическую картину быстротечных процессов для объектов, подвергаемых сугубо нелинейным, переменным динамическим нагрузкам.

Поверка на прочность производилась критерием максимального напряжения по Мизесу. Критерии основываются на теории Мизез-Хенки (Mises-Hencky), также известной как теория энергии формоизменения. В результате прочность и жесткость элементов гидравлического ударного устройства обеспечена. Для более нагруженного элемента – ударника запас прочности составил 1,57, что находится в допустимых пределах (1,5-2,0).

Ключевые слова: напряженно-деформированное состояние, гидравлическое ударное устройство, вибрационный модуль, конечно-элементная сетка, бурение скважин, запас прочности.

Introduction. Scientific and technological progress in any industry in modern conditions is practically impossible without a broad generalization of accumulated

(9)

experience and in-depth scientific study of technological processes. Only on this basis, it is possible to most effectively and quickly enough solve the issues of increasing productivity, improving the quality of work, and reducing its cost. It is known that money spent on prospecting does not give an immediate return, and often, when exploring ultimately unprofitable fields, these funds are not recouped at all and do not return to the national economy. Consequently, reduction of expenses on exploration services at the expense of more profitable carrying out of research, and reduction of expenses per unit of volume of prospecting works at an increase of quality taking into account their scales has a great national economic value. Because a considerable share of these expenses (up to 30 %) falls on the drilling of geological prospecting wells, one can imagine the importance of the perfection of processes and, first of all, of technics and technology of drilling (Dmitriev, 2008:216, Polufuntikova, et al., 2012:107, Kagarmanov, et al., 2007:324, Muminov, et al., 2022a:5, Muminov, et al., 2021b:5). In this connection the work aimed at the investigation of the stress-strain state of hydraulic percussion device parts is actual.

Research materials and methods. The ANSYS Explicit Dynamics module was used to investigate the stress-strain state during the interaction between a hydraulic impactor and the ground. The study consists of several stages: selection of calculation module; creation of a geometric model of the object under study; specifying properties and material models; creation of finite-element mesh; setting contact conditions; setting boundary conditions; setting up the solver; running the calculation; analysis of calculation results. The ANSYS Explicit Dynamics non-linear dynamics software suite allows the researcher to evaluate the effects of shock and another impulse loading of varying nature on the designed objects, as well as to develop measures to improve their resistance to these types of effects. To model the described physical phenomena in computational analysis, such tasks require the use of specialized tools. It is well known that obtaining the computational data to understand such complex processes is particularly important when in-situ testing is too expensive or impossible. ANSYS Explicit Dynamics makes it possible to analyze the physical picture of high-speed processes for objects subjected to inherently non-linear, variable dynamic loads (Denisov, 2014:77, Sherov, et al., 2021a:8, Kadyrov, et al., 2021:9, Sherov, et al., 2017b:10,). A 3D model of the hydraulic impact device was built in DesignModeler (DM) (figure 1).

1 - hydraulic impact device, 2 - platform, 3 – ground Figure 1 - 3D model of a hydraulic impactor

(10)

264

DM is not much different from a CAD system, but it does have some special features.

DM is used to create a design model as close to the real model as possible. The hydraulic impactor model is built as a set of bodies to create a more correct mesh and simplify partitioning tasks. And also areas are cut out on the surfaces of the striker piston and front cover to set the spring boundary conditions (Ivanov, 2016:56, Rakhimov, et al., 2021:9, Dudak, et al., 2017a:8, Balgabekov, et al., 2014:3). At this stage, the material models involved in the calculation of the hydraulic impact device are selected. The material properties were set according to the selected material model. The material model was selected from the model library, and soil (clay) was added to the library independently by entering the mechanical material properties (E=50MPa, ν=0.4) (Ivanov, 2016:56, Dudak, et al., 2019b:12, Kassenov, et al., 2022:6, Mukanov, et al., 2019b:4).

A finite element mesh has been created for the whole computational model (tetrahedral or hexahedral). It is common knowledge that the better the finite element mesh is constructed, the more accurate and reliable the calculation result will be. For this purpose, the finite-element mesh was milled (figure 2, b) in sections to improve the calculation accuracy, taking into account the geometry features (figure 2, c) (Ivanov, 2016:56).

а) б) в)

a) device, b) striker piston, c) striker sleeve and disc Figure 2 - Finite element grid of the hydraulic striker

Figure 3 - Simulating the stroke of the striker piston

Figure 4 - Setting the spring between the disc and the striker piston

energy theory of deformation. And it coincides with the IV criterion of strength theory. For the principal stresses σ1, σ2, σ3 the Mises stress is expressed as:

𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣= {[(𝜎𝜎1−𝜎𝜎2)2+(𝜎𝜎2−𝜎𝜎23)2+(𝜎𝜎1−𝜎𝜎3)2]}

1 2, where σ1, σ2, σ3 - major stresses.

a) device, b) striker piston, c) striker sleeve and disc Figure 2 - Finite element grid of the hydraulic striker

Often, problem-solving requires the setting of contact conditions between interacting objects. This introduces an additional non-linearity to the problem statement. In this problem, the rear cap to sleeve, the striker to the piston, and the front cap to sleeve have been bonded, which means that the two contacting objects are fully bonded and work as one without separating them. This type of bonded contact is the default contact between the contacting bodies and can be changed during problem definition. Besides the bonded contact, there are contacts with friction, without friction, without separation, and others. The main purpose of contact interaction modeling is to determine the contact surface and the stresses at the point of contact (Ivanov, 2016:56, Zhunusbekova, et al., 2016:4, Ganyukov, et al., 2018:12).

The kinematic relationship between the piston and the sleeve is modeled. Kinematic coupling refers to the constraints on relative movements set for geometric objects.

(11)

265

ISSN 2224-5278 1. 2023 Unlike other coupling methods, this type of coupling is implemented using a special element MRS184, which has a very wide range of options. The Workbench provides special tools, grouped under the term Joints, for ease of simulation using this element.

To create the translational motion of the piston relative to the sleeve, two translational (UY, UZ) and all rotational (ROTX, ROTY, ROTZ) degrees of freedom are linked for all joints of supporting and moving parts. Thus, this type of coupling releases only the axial movement along the X-axis (Figure 3) (Brujaka, et al., 2013:149).

а) б) в)

a) device, b) striker piston, c) striker sleeve and disc Figure 2 - Finite element grid of the hydraulic striker

Figure 3 - Simulating the stroke of the striker piston

Figure 4 - Setting the spring between the disc and the striker piston

energy theory of deformation. And it coincides with the IV criterion of strength theory. For the principal stresses σ1, σ2, σ3 the Mises stress is expressed as:

𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣= {[(𝜎𝜎1−𝜎𝜎2)2+(𝜎𝜎2−𝜎𝜎23)2+(𝜎𝜎1−𝜎𝜎3)2]}

1 2, where σ1, σ2, σ3 - major stresses.

Figure 3 - Simulating the stroke of the striker piston

A Spring Joint is also used, which brings the 2 bodies together, restraining their movement as if they were connected by a spring (Figure 4).

а) б) в)

a) device, b) striker piston, c) striker sleeve and disc Figure 2 - Finite element grid of the hydraulic striker

Figure 3 - Simulating the stroke of the striker piston

Figure 4 - Setting the spring between the disc and the striker piston

energy theory of deformation. And it coincides with the IV criterion of strength theory. For the principal stresses σ1, σ2, σ3 the Mises stress is expressed as:

𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = {[(𝜎𝜎1−𝜎𝜎2)2+(𝜎𝜎2−𝜎𝜎23)2+(𝜎𝜎1−𝜎𝜎3)2]}

1 2, where σ1, σ2, σ3 - major stresses.

Figure 4 - Setting the spring between the disc and the striker piston

We connected the disc to the front cover of the striker with six springs with a stiffness of 1035.2 N/mm. The advantage of this kinematic coupling is reduced machine time for the solution and convenient adjustment of the stiffness value (Brujaka, et al., 2013:149, Baydjanov, et al., 2019:8, George, et al., 1984:333). A 3D model of the spring can also be built in DM, however, it has several disadvantages: changing the stiffness requires

(12)

266

N E W S of the National Academy of Sciences of the Republic of Kazakhstan

rearrangement of the geometry, distortion from the original geometry when partitioning into finite elements, and of course, leads to increased solver time. The boundary conditions include boundary and initial conditions. At this stage, the type of solver is selected: the solver for dynamic or stationary problems is selected, the number of iterations, time steps, total calculation time, geometric linearity or non-linearity (small or finite deformations), the direct or iterative solver is selected, etc. The resulting record of the calculation is also configured (Ivanov, 2016:56).

Results. In the calculation startup phase, the number of cores used is adjusted, calculation restart parameters and other characteristics are set. The strength verification was carried out with the Mises maximum stress criterion. The criterion is based on the Mises-Hencky theory, also known as the energy theory of deformation. And it coincides with the IV criterion of strength theory. For the principal stresses σ1, σ2, σ3 the Mises stress is expressed as:

а) б) в)

a) device, b) striker piston, c) striker sleeve and disc Figure 2 - Finite element grid of the hydraulic striker

Figure 3 - Simulating the stroke of the striker piston

Figure 4 - Setting the spring between the disc and the striker piston

energy theory of deformation. And it coincides with the IV criterion of strength theory. For the principal stresses σ1, σ2, σ3 the Mises stress is expressed as:

𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣= {[(𝜎𝜎1−𝜎𝜎2)2+(𝜎𝜎2−𝜎𝜎23)2+(𝜎𝜎1−𝜎𝜎3)2]}

12

, where σ1, σ2, σ3 - major stresses.

, where σ1, σ2, σ3 - major stresses.

The theory states that a ductile material begins to fail at the point where the Mises stress becomes equal to yield stress. In most cases, the yield stress is used as the ultimate stress. However, the program allows the use of the tensile limit or to specify its ultimate stress.

𝜎𝜎

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

≥ 𝜎𝜎

𝑙𝑙𝑣𝑣𝑙𝑙𝑣𝑣𝑙𝑙

𝑛𝑛 = 𝜎𝜎

𝑙𝑙𝑣𝑣𝑙𝑙𝑣𝑣𝑙𝑙

𝜎𝜎

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

а) b)

c) d)

e) f)

a - striker; b - striker piston; c - sleeve; d - rear striker cover; e - front striker cover; f - disc Figure 6 - Maximum equivalent voltage by Mises of device parts

n = σ

limit

/ σ

vonMises

=355/225.47=1.57, where σ

limit

= σ

т

=355 МPа – yield strength of steel 45.

Universytetu" Volume №2 (152), рр. 30-33. (in Eng.).

The yield strength is a temperature-dependent property. The present yield strength value must take into account the temperature of the component. The safety factor at this point is calculated on a basis. Safety margin

𝜎𝜎

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

≥ 𝜎𝜎

𝑙𝑙𝑣𝑣𝑙𝑙𝑣𝑣𝑙𝑙

𝑛𝑛 = 𝜎𝜎

𝑙𝑙𝑣𝑣𝑙𝑙𝑣𝑣𝑙𝑙

𝜎𝜎

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

а) b)

c) d)

e) f)

a - striker; b - striker piston; c - sleeve; d - rear striker cover; e - front striker cover; f - disc Figure 6 - Maximum equivalent voltage by Mises of device parts

n = σ

limit

/ σ

vonMises

=355/225.47=1.57, where σ

limit

= σ

т

=355 МPа – yield strength of steel 45.

Checking the strength of the components of the hydraulic striker shows that the highest stress occurs on the striker where the piston is in contact with the piston and is 225.47 MPa (see figure 6, a).

(13)

ISSN 2224-5278 1. 2023𝑛𝑛 = 𝜎𝜎𝑙𝑙𝑣𝑣𝑙𝑙𝑣𝑣𝑙𝑙

𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

а) b)

c) d)

e) f)

a - striker; b - striker piston; c - sleeve; d - rear striker cover; e - front striker cover; f - disc Figure 6 - Maximum equivalent voltage by Mises of device parts

n = σlimit / σvonMises=355/225.47=1.57, where σlimit = σт =355 МPа – yield strength of steel 45.

Universytetu" Volume №2 (152), рр. 30-33. (in Eng.).

a - striker; b - striker piston; c - sleeve; d - rear striker cover; e - front striker cover; f - disc Figure 6 - Maximum equivalent voltage by Mises of device parts

The next one in descending order of stress occurs of course at the very bottom of the striker and amounted to 212.68 MPa (see Figure 6, b). At the sleeve element at the rear cover contact with the striker, the stress assumed is 142.41 MPa (see Figure 6c). There is also an activity of stress change together with the rear cap contact (see figure 6, d).

From the impact of the striker through the spring system at the lip of the front cover, the equivalent stress was 122.5 MPa (see Figure 6, e). During the impact of the impactor with the disc surface, there was a concentration of equivalent stress inside the disc, which was 130.26 MPa (see Figure 6, f).

Discussion. The ground deformation is 9.95 mm and varies linearly because the material is specified by linear mechanical characteristics. The safety margin of the striker is:

(14)

n = σlimit / σvonMises=355/225.47=1.57, where σlimit = σт =355 МPа – yield strength of steel 45.

Thus, the strength and stiffness of the hydraulic impactor elements and the ground, in general, are ensured. For the more loaded element - the striker, the safety margin is 1.57, which is within the permissible range (1.5-2.0).

Conclusions. A study of the stress-strain state during the interaction between a hydraulic impactor and the ground has been carried out using the ANSYS Explicit Dynamics module. To create a more correct grid and simplify partitioning problems, the model of a hydraulic impactor is constructed as a set of bodies. In the computational scheme instead of a 3D spring model the Spring Joint was used, which does not require breaking into a finite element, thus reducing the time required to solve the problem. The strength verification was performed by the maximum strength criterion of Mises, which coincides with the IV theory of strength. In general, the strength and stiffness of the hydraulic impact device elements and the ground as a whole are ensured. For the more loaded element - the striker, the safety margin was 1.57, which is within the permissible range (1.5-2.0).

Information about the authors:

Sherov Karibek Tagayevich – Doctor of Engineering Sciences, Professor, S.

Seifullin Kazakh Agro Technical University, Astana, Kazakhstan; E-mail: shkt1965@

mail.ru, ORCID: https://orcid.org/0000-0003-0209-180X;

Absadykov Bakhyt Narikbayevich – Doctor of Technical Sciences, Professor, the Corresponding member of National Academy of Sciences of the Republic of Kazakhstan, A.B. Bekturov Institute of Chemical Sciences, Almaty, Kazakhstan;

E-mail: [email protected], ORCID: https://orcid.org/0000-0001-7829-0958;

Sikhimbayev Muratbay Ryzdikbayevich – Doctor of Economic Sciences, Professor, Karaganda economic university of Kazpotrebsoyuz, Karaganda, Kazakhstan;

E-mail: [email protected], ORCID: https://orcid.org/0000-0002-8763-6145;

Togizbayeva Baglan Bolsynovna – doctor of technical sciences, professor, head of the department, Eurasian national university named after L.N.Gumilyov, Astana, Kazakhstan, E-mail: [email protected]; ORCID: https://orcid.org/0000-0002- 6428-1281;

Esirkepov Azimbek doctoral student, S. Seifullin Kazakh Agro Technical University, Technical faculty, Astana, Kazakhstan; E-mail: azimbek.esirkepov@mail.

ru; ORCID: https://orcid.org/0000-0003-3098-2853.

REFERENCES

Balgabekov T.K., Issin D.K., Kimanov B.M., Akashev A.Z., Issin B.D. Studying and improving blast furnace cast iron quality / Metalurgija, 2014, 53(4), стр. 556–558. (in Eng.).

Brujaka V.A. Engineering Analysis in ANSYS Workbench: Tutorial. / V.A. Brujaka, V.T. Fokin, Ya.V.

Kuraeva. - Samara: Samara State Technical University, 2013. - 149 p. (in Rus.).

Baydjanov D.O., Abdrakhmanova K.A., Kropachev P.A., Rakhimova G.M. (2019) Modified concrete for producing pile foundations. Magazine of Civil Engineering, 86(2), pp. 3-10. https://doi.org/10.18720/

MCE.86.1 (in Eng).

(15)

Dmitriev A.Y. Fundamentals of well drilling technology. - Tomsk: Publ. house of TPU, 2008. - 216с.

(in Rus.).

Denisov M.A. Computer-aided design. ANSYS: [textbook] / Yekaterinburg: Publishing house of Ural State University, 2014. - 77 p. (in Rus.).

Dudak N., Taskarina A., Kasenov A., Itybaeva G., Mussina Z., Abishev K., Mukanov R. (2017) Hole Machining Based on Using an Incisive Built-Up Reamer // International Journal of Precision Engineering and Manufacturing, Volume 18, Issue 10, Pages 1425-1432. https://doi.org/10.1007/s12541-017-0170-9 (in Eng.).

Dudak N., Itybayeva G., Kasenov A., Mussina Zh., Taskarina A., Abishev K. (2019) Multi-ute drill- broach for precision machining of holes / Scientia Iranica, Transactions B: Mechanical Engineering 26, рр.1415-1426. DOI: https://doi.org/10.24200/sci.2018.5623.1379 (in Eng.).

Ganyukov A.A., Kadyrov A.S., Balabekova K.G., Kurmasheva B.K. (2018) Tests and calculations of structural elements of temporary bridges / Roads and Bridges - Drogi i Mosty 17 215 - 226 DOI: 10.7409/

rabdim.018.014 (in Eng.).

George A., Liu J. Numerical solution of large sparse systems of equations. - M.: Mir, 1984. -333 p. (In Rus.).

Ivanov D.V., Dol A.V. Introduction to Ansys Workbench: Textbook for students of natural sciences. - Saratov: Amirite, 2016. - 56 p. (in Rus.).

Kagarmanov I.I., Dmitriev A.Yu. Repair of oil and gas wells: textbook. - Tomsk: STT, 2007. - 324 p.

(in Rus.).

Kadyrov A., Zhunusbekova Zh., Ganyukov A., Kadyrova I., Kukesheva A. (2021) General Characteristics for Loading the Working Elements of Drilling and Milling Machines when Moving in the Clay Solution // Communications - Scientific Letters of the University of Zilina. - Vol. 23, no. 2.-рр.

B97-B105. DOI: https://doi.org/10.26552/com. (in Eng.).

Kassenov A.Zh., Abishev K.K., Absadykov B.N., Yessaulkov V.S., Bolatova A.B. Analysis and justification of the layout of a multipurpose machine for the development of mineral deposits / News of the National Academy of Sciences of the Republic of Kazakhstan. Series of geology and technical sciences.

Volume 1, Number 451 (2022), 63-68. DOI: https://doi.org/10.32014/2022.2518-170X.141 (in Eng.).

Muminov R.O., Kuziev D.A., Zotov V.V., Sazankovaa E.S. Performability of electro-hydro-mechanical rotary head of drill rig in open pit mining: A case-study. Eurasian Mining, 2022, 37(1), pp. 76–80, https://

doi.org/10.17580/em.2022.01.16 (in Eng.).

Muminov R.O., Rayhanova G.E., Kuziev D.A. Experimental research and analysis of a quarry drilling rig. Ugol, 2021, (5), pp. 32–36. DOI: https://doi.org/10.18796/0041-5790-2021-5-32-36 (in Rus.).

Mukanov R.B., Kasenov A.Z., Itybaeva G.T., Musina Zh.K., Abishev K., Bykov P.O. (2019) Face Turning of Holes // Russian Engineering Research, Volume 39, Issue 1, Pages 75-78. DOI: 10.3103/

S1068798X19010064 (in Eng.).

Polufuntikova L.I., Sandakova L.G. Organization of geological prospecting and cost estimates: textbook / Yakutsk. IPK SVFU, 2012. - 107 p. (in Rus.).

Rakhimov M.A., Rakhimova G.M., Suleimbekova Z.A. (2021) Modification of Concrete Railway Sleepers and Assessment of Its Bearing Capacity International Journal of GEOMATE, 20(77), pp. 40-48.

DOI: https://doi.org/10.21660/2020.77.01916 (in Eng).

Sherov K.T., Donenbaev B.S., Sikhimbayev M.R., Absadykov B.N., Karsakova N.Zh. Using ANSYS WB for optimizing parameters of a tool for rotary friction boring / News of the National Academy of Sciences of the Republic of Kazakhstan. Series of geology and technical sciences. 2021, Volume 3, Number 447 (2021), 20-27. https://doi.org/10.32014/2021.2518-170X.57 (in Eng.).

Sherov K.T., Sikhimbayev M.R., Sherov A.K., Donenbayev B.S., Rakishev A.K., Mazdubay A.V., Musayev M.M., Abeuova A.M. Mathematical modeling of thermofrictional milling process using ANSYS WB software / Journal of Theoretical and Applied Mechanics, Sofia, V. 47, No. 2 (2017) pp. 24-33. https://

doi.org/10.1515/jtam-2017-0008 (in Eng.).

Zhunusbekova Zh.Zh., Kadyrov A.S. (2016) Study of digging machine flat element loading in clay solution / Journal "Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu" Volume №2 (152), рр. 30- 33. (in Eng.).

(16)

CONTENTS

A.M. Abdibay, K.K. Anuarbekov, J. Chormanski, Y.T. Kaipbayev, A.E. Aldiyarova

REGULATION OF WATER-SALT REGIME OF IRRIGATED LANDS IN THE LOWER REACHES OF THE SYRDARYA RIVER...6 Zh.K. Akasheva, D.A. Bolysbek, B.K. Assilbekov

STUDY OF CARBONATE ROCK DISSOLUTION USING X-RAY

MICROCOMPUTED TOMOGRAPHY: IMPACT OF ACID FLOW RATE...20 K.M. Akishev, D.S. Zhamangarin, S. Zhardemkyzy, T.T. Murzabekov,

A.Yu. Nurgaliyev, M.Yu. Zhiganbayev

APPLICATION OF THE PRINCIPLE OF SPECIAL STATES IN DEVELOPING SIMULATION MODEL...33 I.N. Aliyev

HYDRODYNAMIC CHARACTERISTICS OF ONE DIMENSIONAL

DISPLACEMENT OF OIL BY LIQUID...45 S. Joldassov, S. Tattibaev,Z. Bimurzayeva, M. Bayzhigitova, G. Loginov

ANALYSIS OF EXISTING METHODS FOR CALCULATING THE ROUGHNESS COEFFICIENT OF CHANNELS ALONG THE PERIMETER

OF THE CHANNEL...56 F. Issatayeva, G. Aubakirova, G. Rudko, A. Mausymbaeva, R. Madysheva

TRANSFORMATION OF INDUSTRIAL ENTERPRISES IN THE COUNTRIES WITH TRANSITIONAL ECONOMIES: THE DIGITAL ASPECT...72 M.K. Karazhanova, L.B. Zhetekova, S.V. Abbasova, K.K. Aghayeva,

G.S. Sabyrbaeva

STUDY OF INTERRELATIONS BETWEEN COMPOSITION AND

PROPERTIES OF HIGH-VISCOUS OIL...92 S.M. Koybakov, M.N. Sennikov, T.A. Tolkinbaev, G.E. Omarova,

Zh.M. Mukhtarov

METHOD OF CALCULATION AND FORECAST OF THE DEGREE

OF SNOW CAPACITY OF CHANNELS...102 M. Kabibullin, K. Orazbayeva, V. Makhatova, B. Utenova, Sh. Kodanova

REFORMING UNIT OPERATION CONTROL IN OIL AND GAS REFINING TECHNOLOGY... 113

(17)

S. Lutsenko, Y. Hryhoriev, A. Kuttybayev, A. Imashev, A. Kuttybayeva DETERMINATION OF MINING SYSTEM PARAMETERS AT

A CONCENTRATION OF MINING OPERATIONS...130 A.S. Madibekov, A.M. Karimov, L.T. Ismukhanova, А.О. Zhadi, A.B. Yegorov COPPER POLLUTION OF THE SNOW COVER IN ALMATY...141 A.T. Mazakova, Sh.A. Jomartova, T.Zh. Mazakov, G.Z. Ziyatbekova,

A.A. Sametova

MATHEMATICAL MODELING AND DEVELOPMENT OF AN AUTOMATED SYSTEM FOR SEARCHING RING STRUCTURES IN GEOLOGY...154 А.D. Mekhtiyev, Y.N. Abdikashev2*, Y.G. Neshina2, P.A. Dunayev1,

Z.D. Manbetova1

MONITORING THE GEOTECHNICAL CONDITION OF UNDERGROUND MININGS USING DIGITAL TECHNOLOGIES...166 Ye.V. Ponomareva, M.V. Ponomareva, F.M. Issatayeva, I.V. Sukhanov

CRITERIA OF PROSPECTING AND EVALUATION WORKS FOR COPPER AND POLYMETALLIC ORES AT THE EAST ATABAY SITE...177 K. Seitkazieva, K. Shilibek, A. Seitkaziev, R. Turekeldieva, N. Karpenko

ECOLOGICAL AND MELIORATIVE SUBSTANTIATION OF

GRAY-EARTH-MEADOW SALINE SOILS OF ZHAMBYL REGION...189 I.K. Umarova, D.B. Makhmarezhabov, A.A. Umirzokov

INVESTIGATION OF THE USE OF ION FLOTATION FOR THE

EXTRACTION OF COPPER FROM SULFURIC ACID SOLUTIONS...202 M.K. Urazgaliyeva, R.Y. Bayamirova, K.T. Bissembayeva*, G.S. Sabyrbayeva, A.A. Bekbauliyeva

METHODS FOR ASSESSING THE CHARACTERISTICS OF OIL RESERVES WITH FUZZY GEOLOGICAL INFORMATION AND DEVELOPMENT

OF OIL FIELDS...211 O.G. Khayitov, L.Sh. Saidova, S.Zh. Galiev, A.A. Umirzokov, M. Mahkamov INTERRELATION OF PERFORMANCE INDICATORS OF TECHNOLOGICAL TRANSPORT WITH MINING CONDITIONS OF A QUARRY...226 D.M. Chnybayeva, Yu.A. Tsyba, N.K. Almuratova

LINEAR MONITORING OF THE MAIN PIPELINE BY MEANS OF WIRELESS DIGITAL TECHNOLOGY...240 K.T. Sherov, B.N. Absadykov, M.R.Sikhimbayev, B.B. Togizbayeva, A. Esirkepov INVESTIGATION OF THE STRESS-STRAIN STATE OF COMPONENTS

OF A HYDRAULIC IMPACT DEVICE...260

(18)

Publication Ethics and Publication Malpractice

in the journals of the National Academy of Sciences of the Republic of Kazakhstan For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the National Academy of Sciences of the Republic of Kazakhstan implies that the described work has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://

www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The National Academy of Sciences of the Republic of Kazakhstan follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the Cross Check originality detection service http://

www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the National Academy of Sciences of the Republic of Kazakhstan.

The Editorial Board of the National Academy of Sciences of the Republic of Kazakhstan will monitor and safeguard publishing ethics.

Правила оформления статьи для публикации в журнале смотреть на сайтах:

www:nauka-nanrk.kz

http://www.geolog-technical.kz/index.php/en/

ISSN 2518-170X (Online), ISSN 2224-5278 (Print)

Заместитель директор отдела издания научных журналов НАН РК Р. Жәлиқызы Редакторы: М.С. Ахметова, Д.С. Аленов

Верстка на компьютере Г.Д.Жадыранова Подписано в печать 18.02.2023.

Формат 70х901/16. Бумага офсетная. Печать – ризограф.

20,0 п.л. Тираж 300. Заказ 1.

Национальная академия наук РК 050010, Алматы, ул. Шевченко, 28, т. 272-13-19

Referensi

Dokumen terkait

Agricultural sciences, Prof.; Moldashev A.B., Doctor of Economy sciences, prof., Honorary Member of the National Academy of Sciences of Kazakhstan; Sagitov A.O., Dr.. sciences,

Agricultural sciences, Prof.; Moldashev A.B., Doctor of Economy sciences, prof., Honorary Member of the National Academy of Sciences of Kazakhstan; Sagitov A.O., Dr.. sciences,