.5./. . 5'"'!" /%- $.2.'$.2. +',$$-
9#%'-'1+-0+!!.$
..".$
' >.=
e-mail: [email protected]
" -"- -! (---!) -
"" .
"# &#-@ - %! ( 8#"$-"( 8#+")%!,"" 8 ,#- $-
% ! -!@ #: !)&D 8##" ,"##, "! 8"! -)( $%
(F1]). "@ #+" )* ""#"" &#-* @)#-'#+&-6&!!" ( -'-6) 8")&% ,# #@ ! -"! #E* 8#-"@ $% '#+& ! " ("" " (#,- #! ,.
1. ? . 6&! 7 D-,"%* "+)! 7 -,)"- 8#"! #! - Em+1 "%, (x1 ::: xm t), "#%* ,"&! jxj = t jxj = 1;t 8)"!,"! 7< t = 0 jxj-) -, "# x = (x1 ::: xm) 0 < = const 1: L!
C ( 8"-#("! @, "+#$&<?( #:& @D "+)! D, "+"$% %#$ S S1 S
!"" - ! -".
"+)! D #!!" # &#- - ' - 6
/xu;utt; t ut= 0 (1)
/x - "8# "# 8)! 8" 8# x1 ::: xm m 2, - @! - )7" %!)".
L#$ u(x t) "+"$% #E &#-* (1) 8# " . ,%! - $%
'#+& ! " ("" " (#, #! , )* &#-* (1) #!!" # !)&<?&< $%&.
4 1. @ - "+)! D#E &#-* (1) $ ,)!!C(DnS)\C2(D),
&"-) -"#*<? ,#- &!)"-*
ujS = 0 ujS = 0 8# < 1[ (2) u
lntjS = 0 ujS = 0 8# = 1[ (3) (t;1u)jS = 0 ujS = 0 8# > 1: (4) )7@E &"+" 8#@ " ,# "-( ,""# x1 ::: xm t , !9#-
%!, r 1 ::: m;1 t r 0 01 < 2 0i i = 2 3 ::: m;1.
6&! 7 fYknm()g- !! )@" $-!( !9#%!,( 9&,:@ 8"#*,n, 1k kn, (m;2)!n!kn = (n+m;3)!(2n+m;2), = (1 ::: m;1),Wl2(S), l = 0 1 :::
{ 8#"! #! - "+")-, Se =f(r )2S, 0 < r < 1+1 o, H - 8#",:* "+)! D
8)"!,"! 7 (r t).
! " (F2])
+ . 6&! 7 f(r ) 2Wl2(S): !) l m;1, " #*
f(r ) =X1
n=0 kn
X
k=1fkn(r)Yknm()
,D #*, 8")&% $ " 99#:#"- 8"#*,pl;m+1, !("* !*
+!")< " #-"#".
8#-)- !)&<?@ ,# #@ ! -"! #E*.
. E $% 1 u(x t)0, < 1.
6# = 0 C "# 8")&% - F3].
2. 8 1 ; . !9#%!,( ,""# ( &#-- (1) -
urr+ m;1
r ur; 1
r2u;utt; t ut= 0 (5) ;mj=1P;1gjsinm1;j;1j @
@j
sinm;j;1j @@j
g1 = 1 gj = (sin1:::sinj;1)2 j > 1:
, ,, !,"" #E u2C2(D), " " "D" !, 7 - - #*
u(r t) =X1
n=0 kn
X
k=1ukn(r t)Yknm() (6)
_ukn(r t)-9&,:, ," "# +&& "8#) D.
6"! -- (6) - (5) !8")7$&* "# "")7"! 7 !9#%!,( 9&,:@ Yknm() (F2]), 8")&%
Lukn uknrr+ m;1
r uknr;ukntt; t uknt; n
r2ukn = 0
n = n(n + m; 2) k = 1 kn n = 0 1 ::: ," "#", ! 8""?7< $ 8#(
ukn(r t) = r1;2mukn(r t) !-" !* , &#-<
Lukn uknrr;ukntt; t uknt+ F(m;1)(3;m);4n]
4r2 ukn = 0: (7) '), $ ,#-( &!)"-@ (2)-(4) )* 9&,:@ ukn(r t), !"" - ! -", +&
7 ukn(r 0) = 0 ukn(r r) = 0 k = 1 kn n = 0 1 ::: < 1[ (8) ukt
lntjt=0 = 0 ukn(r r) = 0 k = 1 kn n = 0 1 ::: = 1[ (9) (t;1ukn)jt=0 = 0 ukn(r r) = 0 k = 1 kn n = 0 1 ::: > 1: (10) , "+#$", $% 1 !- , -&#"@ $% '#+& ! " ("" " (#,- #! , - "+)! H )* &#-* (7).
E C "@ $% +& $&% 7 - 8.4.
#*& ! &#- (7) #!!" # &#-
L0uk0n uk0nrr;uk0ntt; F(m;1)(3;m);4n]
4r2 uk0n = 0 (70)
," "#", ! 8""?7< $ 8#( = 2 = 2 , !-" !* , &#-<
Muk0n uk0n+ F(m;1)(3;m);4n]
4( + )2 uk0n= 0: (11)
E $% "E )* (11) ! uk0n( ) kn()
@uk0n
@ ; @uk0n
@
!
= =kn() "2 1 2 - (F4])
uk0n( ) = 12kn()R( [ ) +12kn()R( [ )+
+p12 R
kn(1)R(1 1[ );kn(1)@N@ R(1 1[ )j1=1d1 (12) kn() = (2)m;12 kn(2), kn() =p2(2)m;12 kn(2),
R(1 1[ ) = P
h(1;1)(;)+2(11+) (1+1)(+)
i=P(z) { 9&,:* )* &#-*
Muk0n= 0 (F5]), P(z) { 9&,:* D#, = n + (m;3)
2 @
@N
1=1 =
@1
@N? @
@1 + @@N1? @
@1
1=1
N?-"#)7 , 8#*"@ = - "%, (1 1), 8#-)* - ! "#"& 8")&8)"!,"!
.
3. C $ -
; (7) (70). %) 8#- ," "# !-"@! - "8# "# L, ," "#
"+(" )* )7@E( !!)"-@.
!) u - #E &#-* Lu = 0, " 9&,:*
u2; =t;1u (13)
*-)* !* #E &#-* L2;u = 0.
!) u - #E &#-* Lu = 0, " 9&,:*
1t @u
@t = u+2 (14)
+& #E &#-* L2+u = 0.
8# "# L "+) !-"@! -"
Lu =t1;L2;(t;1u): (15) ,$ !-"@! - &! -)-< !* )"%" "&, ,, " +) ",$
)* &#-* (1) (F6]).
$ #-! - (13)
u2;;2p =t+2p;1u+2p
, ," "#"& 8#- p #$ 9"#&)& (14), $ (13), 8")&%
u2; =
1 t @
@t
p;
t+2p;1u+2p: (16)
"" "E (16) *-)* !* 9& )7"@ 9"#&)"@ (F6]) )* #E* $%
"E.
6&! 7 p0,q 0 - 7E :) %!), &"-) -"#*<? #-! - + 2pm;1 2; + 2qm;1:
D 1. !) u2k0n(r t) - #E $% "E )* &#-* (70), &"- -) -"#*<? &!)"-<
u2k0n(r 0) = 0 @@tu2k0n(r 0) = kn(r) (17) " 9&,:*
u2kn(r t) = ;t;Z1
0 u2k0n(r t)(1;2)2;1d ;;;2
D0t22u2k0n(r t) (18) 8# < 0 +& #E &#-* (7), &"-) -"#*<? &!)"-<
u2kn(r 0) = 0 limt
!0t @
@tu2kn=kn(r): (19)
!) D 0< < 1, " 9&,:*
u2kn(r t) = 2;k+2q;1 t @
@t
qt1;k+2q 1R
0 u1k0n(r t)(1;2)q;2d
2;+2q2q;1;;q; 2 + 1D0t2;21
u10kn(rt) t
(20)
*-)* !* #E &#-* (7) ! %)7 (19), p;2
= 2;
+ 1 2
, ;(z) { -9&,:*, D0t { "8# "# - &-))* (F6]), u1k0n(r t) { #E &#-* (70) ! %)7 &!)"-*
u1k0n(r 0) = kn(r)
(1; )(3; ):::(2q + 1; ) @
@tu1k0n(r 0) = 0: (170)
D 2. !) u1k0n(r t) - #E $% "E )* &#-* (70), &"- -) -"#*<? &!)"-<
u1k0n(r 0) = kn(r) @@tu1k0n(r 0) = 0 (21)
" 9&,:*
u1k0n(r t) = R1
0 u1k0n(r t)(1;2)2;1d 2;1;;2t1;D;0t22
u10kn(rt) t
(22) 8# > 0 ! 7 #E &#-* (7), &"-) -"#*<? &!)"-< (21).
D 3. !) u1k0n(r t) - #E $% "E )* &#-* (70), &"- -) -"#*<? &!)"-< (21), " 9&,:*
u1k1n(r t) =R1
0 u1k0n(r t)(1;2);12lnFt(1;2)]@ (23)
*-)* !* #E &#-* L1u = 0 ! %)7
u1k1n
lntjt=0 =kn(r): (24)
8#-)-"! 7 8#-( & -#D@ &! -)- !* )"% "+#-
$", ,, " ",$ )* &#-* (1) -")"-"" &#-* (F7-9]).
6#- ," "# !)! -* $ & -#D@ 2, 3.
%) #!!" # !)&%@ < 0 6= ;(2r + 1) r = 0 1 :::. !) u1k0n(r t) -
#E $% "E )* &#-* (70) ! u1k0n(r 0) = kn(r)
(1; ):::( + 2p;1) @
@tu1k0n(r 0) = 0 (25) " $ & -#D* 2 !)& , % " 9&,:*
u1k+2pn(r t) = +2p 1
Z
0 u1k0n(r t)(1;2)2+p;1d
*-)* !* #E &#-* L+2pu = 0, &"-) -"#*<? %)7"& &!)"-<
(25).
" $ !"" "E@ (16) (13) - , , % " 9&,:*
u1kn(r t) = t1;;1t@t@pt+2p;1u1k+2pn
k+2p2p;1;;2 +pt1;D;0t22
u10kn(rt) t
(26)
! 7 #E &#-* (7) &"-) -"#* &!)"-< (21).
6&! 7 = ;(2r + 1). !) u1k0n(r t) - #E $% "E )* (70) ! (21), " $ (13), (16) $ & -#D* 3 #&" 8")&% 7, % " 9&,:*
u1k;(2r+1)n(r t) = t2(r+1);1t@t@r+1
R1
0 u1k0n(r t)(1;2);12ln(t(1;2))d
(27)
*-)* !* #E $% "E )* L;(2r+1)u = 0, &"-) -"#*<? &!)"-< (21).
!8")7$&* F10, ) 1. 14. 2], !"" "E (27) "D" $8! 7 - - u1k;(2r+1)n(r t) = a2t2(r+1)D0t12+r2
u10kn(rt) t
a = 12;0(1); ;0p(12)
;lnt: (28)
4. 1. 6&! 7 < 1. !!" # $%& 1 8# < 1. C " !)&% 8#(" , $% '#+& ! " ("" " (#, #! , )*
&#-* (7) !
u2kn(r 0) = 0 u2kn(r r) = 0 k = 1 kn n = 0 1 :::: (29)
!8")7$&* 9"#&) (18), (20), ,#-&< $%& (7) , (29) !-" , $% )*
&#-* (70) !
u2k0n(r 0) = 0 u2k0n(r r) = 0 8# 0 , $% )* (70) ! &!)"-
@tu@ 2k0n(r 0) = 0 u2k0n(r r) = 0 (30) 8# 0< < 1. $%, ,, 8",$" - F3], < &)- #E*.
)"- )7", ! &% " & -#D* 1 8")&% #-)7" #E $%
(7), (8) - ,)!! C(H)\C2(H):
!!" # !)&%@ = 1. C " !)&% ,D 8#(" , $% '#+& !
" ("" " (#, #! , )* (7) ! uk1n
lntjt=0= 0 uk1n(r r) = 0 (31) ," "#", - !)& & -#D* 3, !-" !* , ,#-"@ $% )* (70) ! &!)"- (30).
, "+#$", $% (7), (9) ,D &)-" #E.
!8")7$&* 9"#&) (15), (13), $%& (7), (10) !-" , !!)"-"& !)&%<
< 1.
)"- )7", #E $% 1 8# < 1 u(x t)0:
"# - "& ! "#"& ",$.
6&! 7 8#7 #E $% 1 u(x t)0. 6",D, % " < 1.
6#8")"D 8#" -", .. = 1. C " !)&%, - F11,12] ",$", % " $%
1 +!%!)" "D! -" #-)7( #E@. 6#(" , 8#" -"#%<.
'+'
F1] = '.). ," "# ,)!! &#-@ - %! ( 8#"$-"(. { .: &,, 1981. { 448!.
F2] 9 >.A. ""# !&)*# #) #)7 &#-*. { .: $ $, 1962. { 254!.
F3] ' >.'. // $-! * , !#. 9$.- . &,, 2007, { N5. { C. 3-6 F4] = '.). #-* !E"" 8. { : $ - -" , 1959. { 164!.
F5] Copson E.T. New boundary value problems for the wave equation and equations of mixed type. // J. Rath.Mech. and Anal., 1958, 1, { p.324-348.
F6] Weinstein A. The Fifth Simposium in applied Math. MCGraw - Hill. New York, 1954.
{ p. 137-147.
F7] : >.'. - - "#< &#-@, -#"D<?(!* #:. { "- -"!+#!,: H, 1973. { 144!.
F8] ' >.'. // '99#:)7 &#-*, 1976. { .12. { N6. { C.3-14.
F9] : >.'. - - "#< &#-@ 8#+")%!,"" 8 ! *<?!*
8#-) -#. { "-"!+#!,: , 1982. { 167!.
F10] 8 '.9. ) #"+"" !%!)* ( 8#, )7%,:
, 2000. { 298!.
F11] ' >.'.# #@ ! -"! #E* $% '#+&-6#" # )* "-
"#"" &#-* @)#-'#+&-6&!!". // %!,@ D&#), )- : , 2003. { .3. { N3(9). { C.12-19.
F12] ' >.'.#"D<?!* ""# 8#+")%!, &#-*. { #):
, 2007. { 139!.