• Tidak ada hasil yang ditemukan

On a boundary problem for the fourth order equation with the third derivative with respect to time

N/A
N/A
Protected

Academic year: 2024

Membagikan "On a boundary problem for the fourth order equation with the third derivative with respect to time"

Copied!
11
0
0

Teks penuh

(1)

D OI 10.31489/2023M 4/30-40 U DC 517.954

Y u.P . A p a k o v 1,2, D .M . M e liq u z ie v a 2’*

1 V.I. R om anovskii In stitu te o f M athem atics o f the A cadem y o f Sciences o f the Uzbekistan, Tashkent, Uzbekistan;

2 N am angan E ngineering-C onstruction Institu te, N am angan, Uzbekistan (E-mail: yusupjonapakov@ gmail.com, meliquziyevadilshoda@ gmail.com)

On a bound ary problem for th e fourth order eq u ation w ith th e third derivative w ith resp ect to tim e

In th is p aper, we consider a b o undary value problem in a rectan g u lar dom ain for a fourth-order hom ogeneous p a rtia l differential equation containing th e th ird derivative w ith respect to tim e. T he uniqueness of th e solution of th e sta te d problem is proved by th e m ethod of energy integrals. Using th e m eth o d of separation of variables, th e solution of th e considered problem is sought as a m ultiplication of two functions X (x) and Y (y). To determ ine X (x),we o b ta in a fourth-order ordinary differential equation w ith four b o undary conditions a t th e segm ent b o u n d ary [0,p], and for a Y (y) - third -o rd er ordinary differential equation w ith th ree b o undary conditions a t th e b o u n d ary of th e segm ent [0,q]. Im posing conditions on th e given functions, we prove th e existence theorem for a regular solution of th e problem . T he solution of th e problem is constructed in th e form of an infinite series, and th e possibility of term -by-term differentiation of th e series w ith respect to all variables is su b stan tia te d . W hen su b stan tia tin g th e uniform convergence, it is shown th a t th e “sm all denom inator” is different from zero.

Keywords: In itia l b o undary problem , Fourier m ethod, uniqueness, existence, eigenvalue, eigenfunction, functional series, absolute and uniform convergence.

Introduction

Problem s ab o u t th e vibrations of rods, beam s and plates, which are of great im portance in stru c tu ra l m echanics, lead to differential equations w ith a higher order th a n th e string equation.

T h e stu d y of m any problem s of gas dynam ics, th e th eo ry of elasticity, th e th eo ry of plates and shells comes to th e consideration of differential equations w ith higher order p a rtia l derivatives. From th e point of view of physical applications, th e fourth order differential equations are also of great interest (see [1-6 ]).

In th e field of m odern science and technology, initial-b o und ary value problem s for fourth-order equations are of great im portance. For exam ple, aircraft wings, bridge slabs, floor system s, and window panes are m odeled as plates w ith various types of end supports, which are successfully described in term s of fourth-order equations [7- 9 ] .

T h e m onograph by T .D . D zhuraev, A. Sopuev [10] is devoted to th e classification of differential equations w ith p a rtial derivatives of th e fourth order, th e form ulation and solution of b o un dary value problem s for such equations.

In th e pap er [11], a problem w ith b o u nd ary conditions for a non-hom ogeneous fourth-order equation w ith m ultiple characteristics and one lower term was considered.

In [12], a b o un d ary value problem for a fourth-order equ ation of th e form Uxxxx u tt = f { x , t)

was investigated.

‘ C orresponding author.

E-mail: meliquziyevadilshoda@ gmail.com

Buketov

University

(2)

In [13], a problem was solved w ith initial and bo u n d ary conditions for th e beam oscillation equation of th e form

a Uxxxx + u tt = 0,

in which a beam of length l is clam ped w ith ends in a massive vise.

In [14], a b o u n d ary value problem for a degenerate higher order equation w ith lower term s was studied.

In [15-1 9 ], th e b o u nd ary value problem s for a th ird -o rd er equation w ith m ultiple characteristics containing second derivatives w ith respect to tim e were discussed.

T h e bo u n d ary value problem s for fourth-order equations w ith th e th ird derivative in tim e have been little studied [2 0,21].

1 Form ulation o f the problem

In th e dom ain D = {(x, y) : 0 < x < p, 0 < y < q} we consider th e equation d 4u d 3u

L[u] = dX4 - W = °- (1)

w here p, q e R.

Problem A. F ind a solution to equation (1) in th e dom ain D from th e class u (x ,y ) e C t’3 (D ) П 3 2 (—\

C x,y (D j such th a t satisfies th e following bo u n d ary conditions:

u (0, y ) = u (p, y) = Uxx (0, y) = Uxx ( p , y ) = 0, 0 < y < q, (2) Uy (x, 0) = фг ( x ), Uyy (x, 0) = ^2 ( x ) , Uyy (x, q) = фз ( x ), 0 < x < p, (3) w here фг (x), i = 1,3 are th e given sufficiently sm ooth functions, and

фг (0) = фг (p) = ф'1 (0) = ф'1 (p) = 0, фг (0) = фг (p) = 0, i = 2, 3. (4) 2 The uniqueness o f the solution to the problem A Theorem 1. If th e problem A has a solution, th e n it is unique.

Proof. Let th e problem A have two solutions U1 (x ,y ) and U2 (x ,y ). T h en th e function u (x ,y ) = U1 (x ,y ) — u2 (x ,y ) satisfies eq uation (1) and th e uniform b o un d ary conditions. Let us prove th a t u (x, y) = 0 in D .

In th e dom ain D th e following id en tity is valid:

т- r i d . \ d / 1 2 \ 2 „

u L [u] = d x (u u xxx — u xu xx) — d y ( UUyy — 2UyJ + Uxx = 0 . Integ ratin g th e identity over th e dom ain D , we have

q

I [u (p , y ) u xxx (p ,y ) — u (0, y) u xxx (0, y )]dy 0 q

^ [ux (p, y) Uxx (p, y) — Ux (0, y) Uxx (0, y )ld y — 0

p

— / [u (x, q) u yy (x, q) — u (x, 0) u yy (x, 0)]d x +

01 p p q

+ - / [u2 (x, q) — uy (x, 0) dx + / / uxxdxdy = 0.

2 0 0 0

Buketov

University

(3)

Taking th e hom ogeneous b o u n dary conditions into consideration we ob tain

p p q

1 J u y q) dx + J j u 2xxd x d y = 0.

0 0 0

From th e second term we ob tain

Uxx = 0 ^ u (x ,y ) = x ■f i (y) + /2 ( y ) , (x, y) e D . A ssum ing x = 0 we get

u (0, y ) = f 2 (y) = 0 ^ f 2 (y ) = 0, and supposing x = p we a tta in

u (p ,y ) = p ■ f i (y) = 0 ^ f i (y) = 0. Hence, u (x, y) = 0, (x, y) e D .

T heorem 1 is proved.

3 Existence o f a solution to the problem A

In order to prove th e existence of th e solution of th e problem A, we will first consider th e following auxiliary problem : find a nontrivial solution of equation (1) such th a t satisfies conditions (2) and can be represented as

u ( x , y ) = X (x) Y ( y ) . (5)

S u b stitu tin g (5) into equation (1) and separating th e variables, we find th e following ordinary differential equations w ith respect to th e functions X (x) and Y (y):

X (4) (x) - A4X (x) = 0, (6)

Y ( y ) - A4Y (y) = 0, (7)

w here A4 is th e split param eter.

C onsidering th e b o un d ary conditions (2), we generate th e following problem for equatio n (6):

X (4) - A4X = 0, (8)

X (0) = X (p) = X " (0) = X " (p) = 0. ( ) A nontrivial solution to problem (8) exists if and only if

АП = ( ПП) 4, n = 1,2, 3 ,.. . .

These num bers are th e eigenvalues of problem (8), and th eir corresponding eigenfunctions have th e following form:

^ , . [2 n n . .

X n (x) = W - s m — x. (9)

p p

A general solution (7) has th e form

Yn (y) = C ie kny + e 1 кпУ | C 2 cos | ^ k n y ) + C3 sin | ^23k n y \ J , (10)

Buketov

University

(4)

__ / \ 4/3 ___

w here kn =

3

^n = \ pr) , n e N and Ci, i = 1,3 are unknow n co n stan ts for now.

According to (9) and (10), it follows from equation (5) th a t th e functions

Un (x, y) = y p ( c i e fcny + e- 2 kny ( c / V 3 , \ ^ . / V 3 , \ \ \ . n n cos I — kny I + C3 sin I — kny I I I sin — x are th e p a rticu la r solutions of equatio n (1), which satisfy hom ogeneous conditions (2).

Due to th e linearity and hom ogeneity of (1), th e sum of th e p a rticu la r solutions can also be th e solution of equation (1). Taking th is into account we will seek th e solution of problem A in th e form

V 3 , V 3 ,

U (x ,y ) = \ j 2 ^ ( C ie kny + e 1 kny ( C2cos ( ^ ^ y ) + C3sin ( kny П ) sin — x. (11

n= 1 2 2 P

A ssum ing tem porarily th a t th e series in (11) and its derivatives converge uniform ly and requiring th e function defined by th e series (11) to satisfy th e bo u n d ary conditions (3) we o b tain

, . , , . [2 ^ n n

Uy (x, 0) = V1 (x) = \ ~ L V1n sin — x,

V V P n= 1 P

, . , , . [2 ^ n n

Uyy (x, 0) = V2 (x) = \ ~ ъ V2n sin — x,

VV V P n=1 P

Uyy (x, q) = V3 (x) = * - E V3n sin ™ x ,

V P n=1 P

where

1 V3

kn C 1 — — kn C 2 +--- ^ kn C 3 = 'фln, kn C 1 — - kn C 2 - - kn C 3 = V2n

1 / г X -

knekn qC1 + kne 2 q cos ( - - 3 kn q — —П j C2 + kne 2 ? sin

(12) V23knq — ^ J C3 = V3n.

We can see from (12) th a t th e num bers Vin are th e Fourier coefficients of th e function V (x) when th ey are expanded into th e Fourier series in term s of sines on th e interval (0,p) , i.e.

Г- P

^— (’ n n ___

Vin = \ ~ Vi (£) s i n — £d{, i = 1,3.

P P

0

Let us calculate th e d e term in an t of th e system (12), i.e.

A

kn kn2

- 1 k 2 n _ 1 k2 - kn

kneknq kn; e 2knq cos ( kn q — 2П-

kn

— V 3 k2 kn kne-2knq sin ( V3kn q —

V 3 ,

3

= \/3 k n e knqA , A = - + e 2knq sin —— kn q — — .

Buketov

University

(5)

Lem m a. For an a rb itra ry positive q, th e inequality A > 0 holds . Proof. W rite th e d eterm in an t in th e form

A = ^3кП eknqA (x n ), A (xn) = 2 + e- ^ xn sin (x n - 6) ,

where, xn = ^ k n q = - ^ 3 {/A^q > 0, n e N .

Find th e m inim um value of A (x n ). To do this, calculate th e first order derivative d A (£ n) = 2e-y3x„ Sin ( n - Xr

dxn 3

1) W hen 0 < x n < П3 , we have A '(x n ) > 0 .This m eans th a t A (x n ) increases at finite discrete values of x n , b u t it does not reach its m axim um value. T h en th e function A (x n ) takes its m inim um value a t n = 1 and we have th e estim atio n

A (x n ) > 2 + e ^ 3xi sin ( x i - = 5 i> 0,

w here x i = ^ {/A^q.

n 4n

2) If x n > —, th e n th e function A (x n ) takes its first m inim um when th e argum ent is — and we

3 3

achieve

A (xn) > 2 ( 1 - e-4M n) = $2 > 0.

3) For sufficiently large values of x , it is obvious th a t th e function A (x ) tend s to i . From here we

find 2

A > 5 = m in {$i ; 52} > 0.

Considering th e above considerations we conclude th a t A n > 0 . T h e lem m a is proved.

Hence, th e system of equations (12) has a unique solution.

Below, we determ ine all unkown num bers Cj, i = 1,3:

^ in k n e 2knq sin — knq - ^2nkne 2 kn» cos — knq + 7 + -7Г ^3n k 3n

C2 = A ^ in k n ^ e - 2knq sin ^ k n q + 3 j - ^ e kn»^

- ^2nkn ^ e- 1 kn» sin ^ V 3 knq + П j + V3ek" qj + V ^ n ^

^ in k n e kn» 1 - e - 2kn» cos V 3 knq + 3 ^ + ^ n k n e kn» f e - 2kn» cos f k n q + 3 ^ - 2 In w h at follows, th e m axim um value of all found positive known num bers in estim ates will be denoted by M .

Taking account condition (4), we in tegrate ^ i (x) by p a rts four tim es, and ^ (x), i = 2 ,3 by p a rts two tim es we get th e following estim ates:

Ы < M , i^ii < M i - p l , i = 2, 3, (13)

Buketov

University

(6)

where

p p

Ф1? = у ф (4) (e) х ? ( о de, Фгга = у ф" ( о х ? ( о de, i = 2, з.

0 0

For Сг, i = 1, 3 we can w rite th e following estim ations:

|С г| eknq < M ( e-2knq + 1ф2?1e-2knq + ^^ЗР1 ) < M

V k? k? k? /

IC 21 < M f ( ^ ^ ) f e -3knq + ^ j + e-knqj

|Фгп| . |Ф2п| . |Фзп|

16 + 14 + 14 n 3 n 3 П 3

k?

|C3| < M

16 1 14 1 14

n 3 n 3 n 3 П ф ? 1 f 1 + e - 2Ч + M f d ( 1 + e -2k .M I < M

V k? V2

|Фг?| . |Ф2?|

16 + 14 n 3 n 3

Theorem 2. If ф г^ ) e C4 [0,p ], фг (x) e C2 [0,p], i = 2 ,3 and th e corresponding conditions (4) are satisfied, th en th e solution of th e problem A exists and it is represented by th e series (11).

Proof. If th e series (11) and its derivatives u xxxx, u yyy converge uniform ly in th e region D , th en th e function u (x, y) defined by th is series will be th e solution of th e problem A.

From (11) we have

те

|u (x ,y )| < £ ( |C1| eknq + IC2I + |C 3 ^ |X ? (x)|.

?=1

(14)

T hen, tak in g account of (13) it is obtained from (14) th a t

|U ( x , ;</)!< M f £__ ! % i + £16 1 / y I% 114 + £1 / у |Фз" '14 i 1 n 3 1 n 3 1 n 3

V?=1 ?=1 ?=1

< .

T his implies th a t th e series (11) converges absolutely and uniformly.

Now let us prove th a t th e p a rtial derivatives of th e series (11) w ith respect to b o th variables included in th e equation also converge absolutely and uniform ly in th e region D . C alculating th e derivatives w ith respect to y, it follows from (11) we ob tain

d 3u

d y 3 £ k

?=1

C1ekny + e 1 knV I C2 cos I ^ k ? y ] + C3 sin | -^ 3 k?y X ? (x) . (15)

From (15) we determ ine th e estim atio n d 3u

dy < £ k? ( I C1I ek~» + | C'2 | + | C3 | ) | X ? (x) | < M ( £ ^ + £ ^ + £ ^

?=1 v 7 V?=1 n 3 ?=1 n 3 ?=1 n 3 ,

Using th e Cauchy-Bunyakovsky and Bessel inequality we a tta in

(16)

д3гdy3

(

Е ^т е . . + , / Е |Фте 2? | % / Е -V + , / Е |Ф 3 „ |\ / Е -V /те /те /те \ <

?=1 ? 3 у ?=1 у ?=1 ? 3 у ?=1 у ?=1 ? 3 у

< m ( Е Щт1 + ||Ф2?У / Е Л + ||Ф3?И < ~ ,

\ ?=1 ? 3 у ?=1? 3 у ?=1? 3 /

Buketov

University

(7)

where

^ 2 2

^ |^ 1 n |2 < v(4)(x) _ , ^ l^ in l2 < Vi(2)(x)

l 2 [°;p] —r , i = 2, 3.

L2 [°,p]

Therefore, th e series (16) converges absolutely and uniformly. T h e absolute and uniform convergence d 4u d 3u of th e p a rtial derivative of th e fourth order in x series (11) follows from th e equality ^ —4 = -^-3 .

T heorem 2 is proved.

Conclusion

T h e article considers an initial b o u n d ary value problem for a fourth-order equation containing th e th ird tim e derivative w ith m ultiple characteristics. Uniqueness theorem s are proved using th e m ethod of energy integrals. T h e existence of a solution is shown w ith th e help of conditions im posed on given functions con structed as a series by th e Fourier m ethod and a regular solution of this series.

Acknowledgm ents

T h e au th o rs declare th a t th ey have no known com peting financial interests or personal relationships th a t could have appeared to influence th e work reported in this paper.

References

1 Смирнов М.М. М одельное уравнение смешанного ти п а четвертого порядка / М.М. Смирнов.

— Л.: И зд-во ЛГУ, 1972. — 123 с.

2 Салахитдинов М .С. К теории ди ф ф ерен ц и альн ы х уравнений в частны х производны х чет­

вертого порядка / М.С. С алахитдинов, А. Сопуев. — Таш кент: Фан, 2000. — 144 с.

3 Турбин М.В. Исследование начально-краевой задачи д л я модели дви ж ен и я ж идкости Герш еля- Б а л к л и / М.В. Т урбин / / Вестн. В оронеж . гос. ун-та. Сер. ф и з.-м а т. — 2013. — № 2. — С. 246-257.

4 Уизем Д ж . Л инейние и нелинейные волны / Д ж . Уизем. — М.: Мир, 1977. — 622 с.

5 Ш абров С.А. Об оценках ф ун кц и й вли ян и я одной м атематической модели четвертого по­

р яд ка / С.А. Ш абров / / Вестн. В оронеж. гос. ун-та. Сер. ф и з.-м а т. — 2015. — № 2. — С. 168-179.

6 Benney D .J. Interactions of p erm an en t waves of finite am plitude / D .J. Benney, J.C . Luke / / M ath. Phys. — 1964.— 43. — P. 309-313. h ttps://doi.o rg /10.10 02 /sap m 196 4 431 3 09

7 A shyralyev A. On th e hyperbolic ty p e differential equation w ith tim e involution / A. Ashyralyev, A. A shyralyyev, B. A bdalm oham m ed / / B ulletin of th e K arag an d a University. M athem atics Series. — 2023. — No. 1(109). — P. 38-47. h ttp s://d o i.o rg /1 0 .3 1 4 8 9 /2 0 2 3 M 1 /3 8 -4 7

8 H untul M .J. Inverse coefficient problem for differential in p a rtial derivatives of a fourth order in tim e w ith integral over-determ ination / M .J. H untul, I. Tekin / / B ulletin of th e K arag an d a University. M athem atics Series. — 2022. — No. 4(108). — P. 51-59. h ttp s://d o i.o rg /1 0 .3 1 4 8 9 / 2022M 4/51-59

9 K alybay A.A. Differential inequality and non-oscillation of fo urth order differential equation / A.A. Kalybay, A.O. B aiarystanov / / B ulletin of th e K arag an d a University. M athem atics Series.

— 2021. — No. 4(104). — P. 103-109. h ttp s://doi.o rg/10 .31 48 9/2 02 1M 4 /103 -1 09

10 Д ж у р аев Т .Д . К теории ди ф ф ерен ц и альн ы х уравнений в частны х производны х четвертого порядка / Т.Д . Д ж у раев, А. Сопуев. — Таш кент: Фан, 2000. — 144 с.

Buketov

University

(8)

11 Аманов Д . К р аевая за д ач а д л я уравнения четвертого порядка с м ладш им членом / Д . А м а­

нов, М .Б. М урзамбетова / / Вестн. Удмурт. ун-та. М атем. Мех. Комп. науки. — 2013. — 1.

- С. 3-10. h ttp s://d o i.org /10 .20 5 37 /vm 130101

12 Аманов Д . К р аевая зад ач а д л я уравнения четвертого порядка / Д. Аманов, А .Б . Бекиев, Ж .А . О тарова / / Узб. мат. ж урн . — 2015. — № 4. — С. 11-18.

13 Сабитов К .Б . К олебания балки с заделанны м и концами / К .Б . Сабитов / / Вестн. С ам ар. гос.

техн. ун-та. Сер. Физ.-мат. науки. — 2015. — 19. — № 2. — C. 311-324. h ttp s://d o i.o rg /1 0 .1 4 4 9 8 / vsgtu1406

14 И ргаш ев Б .Ю . К р а е ва я зад ач а д л я одного вы рож даю щ егося уравнения высокого порядка c м ладш ими членами / Б .Ю . И ргаш ев / / Б ю лл. И н-та мат. — 2019. — № 6. — C. 23-29.

15 D zhuraev T.D. On th e th eo ry of th e th ird -o rd er equation w ith m ultiple characteristics containing th e second tim e derivative / T.D. D zhuraev, Yu.P. Apakov / / Ukr. M ath. J. — 2010. — 62. — P. 43-55. https://doi.org/10.1007/s11253-010-0332-8

16 Apakov Yu.P. On a b o u nd ary problem to th ird order P D E w ith m ultiple characteristics / Yu.P. Apakov, S. R utkauskas / / Nonlin. Anal.: Model. C ontrol. — 2011. — 16. — P. 255-269.

http s://do i.org/10 .1 5 3 8 8/N A .16 .3.1 4092

17 Apakov Yu.P. On th e solution of a boundary-value problem for a th ird -o rd er equation w ith m ultiple characteristics / Yu.P. Apakov / / Ukr. M ath. J. — 2012.— 64. — No. 1. — P. 1-12.

https://doi.org/10.1007/s11253-012-0625-1

18 Apakov Yu.P. On unique solvability of boundary-value problem for a viscous transonic equation / Yu. Apakov / / Lobachevski J. M ath. — 2020. — 41. — P. 1754-1761. h ttp s ://d o i.o rg /1 0 .1 1 3 4 / S1995080220090036

19 Apakov Yu.P. Solution of th e B oundary Value Problem for a T h ird O rder E q u ation w ith L ittle Term s C onstru ctio n of th e G reen’s F unction / Yu.P. Apakov, R.A. U m arov / / Lobachevski J.M ath . — 2022. — 43. — P. 738-748. https://doi.org/10.1134/S199508022206004X

20 Аманов Д К раевы е задачи д л я уравнения четвертого порядка / Д . Аманов, Э.Р. Скоробо- гатова / / Вестн. К азах. нац. ун-та. Сер. Мат., мех., инф . — 2009. — № 4(63). — С. 16-20.

21 А паков Ю .П . К р аевая зад ач а д л я уравнения четвертого порядка с кратны м и х ар актери ­ стикам и / Ю .П . А паков, Д.М . М еликузиева / / Вестн. Наманг. гос. ун-та. — 2022. — № 5. — C. 82-91.

Ю .П . AnaKOBi ’2, Д .М . М е л и к у з и е в а2

1 в зб ек ст а н Республикасы Г ы лы м академиясыныц В.И . Романовский атындагы М ат ем ат ика инст ит ут ы , Таш кент , взбекст ан;

2 Н ам анган и,нженерл'1к цуры лы с и нст ит ут ы , Н аманган, взб ек ст а н

Уак,ыт бойы нш а ушшш1 туы нды сы бар тертшш1 ретт1 т ец д еу уш ш ш екаралы к есеп ж ай ы н да

М а к а л а д а уакы т бойы нш а ушшш1 туы нды сы бар б1ртект1 тертшш1 ретт1 дербес туы нд ы лы д и ф ф е ­ рен ц и алды к тецдеу уш ш тж б уры ш ты облы стагы ш екар ал ы к есеп карасты ры лды . К ойы лган есептщ шеш1мшщ ж а л гы зд ы гы энергия и н тегралдары эд1с1мен дэлелденген. А йны м алы ларды белу эд1сш крлданы п, есептщ шеш1м1 X (x) ж эн е Y) ею ф ункцияньщ кебейтшд1с1 турш де 1здест1ршед1. X (x) аньщ тау уш ш [0,p] кесш д!сш щ ш екарасы нда т е р т ш ек ар ал ы к ш арты бар тертшш1 ретт1 карапайы м д и ф ф ер ен ц и ал д ы к тендеуш , ал Y (у) аны ктау уш ш [0,q] кесш д!сш щ ш екарасы нда уш ш екаралы к ш арты бар ушшш1 ретт1 карапайы м д и ф ф ер ен ц и ал д ы к тецдеуд1 алам ы з. Б ерш ген ф у н к ц и ял ар га ш арттард ы кою аркы лы есептщ т у р а к т ы ш еш !мш щ бар е к е н д т ту р ал ы теорем а дэлелденедь Кой- ы лган есептщ шеш1м1 ш е к а з катар турш де куры лы п, катарды ц б ар л ы к ай н ы м алы ларга каты сты

Buketov

University

(9)

к,атарды мушелеп диф ф еренциалдау м у м ю н д т аньщ талган. Б1рк,алыпты ж инак,талуды табу кез1нде

«юш1 б елпш » нелге тен; емес екен1 аньщ талды .

К ш т свздер: бастапк,ы-шетт1к есеп, Ф урье эд1с1, шеш1мнщ ж ал гы зд ы гы , бар болуы, меншжта мэн, менш1кт1 ф ун кц и я, функционалды к, к атар, аб солю ти ж эн е б1рк,алыпты жинак,талу.

Ю .П . А п а к о в 1,2, Д .М . М е л и к у з и е в а2

1 И н с т и т у т м а т ем а т и ки им ен и В.И . Романовского А кадем ии наук Р еспублики Узбекистан, Таш кент, Узбекистан;

2 Н ам анганский инж енерно-ст роит ельны й и н с т и т у т , Н ам анган, Узбекист ан

О граничной за д а ч е д л я уравнения четвёртого порядка, содер ж ащ его третью производную по времени

В статье рассм отрена к р ае вая за д а ч а в прям оугольной области д л я однородного диф ф еренциального уравнения в частны х производны х четвёртого порядка, содерж ащ его третью производную по време­

ни. Единственность реш ения поставленной задачи док азан а методом интегралов энергии. И спользуя м етод разделения переменных, реш ение задачи ищ ется в виде произведения двух ф ункций X (x) и Y (у). Д л я определения X (x) получаем обыкновенное диф ф еренциальное уравнение четвёртого по­

ряд к а с четы рьм я граничны м и условиями на границе сегмента [0,p], а д л я Y (у) - обыкновенное диф ф еренциальное уравнение третьего поряд ка с трем я граничны м и условиями н а границе сегмента [0,q]. Н ал агая определенные условия на заданны е функции, доказан а теорем а сущ ествования регу­

лярного реш ения задачи. Реш ение поставленной задачи построено в виде бесконечного ряда, обос­

нована возм ож ность почленного диф ф ерен ц и рован и я р я д а по всем переменным. П ри доказательстве равномерной сходимости установлена отличность от нуля «малого знаменателя».

К лю чевы е слова: начальн о-краевая задача, м етод Ф урье, единственность, сущ ествование, собственное значение, собственная ф ун кц и я, ф ункциональны й ряд, абсолю тная и равном ерная сходимость.

References

1 Smirnov, M.M. (1972). Modelnoe uravnenie smeshannogo tipa chetvertogo poriadka [Model equation o f the mixed type o f the fo u rth order]. Leningrad: Izdatelstvo Leningradskogo gosudarstvennogo u n iversiteta [in Russian].

2 Salakhitdinov, M.S., & Sopuev, A. (2000). K teorii differentsialnykh uravnenii v chastnykh proizvod- nykh chetvertogo poriadka [On the theory o f differential equations in partial derivatives o f the fo u rth order]. Tashkent: Fan [in Russian].

3 T urbin, M.V. (2013). Issledovanie nachalno-kraevoi zadachi dlia m odeli dvizheniia zhidkosti G ershelia-Balkli [Investigation of th e initial bo u n d ary value problem for th e m odel of fluid m otion G ershe-B alki]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriia Fiziko-m atem ati- cheskaia — B ulletin o f Voronezh State University. Ser. Phys. M at., (2), 246-257 [in Russian].

4 W h ith am , J. (1977). L ineinie i nelineinye volny [Linear and non-linear waves[. Moscow: M ir [in Russian].

5 Shabrov, S.A. (2015). Ob otsenkakh funktsii vliianiia odnoi m atem aticheskoi m odeli chetvertogo poriadka [On estim ates of th e influence functions of a m ath em atical m odel of th e fourth order].

Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriia F iziko-m atem aticheskaia — B ulletin o f Voronezh State University. Ser. Phys. M at., 2 0(2), 168-179 [in Russian].

6 Benney, D .J., & Luke, J.C . (1964). Interactions of perm anent waves of finite am plitude. J. Math.

Phys., 43, 309-313. h ttp s://do i.org /10 .10 02 /sapm 19644 3 130 9

Buketov

University

(10)

7 Ashyralyev, A., & Ashyralyyev, A., & A bdalm oham m ed, B. (2023). On th e hyperbolic type differential equatio n w ith tim e involution. B ulletin o f the Karaganda University. M athem atics Series, 1(109), 38-47. h ttp s://d o i.o rg /1 0 .3 1 4 8 9 /2 0 2 3 M 1 /3 8 -4 7

8 H untul, M .J., & Tekin, I.(2022). Inverse coefficient problem for differential in p a rtial derivatives of a fo u rth order in tim e w ith integral over-determ ination. B ulletin o f the Karaganda University.

M athem atics Series, 4(108), 51-59. http s://d o i.o rg /1 0 .3 1 4 8 9 /2 0 2 2 M 4 /5 1 -5 9

9 Kalybay, A.A., & B aiarystanov, A.O. (2021). Differential inequality and non-oscillation of fourth order differential equation. B ulletin o f the Karaganda University. M athem atics Series, 4(104), 103-109. h ttp s://d o i.o rg /10 .31 4 89 /2 02 1M 4/103-1 09

10 D zhuraev, T .D ., & Sopuev, A. (2000). K teorii differentsialnykh uravnenii v chastnykh proizvodnykh chetvertogo poriadka [O n the theory o f differential equations in partial derivatives o f the fo u rth order]. Tashkent: Fan [in Russian].

11 A m anov, D., & M urzam betova, M.B. (2013). K raevaia zadacha dlia uravneniia chetvertogo poriadka s m ladshim chlenom [Boundary value problem for a fourth-order equ ation w ith a m inor term ]. Vestnik Udmurtskogo universiteta. M atem atika. M ekhanika. K om p iutetn ye nauki — B ulletin o f Udm urt University M athem atics. M echanics. Com puter science, 1, 3-10 [in Russian].

http s://d o i.o rg /1 0 .2 0 5 3 7 /v m 1 3 0 1 0 1

12 A m anov, D., Bekiev, A.B., & O tarova, Zh.A. (2015). K raevaia zadacha dlia uravneniia chetvertogo poriadka [Boundary value problem for a fourth-order equation]. Uzbekskii m atem aticheskii zhurnal

— Uzbek m athem atical journal, (4), 11-18 [in Russian].

13 Sabitov, K.B. (2015). K olebaniia balki s zadelannym i kontsam i [V ibrations of a beam w ith em bedded ends]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia Fiziko-

m atem aticheskie nauki — B ulletin o f Sam ara State Technical University. Series Physical and M athem atical Sciences, 1 9(2), 311-324 [in Russian]. h ttp s://d o i.o rg /1 0 .1 4 4 9 8 /v sg tu 1 4 0 6

14 Irgashev, B.Yu. (2019). K raevaia zadacha dlia odnogo vyrozhdaiushchegosia uravneniia vysokogo poriadka c m ladshim i chlenam i [Boundary value problem for a degenerate higher order equation w ith lower term ]. B iulleten In stitu ta m atem atiki — B ulletin o f the In stitu te o f M athem atics, (6), 23-29 [in Russian].

15 D zhuraev, ^ D . , & Apakov, Yu.P. (2010). On th e th eory of th e th ird - order equation w ith m ultiple characteristics containing th e second tim e derivative . Ukr. M ath. J., 62, 43-55. h ttp s ://d o i.o r g /

10.1007/s11253-010-0332-8

16 Apakov, Yu.P., & R utkauskas, S. (2011). On a bo u n d ary problem to th ird order P D E w ith m ultiple characteristics. Nonlin. Anal.: Model. Control, 16, 255-269. h ttp s://d o i.o rg /1 0 .1 5 3 8 8 / NA.16.3.14092

17 Apakov, Yu.P. (2012). On th e solution of a boundary-value problem for a th ird -o rd er equation w ith m ultiple characteristics. Ukr. M ath. J., 64 (1), 1-11. h ttp s://d oi.org /10 .10 0 7/s11 25 3 -0 12- 0625-1

18 Apakov, Yu.P. (2020). On unique solvability of boundary-value problem for a viscous transonic equation. Lobachevski J. M ath., 41, 1754-1761. https://doi.org/10.1134/S1995080220090036 19 Apakov, Yu.P., & U m arov, R.A. (2022). Solution of th e B oundary Value Problem for a T h ird

O rder E q u ation w ith L ittle Term s C onstruction of th e G reen’s Function. Lobachevski J. M ath., 43, 738-748. https://doi.org/10.1134/S199508022206004X

20 A m anov, D., & Skorobogatova, E.R . (2009). K raevye zadachi dlia uravneniia chetvertogo poriadka [B oundary Value Problem s for a F o u rth O rder E quation]. Vestnik Kazakhskogo natsionalnogo universiteta. Seriia M atem atika, mekhanika, inform atika — B ulletin o f Kazakh N ational Univeraity.

Ser. m athem atics, mechanics, inform atics, 4(63), 16-20 [in Russian].

Buketov

University

(11)

21 Apakov, Yu.P., & Melikuzieva, D.M. (2022). K raevaia zadacha dlia uravneniia chetvertogo poriadka s kratn ym i kharak teristikam i [B oundary Value P roblem for a F o u rth O rder E q u ation w ith M ultiple C haracteristics]. Vestnik Namanganskogo gosudarstvennogo univrsiteta — B ulletin o f N am angan State University, (5), 82-91 [in Russian].

Buketov

University

Referensi

Dokumen terkait