14
2007. 1
q(t). -
(24) .
. -
, -
-
[4, 6] ,
. 5 .
. 1–3 -
[1, . 193], -
- .
1. ., .
. .; ., 1949. . 550.
2. ., ., . ., -
.
. ., 1966. . 576.
3. . -
// ( .
). ., 1974. . 12. . 71-146.
4. .
// .
, 2001. . 1, 2. . 10-14.
5. .
// .
, 2002. . 2, 2. . 19-24.
6. . -
//
. 2006. . 42, 6. . 859-860.
i i
. -
i .
i .
Summary
The work displays class of differential equations, where a generalized index on coefficients of system calculation is pos- sible. Coefficient characteristic of generalized correctness of differential equation system is given. Sufficient condition for stability of null resolution of nonlinear system is determined.
517.938
. ,
. 8.11.06 .
.
1, .
1, 2, .
3I
i -
– - -
. , , i -
- - i
i
i i.
,
, i -
i i -
-
i i i [1].
i -
-
i .
i
( i 2100
) , -
i 600 ) ,
( i 900
) ( i
3200 ) -
. i
i [2].
15
i , C 3, Gc, PGM1,
GLO1, EsD, AcP
i i -
i [1, 3].
i
: M. Nei
(1972), R. Knussmann (1962), . .
. . (1971) [4–6]. i -
- i
.
Y i -
[4]:
y x
xy
I I
I
D ln / ,
(1)
I
x, I
yI
xy– Y i
; ,
– Y
i.
i (1) -
- i.
i.
i , -
- - .
(I )
1 2
-
(
1 2) [1]. -
(1)
i I =0,580802,
I
1=0,608578, -
I
2=0,544301, -
I
3=0,555778 .
- i
i (I ) i -
i. , -
I =0,593666, -
I =0,560001, I =0,567134
.
: D =
0, 593666 ln
0,580802 0, 608578
xy
x y
I
I I
= 0,001451.
, D
–C–T= 0,004018 D
–T= 0,001793 .
, -
17
7 -
i -
i.
-
-
( ) ( ) ( )
0,00145 0,00402 0,00179
EsD 4,026 -5 9,920 -6 3,481 -4
GLO1 7,023 -4 0,00548 0,00180
PGM1 0,00431 0,01344 0,01222
C’3 0,00848 0,00005 0,00548
Gc 0,03406 0,00268 0,00304
AcP 0,01982 0,00002 0,01031
i 0,00984 0,00367 0,00499
,
- -
i .
-
. ,
i: 0,00145 ( ) ®
0,00179 ( ) ® ® >0,00402 ( ).
1
16
2007. 1
: 0,267 ( ) ® 0,333 ( ) ® 0,349 ( -
) [3]. EsD -
– -
EsD
1i i : -
0,793
0,796 [1]. Gc -
- : 0,00268 ( - ) ® >0,00304 ( ) ® ® 0,03406 ( ).
Gc Gc
2:
0,186 ( ) ® ® 0,217 ( ) ® 0,328 ( ).
PGM1 -
-
0,00431 ( ) ® 0,01222 ( )
® ® 0,01344 ( ) PGM
21i: 0,178 ( ) ®
0,217 ( ) ® ® 0,226 ( ) [1, 3].
,
- i i.
-
- -
, - -
. , -
-
– 0,004 ,
( 0,005 ).
i
i -
. , -
-
i .
,
i -
-
- i .
1. ., .
(
) // . -
. 2006. 2(28). : , 2006.
51–55- .
2. . -
. : , 1987. 256 .
3. ., ., .,
., ., . i
( i
i i -
) // .
. 2006. 3(29).
4.Nei M.Genetic distance between population // Amer.
Nat. 1972. V. 106.
5.Knussmann R.Moderne statistische verfahren in der Rassenkunde // Die neue Rassenkunde. Stuttgard, 1962.
6. ., . -
. ., 1971.
19.
- -
, , -
- .
Summary
With aim to define results of serological research on genetic markers variety of local populations inhabiting in mountain regions populations’ genetic length was put into investigation.
575
1
i;
2
;
3 .
13.10.06 . i