( . 4), , -
- .
4.
« »
, 65-180 240-999 >1000
+40$ +10$
, 300 -
500 -
510 , 20
, . -
« -
» , .
-
, -
. -
, ,
, -
.
1. . : , -
. , 2005.
290 .
2. « »
2004–2006 .
3. . 11, 12. 2006; 1. 2007.
i, -
. “ -
” i.
i, i
.
Summary
In the article author describes the methodology of pricing, shows the factors that influence it. The object of analysis is metallurgical industry, which is represented by JSC “Mittal Steel Temirtau”. Also, the system of discounts is being under consideration. In addition the advantages and disadvantages of such discount system are revealed.
335.51:669.015(574)
. . . 2.03.07 .
. .
-
. , -
- ,
. -
,
- [1-4],
- .
-
. -
- ,
.
- -
. , -
, -
. ,
,
2007. 3
,
, - .
.
-
) ) (
, ) (
( q x
t t x x a y w
yx ,
0
y
, a x b. (1) -)
( ) ,
( x t a
0x
a
, t 0. (2)-
ds sx p
s C s p p
x , ) ( , ) cos( ) (
2
0
p x x q
w p
x ( )
) 2 ( ) ,
(
0 , a x b, (3)0
0 ) cos(
) ,
(s p sx ds
C , 0 x a, (4)
0
0 ) cos(
) ,
(s p sx ds
C , x b. (5)
- : (x) –
;q(x) – -
;a(x,t) –
;x,y,t – -
, ;a,b – -
. (x) q(x)
:
( x ) 0
,q ( x ) 0 x
;w
0( x ) a
0( x ) / 2
.(3)–
(5), ,
) , ( )
, ( ) , ( )
, (
2
2
0
p L p d R p
p
b
a
,
2
2
b
a
, (6)) , ( L
) , ( ) , ( ) ,
( L
1L
2L
, (7)2
) ) ( ( 1 ) ( 1 1 ) 1
,
( 1/2
0 1
a
du u u
L u , (8)
2
2
( )
) ( 2 1 ) ( 1 1 ) 1 ,
(
1/2 1/20 2
b
a
d h
K L b
2
) ) (
(
a
du u u
u
. (9)(6)
) , ( ) ( )
( )
,
(
1R
2R
3p
p R q
p p q
R
, (10)2
2
) ) (
( ) ( 1 ) 1
1
(
b
a
du u u q
u
R q
, (11)2
2
( )
) ( 1 ) ( 2 ) 1
(
1/22
b
a
d h
K b R q
2
2
) ) (
b
(
a
du u u q
u
, (12)2
2
( )
) ( 1 ) ( ) 1
,
(
1/23
b
a
d h
K p b
R
2
2
) ( ) , ) ( (
0 b
a
du u w p u u
u
. (13)= 0
, ,
2
2
) , 2 (
) 1 , 0 ,
(
1/2b
x
d p p
x
w
, (14)) , 0 , ) (
, 0 ,
( x
p x p w
xz x
) , ( ) ,
( x
2p x
2p
. (15)(6), q(x) (x)
2 1
)
0( x q e
xq
,( x )
0e
2x2. (16))
; , ( )
,
(
1/2 21
J
L
, (17)) ( 1 ) ( 2 ) 1
,
(
1/22
K h
L b
2
2
)
; ,
(
22 / 1 b
a
d
J
, (18))
; , ( J
2
) ( ) ( 1 ) 1
; , (
a
udu u e
J u . (19)
(11) (12) (16) -
, ,
)
; , ( )
(
2 11
J b
R
, (20)2
2
)
; , ) (
( 1 ) ( ) 2
(
1/2 2 22
b
a
d b
h J K
R b
, (21)2 2
)
( a
b
,) )(
( )
( b2 a2 . (22)
2 0
1
L ( , )
(6) -
) , ( L
) (
) ( ) ( ) arcsin (
2 2
2 2
2 2
/
1 K h
h E b a
b a
) ( ) (
) ( ) ln ( 1 ) (
) ( 2
2 / 1 2
/ 1
b h a b h
K ,
) ( 1 ) ( ) ( 2
2 2 2 1 2
/ 1
, (23)
) (
) ( ) ( ) ) (
, (
2 0
h K
h E b p
p q R
2
2
) , ( ) 2 (
0 b
a
du u u
w
, (24)) )(
( ) ( ) ( )
( u K h u
:E 1 – -
, .
,
t
., (6) -
(7)–(13)
) ( ) ( )
, ( lim ) ,
( 1 2
0 p p q R R
t p .
(26)
2 0
1
) (
) ( ) ( ) ) (
, (
2
h K
h E q b
t . (27)
(15), -
) 0 , (x
xz
) / (
) / (
) ( )
(
2 22 2 2
2 2
2
b a b K
b a b E x b x
q x
, (28). xm -
- 0
) ,
(xm2 t , (29)
, (15),
) / (
) / (
2 2
2 2
b a b K
b a b b E
x
m . (30)a 0, -
y = 0, 0 <x <b , ,
2
/
2) 0 ,
( x qx b x
xz , (31)
2
)
20 ,
( x q b x
w
. (32)(6),
1 0, 2 0,
w
0( u ) 0
, a 0, b .0 )
3
(
R
. I( )2007. 3
2
2
) ( ) ( 1 ) 1
(
b
a
u
du u e
I u
. (33)[5],
e Erfi e
I 1 1 2 ( )
)
( 1/2 2 ,
. (34) , > 0
du u e
I u
b
a
u b
) ( ) ( 1 lim 1 )
; (
2
2
e Erfi
e 2 ( )
1
1
22 /
1 . (35)
) ( Erfi
[5],2 / 3 2 / 3 2 2
/ 1
2
) (
1 1
2 ) 1
; (
e a
I a ,
, (36)
2
2 / 2 1 2
/ 1
1 1
) 1
;
( e a
a
I ,
a
2. (37)(36) (37) ,
(21)
) , ( )
( )
,
(
1I
1p R q
p p q
R
. (38)) , ( L 0
, 2
1 ,
w
0( u ) 0
,b . -)
; , (
J (30), -
)
; , ) (
; ,
( J
d dJ
2
) ) ( ( 1 1
a
udu e
u (39)
2
) ( ) ( 1 ) 1
0
; , (
a
u du
J u =
) ( 2 ) 1 ( ) 2 (
1
2
2
a
arctg b
) ( ) (
) ( ) ln ( 1 ) (
) 1 (
. (40) (39)
e c
J ( , ; ) ( )
, (41)2
) ) (
( ) 1
(
a
udu e e u
c , (42)
) 0
; , ( ) 0
( J
c
. (43)– ,b . -
(40)
) 0 ( ) ( lim )
( c c
b
– e a d
a
a ; ( )
2 3 1
1 2
0
) ( 2 / 3 2
2 ,
(44)
2
2
2) 0
; , ( lim ) 0
( a
J a c
b
2 2
2
2 2
1 ln
a a
a
a
. (45)– [5].
(44)
) , ( ) , ( ) , ( ) 0 ( )
( c J
1J
2J
3c
,(46)
1
( , ) J
0
2 2
/ 2 2
2
1 3 / 2 ; ( )
1 a d
a
, (47)
2( , ) J
0
2 2
/ 1
2 3/2; ( )
1
1 a d
a
. (48)
d k a
a k
k
k
0
2 2
/ 3 2
2
) (
; 2 /
! 3 )
( . (49)
(47) (48)
2 / 1 1
( , ) ~
J
,J
2( , ) ~
1/2,1
~ ) ,
1
(
J
,J
2( , ) ~ 1
, . (50))
; , ( lim )
; ,
( J
J
b . (51)
(45)–(50), (41), -
, -
)
; , ( J
) , (
I
, .2 / 3
~ 1 )
; , (
J
, , 0. (52)(3.83)–(3.86) (3.76)
2 / 1 2
) (
~ 1 )
; ,
( a
J
,a
2. (53)(3.77) (3.82)–(3.87)
2 /
~
1)
; , (
J
. (54)(52) (53) L2( , ) 0
b
) 0 ( 1 ) ( 2 lim 1
) , (
lim
2 1/2h K J b
L
b
b .(55)
(6) 0
, 2
1 ,
w
00
,b --
2
) , ( )
, ( ) , ( )
, (
a
p R d p L
p
p ,
a
2 , (56)) , ( ) (
) ,
( p
1/2a
2 0p
,4 / 1
0
0 , (57)) , ( )
( ) ,
(
2 0 1/2I
1p a q
p
R
, (58)2
0 ( , )
) 2 (
) 1 , 0 ,
( 2
a
d p a
p x
w . (60)
) , , ( x y p
xz = 0
) , ( ) (
) , 0 ,
(x p x2 a2 0x x2 p
xz . (61)
(56) -
[6, 7].
1. ., . . .: ,
1985. 730 .
2. . -
// . .
. 1984. 9. . 3-12.
3. ., . -
// -
. ; , 1982. 2. . 79-93.
4. .
// . . -
. . «
». , 2003. . 141-144.
5. ., . -
. .: , 1969. . 1. 343 .
6. ., . -
. .: , 1965. 384 .
7. ., . -
. .: , 1968. 296 .
i
-
i . -
i i i
. i
i i.
Summary
Using mathematics modeling methods we studied stress- strain evolution on the block structure boundary in the tectonic fracture zone. The initial boundary problem is transformed to Fredholm’s equation of the second kind according to Laplace transform. With the help of analytically-numeric methods, we have got the solution of integral equation, on the base of which was investigated a concentration of stresses and slow motion in the viscosity-elastic break zone.
539.3; 550.348
2.02.07 .