• Tidak ada hasil yang ditemukan

nblib.library.kz - /elib/library.kz/jurnal/v_2007_3/

N/A
N/A
Protected

Academic year: 2023

Membagikan "nblib.library.kz - /elib/library.kz/jurnal/v_2007_3/"

Copied!
5
0
0

Teks penuh

(1)

( . 4), , -

- .

4.

« »

, 65-180 240-999 >1000

+40$ +10$

, 300 -

500 -

510 , 20

, . -

« -

» , .

-

, -

. -

, ,

, -

.

1. . : , -

. , 2005.

290 .

2. « »

2004–2006 .

3. . 11, 12. 2006; 1. 2007.

i, -

. -

i.

i, i

.

Summary

In the article author describes the methodology of pricing, shows the factors that influence it. The object of analysis is metallurgical industry, which is represented by JSC “Mittal Steel Temirtau”. Also, the system of discounts is being under consideration. In addition the advantages and disadvantages of such discount system are revealed.

335.51:669.015(574)

. . . 2.03.07 .

. .

-

. , -

- ,

. -

,

- [1-4],

- .

-

. -

- ,

.

- -

. , -

, -

. ,

,

(2)

2007. 3

,

, - .

.

-

) ) (

, ) (

( q x

t t x x a y w

yx ,

0

y

, a x b. (1) -

)

( ) ,

( x t a

0

x

a

, t 0. (2)

-

ds sx p

s C s p p

x , ) ( , ) cos( ) (

2

0

p x x q

w p

x ( )

) 2 ( ) ,

(

0 , a x b, (3)

0

0 ) cos(

) ,

(s p sx ds

C , 0 x a, (4)

0

0 ) cos(

) ,

(s p sx ds

C , x b. (5)

- : (x) –

;q(x) – -

;a(x,t) –

;x,y,t – -

, ;a,b – -

. (x) q(x)

:

( x ) 0

,

q ( x ) 0 x

;

w

0

( x ) a

0

( x ) / 2

.

(3)–

(5), ,

) , ( )

, ( ) , ( )

, (

2

2

0

p L p d R p

p

b

a

,

2

2

b

a

, (6)

) , ( L

) , ( ) , ( ) ,

( L

1

L

2

L

, (7)

2

) ) ( ( 1 ) ( 1 1 ) 1

,

( 1/2

0 1

a

du u u

L u , (8)

2

2

( )

) ( 2 1 ) ( 1 1 ) 1 ,

(

1/2 1/2

0 2

b

a

d h

K L b

2

) ) (

(

a

du u u

u

. (9)

(6)

) , ( ) ( )

( )

,

(

1

R

2

R

3

p

p R q

p p q

R

, (10)

2

2

) ) (

( ) ( 1 ) 1

1

(

b

a

du u u q

u

R q

, (11)

2

2

( )

) ( 1 ) ( 2 ) 1

(

1/2

2

b

a

d h

K b R q

2

2

) ) (

b

(

a

du u u q

u

, (12)

2

2

( )

) ( 1 ) ( ) 1

,

(

1/2

3

b

a

d h

K p b

R

2

2

) ( ) , ) ( (

0 b

a

du u w p u u

u

. (13)

= 0

, ,

2

2

) , 2 (

) 1 , 0 ,

(

1/2

b

x

d p p

x

w

, (14)

) , 0 , ) (

, 0 ,

( x

p x p w

xz x

) , ( ) ,

( x

2

p x

2

p

. (15)

(6), q(x) (x)

2 1

)

0

( x q e

x

q

,

( x )

0

e

2x2. (16)

(3)

)

; , ( )

,

(

1/2 2

1

J

L

, (17)

) ( 1 ) ( 2 ) 1

,

(

1/2

2

K h

L b

2

2

)

; ,

(

2

2 / 1 b

a

d

J

, (18)

)

; , ( J

2

) ( ) ( 1 ) 1

; , (

a

udu u e

J u . (19)

(11) (12) (16) -

, ,

)

; , ( )

(

2 1

1

J b

R

, (20)

2

2

)

; , ) (

( 1 ) ( ) 2

(

1/2 2 2

2

b

a

d b

h J K

R b

, (21)

2 2

)

( a

b

,

) )(

( )

( b2 a2 . (22)

2 0

1

L ( , )

(6) -

) , ( L

) (

) ( ) ( ) arcsin (

2 2

2 2

2 2

/

1 K h

h E b a

b a

) ( ) (

) ( ) ln ( 1 ) (

) ( 2

2 / 1 2

/ 1

b h a b h

K ,

) ( 1 ) ( ) ( 2

2 2 2 1 2

/ 1

, (23)

) (

) ( ) ( ) ) (

, (

2 0

h K

h E b p

p q R

2

2

) , ( ) 2 (

0 b

a

du u u

w

, (24)

) )(

( ) ( ) ( )

( u K h u

:E 1 – -

, .

,

t

.

, (6) -

(7)–(13)

) ( ) ( )

, ( lim ) ,

( 1 2

0 p p q R R

t p .

(26)

2 0

1

) (

) ( ) ( ) ) (

, (

2

h K

h E q b

t . (27)

(15), -

) 0 , (x

xz

) / (

) / (

) ( )

(

2 2

2 2 2

2 2

2

b a b K

b a b E x b x

q x

, (28)

. xm -

- 0

) ,

(xm2 t , (29)

, (15),

) / (

) / (

2 2

2 2

b a b K

b a b b E

x

m . (30)

a 0, -

y = 0, 0 <x <b , ,

2

/

2

) 0 ,

( x qx b x

xz , (31)

2

)

2

0 ,

( x q b x

w

. (32)

(6),

1 0, 2 0,

w

0

( u ) 0

, a 0, b .

0 )

3

(

R

. I( )

(4)

2007. 3

2

2

) ( ) ( 1 ) 1

(

b

a

u

du u e

I u

. (33)

[5],

e Erfi e

I 1 1 2 ( )

)

( 1/2 2 ,

. (34) , > 0

du u e

I u

b

a

u b

) ( ) ( 1 lim 1 )

; (

2

2

e Erfi

e 2 ( )

1

1

2

2 /

1 . (35)

) ( Erfi

[5],

2 / 3 2 / 3 2 2

/ 1

2

) (

1 1

2 ) 1

; (

e a

I a ,

, (36)

2

2 / 2 1 2

/ 1

1 1

) 1

;

( e a

a

I ,

a

2. (37)

(36) (37) ,

(21)

) , ( )

( )

,

(

1

I

1

p R q

p p q

R

. (38)

) , ( L 0

, 2

1 ,

w

0

( u ) 0

,b . -

)

; , (

J (30), -

)

; , ) (

; ,

( J

d dJ

2

) ) ( ( 1 1

a

udu e

u (39)

2

) ( ) ( 1 ) 1

0

; , (

a

u du

J u =

) ( 2 ) 1 ( ) 2 (

1

2

2

a

arctg b

) ( ) (

) ( ) ln ( 1 ) (

) 1 (

. (40) (39)

e c

J ( , ; ) ( )

, (41)

2

) ) (

( ) 1

(

a

udu e e u

c , (42)

) 0

; , ( ) 0

( J

c

. (43)

– ,b . -

(40)

) 0 ( ) ( lim )

( c c

b

e a d

a

a ; ( )

2 3 1

1 2

0

) ( 2 / 3 2

2 ,

(44)

2

2

2

) 0

; , ( lim ) 0

( a

J a c

b

2 2

2

2 2

1 ln

a a

a

a

. (45)

– [5].

(44)

) , ( ) , ( ) , ( ) 0 ( )

( c J

1

J

2

J

3

c

,

(46)

1

( , ) J

0

2 2

/ 2 2

2

1 3 / 2 ; ( )

1 a d

a

, (47)

2( , ) J

0

2 2

/ 1

2 3/2; ( )

1

1 a d

a

. (48)

(5)

d k a

a k

k

k

0

2 2

/ 3 2

2

) (

; 2 /

! 3 )

( . (49)

(47) (48)

2 / 1 1

( , ) ~

J

,

J

2

( , ) ~

1/2,

1

~ ) ,

1

(

J

,

J

2

( , ) ~ 1

, . (50)

)

; , ( lim )

; ,

( J

J

b . (51)

(45)–(50), (41), -

, -

)

; , ( J

) , (

I

, .

2 / 3

~ 1 )

; , (

J

, , 0. (52)

(3.83)–(3.86) (3.76)

2 / 1 2

) (

~ 1 )

; ,

( a

J

,

a

2. (53)

(3.77) (3.82)–(3.87)

2 /

~

1

)

; , (

J

. (54)

(52) (53) L2( , ) 0

b

) 0 ( 1 ) ( 2 lim 1

) , (

lim

2 1/2

h K J b

L

b

b .(55)

(6) 0

, 2

1 ,

w

0

0

,b -

-

2

) , ( )

, ( ) , ( )

, (

a

p R d p L

p

p ,

a

2 , (56)

) , ( ) (

) ,

( p

1/2

a

2 0

p

,

4 / 1

0

0 , (57)

) , ( )

( ) ,

(

2 0 1/2

I

1

p a q

p

R

, (58)

2

0 ( , )

) 2 (

) 1 , 0 ,

( 2

a

d p a

p x

w . (60)

) , , ( x y p

xz = 0

) , ( ) (

) , 0 ,

(x p x2 a2 0x x2 p

xz . (61)

(56) -

[6, 7].

1. ., . . .: ,

1985. 730 .

2. . -

// . .

. 1984. 9. . 3-12.

3. ., . -

// -

. ; , 1982. 2. . 79-93.

4. .

// . . -

. . «

». , 2003. . 141-144.

5. ., . -

. .: , 1969. . 1. 343 .

6. ., . -

. .: , 1965. 384 .

7. ., . -

. .: , 1968. 296 .

i

-

i . -

i i i

. i

i i.

Summary

Using mathematics modeling methods we studied stress- strain evolution on the block structure boundary in the tectonic fracture zone. The initial boundary problem is transformed to Fredholm’s equation of the second kind according to Laplace transform. With the help of analytically-numeric methods, we have got the solution of integral equation, on the base of which was investigated a concentration of stresses and slow motion in the viscosity-elastic break zone.

539.3; 550.348

2.02.07 .

Referensi

Dokumen terkait

In this note we briefly discuss the boundary problem for the refined analytic torsion on a compact Riemannian manifold with boundary by introducing well posed boundary conditions for