Contents lists available atScienceDirect
Journal of Mathematical Analysis and Applications
www.elsevier.com/locate/jmaa
On the persistence of spatial analyticity for the beam equation
TamiratT. Duferab, Sileshi Mebrateb, Achenef Tesfahuna,∗
a DepartmentofMathematics,NazarbayevUniversity,QabanbaiBatyrAvenue53,010000Nur-Sultan, Kazakhstan
bDepartmentofMathematics,AdamaUniversityofScienceandTechnology,Ethiopia
a r t i cl e i n f o a b s t r a c t
Articlehistory:
Received11September2021 Availableonline11January2022 Submittedby H.Frankowska
Keywords:
Beamequation
Globalwell-posednesslowerbound Radiusofanalyticity
Gevreyspaces
Persistenceofspatialanalyticityisstudiedforsolutionofthebeamequationutt+ (m+ Δ2)u+|u|p−1u= 0 on Rn×R.Inparticular,fora classof analyticinitial datawithauniformradiusofanalyticityσ0,weobtainanasymptoticlowerbound σ(t)c/√
tontheuniformradiusofanalyticityσ(t) ofsolutionu(·,t),ast→ ∞.
©2022ElsevierInc.Allrightsreserved.
1. Introduction
ThispaperisconcernedwithpersistenceofspatialanalyticityofsolutionsfortheCauchyproblemofthe fourthorderwaveequation
utt+
m+ Δ2
u+|u|p−1u= 0,
(u, ut)|t=0= (u0, u1), (1)
whereu:Rn×R−→R,p1,andm>0.
Equationslike(1) arealsoreferredtoasBretherton’stypeequationsorthebeamequation.Theoriginal Brethertonequation,writtendownforn= 1 by Bretherton[3],arised inthestudyofweakinteractionsof dispersivewaves.Asimilarequationforn= 2 wasproposedinLove[17] forthemotionofaclampedplate.
Recentdevelopmentsinarbitrarydimensionwereestablishedin[13–15,21,22].
Questionssuchaswell-posedness,blow-upinfinitetime,longtimeexistence,andtheexistenceofuniform bounds for global solutions of (1) are addressed by several authors. For instance, local well-posedness, scattering, and stability inthe energy spaceH2(Rn)×L2(Rn) was studiedby Levandoskyin[13,14] and
* Correspondingauthor.
E-mailaddresses:[email protected](T.T. Dufera),[email protected](S. Mebrate),[email protected] (A. Tesfahun).
https://doi.org/10.1016/j.jmaa.2022.126001 0022-247X/©2022ElsevierInc. Allrightsreserved.
LevandoskyandStrauss[15], resultswhichwereextendedbyPausader [23,24].Low-regularityglobalwell- posedness was also shownby Zhang [32] in dimensions 3 n 7 in the cubic case for data (u0,u1) ∈ Hs(Rn)×Hs−2(Rn) satisfying
s >min
n−2 2 , n
4
.
Weremark thattheenergy
E(t) =1 2
Rn
u2t+ (Δu)2+mu2+ 2
p+ 1|u|p+1 dx is conservedbytheflowof(1),i.e., E(t)= const. forallt.
Inthispaper,weshallstudythepersistenceofspatialanalyticityforthesolutionoftheCauchyproblem (1),giveninitialdatainaclassofanalyticfunctions.BythePaley-WienerTheorem,theradiusofanalyticity ofafunctioncanberelatedtodecaypropertiesofitsFouriertransform.Itisthereforenaturaltotakedata for(1) intheGevreyspaceGσ,s(Rn),definedbythenorm
fGσ,s(Rn)=exp(σ|ξ|)ξsfˆL2ξ(Rn) (σ0), where ξ=
1 +|ξ|2.Whenσ= 0,thisspacecoincideswith theSobolevspaceHs(Rn),withnorm fHs(Rn)=ξsfˆL2ξ(Rn),
whileforanyσ >0,anyfunctioninGσ,s(Rn) hasaradiusofanalyticityofatleastσateachpointx∈Rn. This fact is contained in thefollowing theorem, whose proof can be found in[12] in the case s = 0 and n= 1;thegeneralcasefollows fromasimplemodification.
Paley-WienerTheorem.Letσ >0ands∈R.Iff ∈Gσ,s(Rn),thenf istherestrictiontoRn ofafunction F whichisholomorphicin thestrip
Sσ ={x+iy∈Cn : |y|< σ}. Moreover, thefunctionF satisfiestheestimates
sup
|y|<σF(·+iy)Hs <∞.
Information about thedomain of analyticity of asolution to apartial differential equation (PDE) can be used to gaina quantitative understandingof the structure of the equation, and to obtain insight into underlyingphysicalprocesses.Thestudyofreal-analyticsolutionstononlinearPDEhasdevelopedoverthe lastthreedecades.StartingwiththeworksofKatoandMasuda[11] fordispersivewave-typeequations,and Foias andTemam[6] fortheNavier-Stokesequations, analyticfunctionspaces havebecomepopulartools for the study of avarietyof questionsconnected with nonlinearevolutionary PDE. In particular, theuse of Gevrey-typespaceshasgiven riseto anumberof importantresultsinthestudy oflongtime dynamics of dissipative equation, such as estimating the asymptotic degrees of freedom (e.g., determining nodes) [18], approximating theglobal attractors/inertial manifolds [10] and arigorousestimate of the Reynold’s scale [4].
Given anonlineardispersivePDEintheindependentvariables(t,x),consider theCauchyproblemwith real analytic initial data at t= 0. If these data haveauniform radius of analyticityσ0, inthesense that
there exists aholomorphic extension to the complex strip of widthσ0, then we ask whetherthe solution at some later time t >0 also hasa uniform radius of analyticity σ= σ(t) >0, inwhich case we would, moreover,like to haveanexplicit lowerbound onσ(t).Heuristically,thepicture oneshouldhaveinmind isthatσ(t) isthedistancefromthex-axistothenearestcomplexsingularityoftheholomorphicextension ofthe solutionattime t. Ifat sometime tthis singularity actuallyhits thex-axis,thenthesolutionitself suffers a breakdown of regularity. This point of view is thebasis for the widely used singularity tracking method[28] innumericalanalysis,whereaspectralmethodis usedtoobtainanumericalestimateofσ(t).
Thisestimatecanthenbeusedtopredicteithertheformationofasingularityinfinitetimeoralternatively global regularity. Even in cases where singularity formation does not occur (as is the case for the beam equation), it is still of interest to obtain lower bounds on σ(t), as this has implications for the rate of convergenceofspectral methodsfortheequationoneislookingat (see[2] foranexampleofthis).
The spaces Gσ,s(Rn) were introduced by Foias and Temam [6] (see also [11]) in the study of spatial analyticityofsolutionstotheNavier-Stokesequations,andvarious refinementsoftheirmethodhavesince beenappliedtoprovelowerboundsontheradiusofspatialanalyticityforanumberofnonlinearevolution equations [5,7–9,16,19,20,25–27,29–31]. The method used here for proving lower bounds on the radius of analyticity was introduced in [27] in the context of the 1D Dirac-Klein-Gordon equations. This method is based on an approximate conservation laws, and has been applied to prove an algebraic lower bound (decayrate)of ordert−1/αforsomeα∈(0,1] ontheradiusofspatialanalyticityofsolutionstoanumber ofnonlinear dispersiveandwave equations(seee.g.,[1,25–27,29–31]). Theoptimaldecayratethatcanbe obtainedinthissettingis1/t,whichcorresponds toα= 1 (seee.g.,[1,29,31]).Thisdecayrateisrelatedto thebehaviorof theexponentialweight,exp(σ|ξ|),thatsitsintheGevreynorm. Morespecifically,itstems from thesimpleestimate
exp(σ|ξ|)−1(σ|ξ|)α·exp(σ|ξ|) (0α1),
whichfollowsfrom aninterpolationbetweenexpr−1expr andexpr−1rexpr forr0.
Inthe presentwork, inanattemptto improve thedecay rateobtainedso far, weintroduce amodified Gevreynorm1 by
fHσ,s(Rn)=cosh(σ|ξ|)ξsfˆL2ξ(Rn) (σ0),
wheretheexponentialweightexp(σ|ξ|) intheGevreynormisnowreplacedbyahyperbolicweightcosh(σ|ξ|).
Thesetwo weightsareequivalent inthesensethat 1
2exp(σ|ξ|)cosh(σ|ξ|)exp(σ|ξ|). (2) Thus,theassociatedGσ,s andHσ,s–normsareequivalent, i.e.,
fHσ,s(Rn)∼ fGσ,s(Rn), (3) andso thestatementofPaley-WienerTheorem stillholdsforfunctionsinHσ,s.
Note alsothatH0,s =G0,s =Hs. Thespace Hσ,s, however,hasanadvantage sincecosh(σ|ξ|) satisfies theestimate
cosh(σ|ξ|)−1(σ|ξ|)2α·cosh(σ|ξ|) (0α1). (4) Thisfollows from
1 Asfarasweknowthe spaceHσ,sisnewtothispaperandwasnotusedbefore.
coshr−1coshr and coshr−1r2coshr (r∈R).
Therefore, inviewof (4),an applicationofourmethod inthe Hσ,s-set upcanyield adecayrateof order t−1/2α for some α ∈ (0,1] provided that the nonlinear estimates in the derivation of the approximate conservation lawcanabsorbtheweight|ξ|2α.Inthisworkwemanaged toobtaintheoptimaldecayrateof t−1/2 (whichcorrespondsto α= 1) fortheCauchyproblem (1).
Weremark thatas aconsequencetheembedding
Hσ,s⊂Hs (σ0) (5)
andtheexistingwell-posednesstheoryinH2(Rn)×L2(Rn),onecanconcludethattheCauchyproblem(1), with 1n3 andp1,hasaunique,global-in-timesolution,giveninitial data(u0,u1)∈Hσ0,2(Rn)× Hσ0,0(Rn) forsomeσ00.
Wenow stateourmain theorem.
Theorem 1(Lowerbound fortheradiusofanalyticity). Let1n3,p1isan odd integerandσ0>0.
If (u0,u1)∈Hσ0,2(Rn)×Hσ0,0(Rn),thenforany T >0thesolutionof (1) satisfies (u, ut)∈C
[0, T];Hσ,2(Rn)
×C1
[0, T];Hσ,0(Rn) with
σ:=σ(T) = min
σ0, cT−12 ,
where c>0isaconstant depending ontheinitialdata norm.
In viewof the Paley-Wiener theorem and (3), this result impliesthat thesolution u(·,t) has radius of analyticityatleastσ(t) foreveryt>0.
Remark 1.The resultof Theorem 1can be extendedto dimension n= 4 if oneuses Strichartzestimates (see[21])insteadofjustSobolevembeddingsaswedointhispaper.It isalsopossible toextendtheresult forn5 butwith someupperboundrestrictiononp.However,wewillnotpursuethese issueshere.
The first step is to prove the following local-in-time result, where the radius of analyticity remains constant.
Theorem 2(Local well-posedness). Let 1 n 3, p 1 is an odd integer and σ >0. Given (u0,u1) ∈ Hσ,2(Rn)×Hσ,0(Rn),thereexistsatimeδ >0and auniquesolution
(u, ut)∈C
[0, δ];Hσ,2(Rn)
×C1
[0, δ];Hσ,0(Rn) of theCauchy problem(1)on Rn×[0,δ].Moreover,theexistencetime isgivenby
δ=c0(u0Hσ,2+u1Hσ,0)−(p−1), (6) forsome constant c0>0.
Thesecond stepintheproofofTheorem1istoproveanapproximateconservation lawforthenormof thesolution,thatinvolvesasmallparameterσ >0 andwhichreducestotheexactenergyconservationlaw inthelimitasσ→0.Toderivethis approximateconservation law,weset
vσ(x, t) := cosh(σ|D|)u(x, t),
whereuisthesolutionto(1).Define amodified energyassociatedwithvσ by Eσ(t) = 1
2
Rn
(∂tvσ)2+ (Δvσ)2+mvσ2+ 2
p+ 1|vσ|p+1 dx.
Theorem 3(Approximate conservation law). Let 1 n 3, p 1 is an odd integer and σ > 0. Given (u0,u1)∈Hσ,2×Hσ,0,letubethelocal solutionof (1)on Rn×[0,δ]that isobtained inTheorem2.Then
sup
0tδEσ(t) =Eσ(0) +δσ2· O
(Eσ(0))p+12
. (7)
Observethatinthelimit as σ→0,werecover the conservationE0(t)=E0(0) for0tδ(note that v0 =u).Applyingthe lasttwo theorems repeatedly,and thenbytaking σ >0 smallenoughwe cancover anytime interval[0,T] andobtainthemainresult,Theorem 1.
Notation.For any positive numbers a and b, the notation a b stands for a cb, where c is a positive constantthatmaychangefrom linetoline.Moreover,wedenotea∼b whenabandba.
InthenextsectionsweproveTheorems2,3and1.
2. ProofofTheorem2
Theorem2caneasilybeprovedusingenergyinequality,Sobolevembeddingandastandardcontraction argument.Indeed,consider theCauchyproblem forthelinearbeam equation
utt+
m+ Δ2 u=F, (u, ut)|t=0= (u0, u1) whosesolutionisgivenbyDuhamel’sformula
u(t) =Sm (t)u0+Sm(t)u1+ t
0
Sm(t−s)F(s)ds, (8)
where
Sm(t) = sin (tΔm) Δm
.
Applyingcosh(σ|D|) to(8) andtakingtheH2-normonbothsidesyieldstheenergyinequality
sup
0tδ
(uHσ,2+utHσ,0)u0Hσ,2+u1Hσ,0+ δ 0
F(s)Hσ,0 ds (9)
forsomeδ >0.
Nowconsider theintegralformulationof(1),
u(t) =Sm (t)u0+Sm(t)u1+ t
0
Sm(t−s)up(s)ds, (10)
where weusedthefactthat|u|p−1u=up foroddp.
Thenby(9) andastandardcontractionargument,Theorem2reducestoprovingthenonlinearestimate
upHσ,0upHσ,2, (11)
whichisalso equivalent,by(3),toproving
upGσ,0upGσ,2.
SettingU = exp(σ|D|)u, thisestimatereducesfurtherto
exp(σ|D|) [(exp(−σ|D|)U)p]L2x UpH2. (12) ByPlancherel,
LHS (12) =Fx{exp(σ|D|) [(exp(−σ|D|)U)p]}(ξ)L2ξ
=
ξ=p j=1ξj
exp
⎛
⎝σ
⎡
⎣|ξ| − p j=1
|ξj|
⎤
⎦
⎞
⎠p
j=1
U(ξˆ j)dξ1dξ2· · ·dξp
L2ξ
ξ=p j=1ξj
p j=1
|Uˆ(ξj)|dξ1dξ2· · ·dξp
L2ξ
=VpL2x
where V =F−1
|U|
. To obtain thethird line weused thefactthat |ξ| p
j=1|ξj|, whichfollows from thetriangleinequality.
Now bySobolevembedding,
VpL2x=VpL2px VpH2 =UpH2
forall2 p1 if1n4.Thisconcludestheproofof(12),andhence(11).
3. ProofofTheorem 3andTheorem1
Let 1n 3,p 1 is an oddinteger, σ >0, and δ > 0 bethe local existence time forthe solution obtained inTheorem 2,(6).Recall thatvσ(x,t)= cosh(σ|D|)u(x,t), whereuis thesolutionto (1). Thus, u(x,t)= sech(σ|D|)vσ(x,t).
3.1. Proofof Theorem3
Using integrationbypartsandequation (1),weobtain Eσ(t) =
Rn
∂tvσ
∂ttvσ+ Δ2vσ+mv+vσp dx
2 Thisestimatealsoholdsfor1pnn−4 ifn5.
=
Rn
∂tvσ
cosh(σ|D|)
utt+ Δ2u+mu +vpσ
dx
=
Rn
∂tvσ[−cosh(σ|D|)up+vpσ] dx
=
Rn
∂tvσ·Np(vσ) dx,
where
Np(vσ) =vσp−cosh(σ|D|) [sech(σ|D|)vσ]p. Therefore,
Eσ(t) =Eσ(0) + t 0
Rn
∂tvσ(x, s)·Np(vσ(x, s))dxds. (13)
Wenowstateakeyestimatethatwillbe provedinthenextsection.
Lemma1.For∂tvσ∈L2x and vσ∈H2,wehavetheestimate
Rn
∂tvσ·NP(vσ)dx Cσ2∂tvσL2xvσpH2 (14)
forsomeconstant C >0.
Nowweuse(13) and(14) toobtaintheapriorienergyestimate
0tδsup Eσ(t) =Eσ(0) +δσ2· O
∂tvσL∞δ L2xvσpL∞δH2
, (15)
wherewe usethenotation
L∞δ X :=L∞t X([0, δ]×Rn) withX =L2x orH2.
AsaconsequenceofTheorem 2weget
vσL∞δH2+∂tvσL∞δ L2x =uL∞δ Hσ,2+utL∞δ Hσ,0
C(u0Hσ,2+u1Hσ,0)
=C
vσ(·,0)H2+∂tvσ(·,0)L2x
.
(16)
Since
Eσ(0) = 1 2
Rn
[∂tvσ(x,0)]2+ (Δvσ(x,0))2+m[vσ(x,0)]2+ 2
p+ 1|vσ(x,0)|p+1 dx
vσ(·,0)H2+∂tvσ(·,0)L2x2
itfollows from(16) that
vσL∞δ H2+∂tvσL∞δ L2x [Eσ(0)]12. (17) Finally,using (17) in(15) weobtainthedesiredestimate(7).
3.2. Proofof Theorem1
Supposethat(u0,u1)∈Hσ0,2×Hσ0,0 forsomeσ0>0.This implies
vσ0(·,0) = cosh(σ0|D)|)u0∈H2, ∂tvσ0(·,0) = cosh(σ0|D)|)u1∈L2. Then bySobolevembedding
Eσ0(0)vσ0(·,0)2H2+∂tvσ0(·,0)2L2x+vσ0(·,0)p+1H2 <∞.
Now followingtheargumentin[27] (seealso[25])wecanconstructasolutionon[0,T] forarbitrarilylarge time T by applying the approximate conservation (7), so as to repeat the local result in Theorem 3 on successive shorttimeintervalsofsizeδtoreachT byadjustingthestripwidthparameterσ∈(0,σ0] ofthe solutionaccordingtothesizeof T.
Thegoalistoprovethatforagivenparameterσ∈(0,σ0] and largeT >0, sup
t∈[0,T]Eσ(t)2Eσ0(0) for σ=c/√
T , (18)
where c>0 dependsonlyontheinitialdatanorm,σ0andp.ThiswouldimplyEσ(t)<∞forallt∈[0,T], and hence
(u, ut)(·, t)∈Hσ,2×Hσ,0 for σ=c/√
T and t∈[0, T].
Toprove(18) firstobservethatforagivenparameterσ∈(0,σ0] and0< t0δwehavebyTheorems2 and 3,
sup
t∈[0,t0]Eσ(t)Eσ(0) +Cδσ2(Eσ(0))p+12 Eσ0(0) +Cδσ2(Eσ0(0))p+12 ,
where we also used thefactthe Eσ(0)Eσ0(0) forσ σ0;this holds sincecoshr is increasing forr0.
Thus,
sup
t∈[0,t0]
Eσ(t)2Eσ0(0), (19)
provided
Cδσ2(Eσ0(0))p+12 Eσ0(0). (20) ThenwecanapplyTheorem2,withinitialtimet=t0andthetimestepδasin(6) toextendthesolution to [t0,t0+δ].ByTheorem 3,theapproximateconservationlaw, and(19) wehave
sup
[t0,t0+δ]
Eσ(t)Eσ(t0) +Cδσ2(2Eσ0(0))p+12 . (21)
Inthisway,wecovertimeintervals [0,δ], [δ,2δ] etc.,andobtain Eσ(δ)Eσ(0) +Cδσ2(2Eσ0(0))p+12
Eσ(2δ)Eσ(δ) +Cδσ2(2Eσ0(0))p+12 Eσ(0) +C2δσ2(2Eσ0(0))p+12
· · ·
Eσ(nδ)Eσ(0) +Cnδσ2(2Eσ0(0))p+12 . Thiscontinuesas longas
Cnδσ2(2Eσ0(0))p+12 Eσ0(0) (22) sincethen
Eσ(nδ)Eσ(0) +Cnδσ2(2Eσ0(0))p+12 2Eσ0(0) sowe cantakecareonemorestep.Note alsothat(20) followsfrom(22).
Thus,theinductionstopsat thefirstintegernforwhich
Cnδσ2(2Eσ0(0))p+12 >Eσ0(0) andthenwehavereachedthefinaltime
T =nδ, when
CT σ2(2Eσ0(0))p−12 >1.
NotethatT willbearbitrarily largeforσ >0 smallenough.Moreover, σ2> C−1(2Eσ0(0))−p+12 ·T−1 proving
σcT−12,
asclaimed.
4. ProofofLemma1
Firstweprovethefollowingstwo LemmaswhicharecrucialintheproofofLemma1.
Lemma2.Fora,b∈R,wehave
|coshb−cosha| 1 2
b2−a2 (coshb+ cosha). (23)
Proof. Note thatcoshris an increasingfunction forr0.Since coshr is even,i.e., coshr = cosh|r|, we mayassumea,b0.Bysymmetrywemayalsoassumeba.Then
coshb−cosha= b a
s 0
coshr dr dscoshb b a
s 0
dr ds=1 2
b2−a2
coshb.
Lemma 3.Letξ=p
j=1ξj forξj∈Rn,wherep1isaninteger.Then
1−cosh|ξ| p j=1
sech|ξj| 2p
p j=k=1
|ξj||ξk|. (24)
Proof. Firstobserve that p j=1
cosh|ξj|= 21−p
s2,s3···,sp
cosh
⎛
⎝|ξ1|+ p j=2
sj|ξj|
⎞
⎠, (25)
where s2,s3,· · ·,spareindependentsigns(+ or−).Indeed,thecasep= 1 isobvious, whilethecasep= 2 follows fromtheidentity
2 cosh|ξ1|cosh|ξ2|= cosh(|ξ1| − |ξ2|) + cosh(|ξ1|+|ξ2|), whichalso implies(25) forp= 3.Thegeneralcasefollowsbyinduction.
It followsfrom(25) that
cosh
⎛
⎝|ξ1|+ p j=2
sj|ξj|
⎞
⎠+ cosh|ξ|2p p j=1
cosh(|ξj|). (26)
Observealsothat
⎛
⎝|ξ1|+ p j=2
sj|ξj|
⎞
⎠
2
− |ξ|2 2
p j=k=1
|ξj||ξk|. (27)
Applying(25),(23),(26) and(27) weobtain
p j=1
cosh|ξj| −cosh|ξ| =
21−p
s2,s3···,sp
cosh
⎛
⎝|ξ1|+ p j=2
sj|ξj|
⎞
⎠−cosh|ξ|
=
21−p
s2,s3···,sp
⎡
⎣cosh
⎛
⎝|ξ1|+ p j=2
sj|ξj|
⎞
⎠−cosh|ξ|
⎤
⎦
21−p
s2,s3···,sp
1 2
⎛
⎝|ξ1|+ p j=2
sj|ξj|
⎞
⎠
2
− |ξ|2
⎛
⎝cosh
⎛
⎝|ξ1|+ p j=2
sj|ξj|
⎞
⎠+ cosh|ξ|
⎞
⎠
21−p
s2,s3···,sp
⎛
⎝ p
j=k=1
|ξj||ξk|
⎞
⎠·2p p j=1
cosh(|ξj|)
= 2p
⎛
⎝ p
j=k=1
|ξj||ξk|
⎞
⎠p
j=1
cosh(|ξj|).
Dividingby!p
j=1cosh(|ξj|) yieldsthedesiredestimate (24).
NowweproveLemma1.Recallthat
Np(vσ) =vσp−cosh(σ|D|) [sech(σ|D|)vσ]p. ByCauchy-Schwarzinequality
Rn
∂tvσ·NP(vσ)dx ∂tvσL2xNP(vσ)L2x,
andso wearereducedtoprove
NP(vσ)L2x σ2vσpH2. (28) TakingtheFouriertransformwehave
Fx[Np(vσ)](ξ) =
ξ=p j=1ξj
⎡
⎣1−cosh(σ|ξ|) p j=1
sech(σ|ξj|)
⎤
⎦p
j=1
"
vσ(ξj)dξ1dξ2· · ·dξp (29)
Bysymmetry,wemayassume|ξ1||ξ2|· · ·|ξp|.ByLemma3,
1−cosh(σ|ξ|) p j=1
sech(σ|ξj|) 2p
p j=k=1
|σξj||σξk|
c(p)σ2|ξ1||ξ2|,
(30)
wherec(p)=p22p.Nowset
wσ:=Fx−1(|"vσ|). Thenapplying(30) to(29) weobtain
|Fx[Np(vσ)](ξ)|c(p)σ2
ξ=p j=1ξj
|ξ1||ξ2||"vσ(ξ1)||"vσ(ξ2)| p j=3
|"vσ(ξj)|dξ1dξ2· · ·dξp
=c(p)σ2
ξ=p j=1ξj
|ξ1||ξ2|w"σ(ξ1)w"σ(ξ2) p j=3
|w"σ(ξj)|dξ1dξ2· · ·dξp
=c(p)σ2Fx
(|D|wσ)2·wpσ−2 (ξ).
Therefore, usingPlancherel,HölderandSobolevembeddingweobtain Np(vσ)L2xc(p)σ2(|D|wσ)2·wp−2σ L2x
c(p)σ2|D|wσ2L4xwσpL−∞2 x
Cσ2wσ2H2wσp−2H2
=Cσ2vσpH2
as desiredin(28).
References
[1]B.Belayneh, E. Tegegn,A. Tesfahun,Lower bound on theradius of analyticityof solution for fifthorder KdV-BBM equation,NoDEANonlinearDiffer.Equ.Appl.29 (6)(2022).
[2]M.Bjorkavag,H.Kalisch,ExponentialconvergenceofaspectralprojectionoftheKdVequation,Phys.Lett.A365 (4) (2007)278–283.
[3]F.P.Bretherton,Resonantinteractionbetweenwaves:thecaseofdiscreteoscillations,J.FluidMech.20(1964)457–479.
[4]P.Constantin,C.R.Doering,E.S.Titi,Rigorousestimatesofsmallscalesinturbulentflows,J.Math.Phys.37 (12)(1996) 6152–6156.
[5]A.B.Ferrari,E.S.Titi,Gevreyregularityfornonlinearanalyticparabolicequations,Commun.PartialDiffer.Equ.23 (1–2) (1998)1–16.
[6]C.Foias,R.Temam,GevreyclassregularityforthesolutionsoftheNavier-Stokesequations,J.Funct.Anal.87(1989) 359–369.
[7]H.Hannah,A.A.Himonas,G.Petronilho,GevreyregularityoftheperiodicgKdVequation,J.Differ.Equ.250 (5)(2011) 2581–2600.
[8]A.A. Himonas,K. Henrik, S.Selberg, Onpersistence ofspatial analyticity forthe dispersion-generalizedperiodickdv equation,NonlinearAnal.,RealWorldAppl.38(2017)35–48.
[9]A.A.Himonas,G.Petronilho,Analyticwell-posednessofperiodicgKdV,J.Differ.Equ.253 (11)(2012)3101–3112.
[10]D.A.Jones,E.S.Titi,Aremarkonquasi-stationaryapproximateinertialmanifoldsfortheNavier-Stokesequations,SIAM J.Math.Anal.25(1994)894–914.
[11]T.Kato,K.Masuda,Nonlinear evolutionequationsandanalyticityI,Ann. Inst.HenriPoincaré,Anal. NonLinéaire3 (1986)455–467.
[12]Y.Katznelson,AnIntroductiontoHarmonicAnalysis,correcteded.,DoverPublications,Inc.,NewYork,1976.
[13]S.P.Levandosky,Stabilityandinstabilityoffourth-ordersolitarywaves,J.Dyn.Differ.Equ.10 (1)(1998)151–188.
[14]S.P.Levandosky,Decayestimatesforfourthorderwaveequations,J.Differ.Equ.143 (2)(1998)360–413.
[15]S.P.Levandosky,W.A.Strauss,Timedecayforthenonlinearbeamequation,MethodsAppl.Anal.7 (3)(2000)479–487.
[16]C.D.Levermore,M.Oliver,AnalyticityofsolutionsforageneralizedEulerequation,J.Differ.Equ.133 (2)(1997)321–339.
[17]A.E.H.Love,ATreatiseontheMathematicalTheoryofElasticity,Dover,NewYork,1944.
[18]M. Oliver,E.S. Titi, Analyticity of theattractor andthe number of determining nodesfor a weakly damped driven nonlinearSchrödingerequation,IndianaUniv.Math.J.47(1998)49–73.
[19]M.Oliver,E.S.Titi,Onthedomainofanalyticityofsolutionsofsecondorderanalyticnonlineardifferentialequations,J.
Differ.Equ.174 (1)(2001)55–74.
[20]S.Panizzi,OnthedomainofanalyticityofsolutionstosemilinearKlein-Gordonequations,NonlinearAnal.75 (5)(2012) 2841–2850.
[21]B.Pausader,ScatteringandtheLevandosky-Straussconjectureforfourthordernonlinearwaveequations,J.Differ.Equ.
241(2007)237–278.
[22]B.Pausader,W.Strauss,Analyticityofthescatteringoperatorforthebeamequation,DiscreteContin.Dyn.Syst.25 (2) (2009)617–626.
[23]B.Pausader,ScatteringandtheLevandosky-Straussconjectureforfourth-ordernonlinearwaveequations,J.Differ.Equ.
241 (2)(2007)237–278.
[24]B.Pausader,Scatteringforthedefocusingbeamequationinlowdimensions,IndianaUniv.Math.J.59 (3)(2010)791–822.
[25] S.Selberg,D.O.daSilva,LowerboundsontheradiusofspatialanalyticityfortheKdVequation,Ann.HenriPoincaré (2016),https://doi.org/10.1007/s00023-016-0498-1.
[26]S.Selberg,A.Tesfahun,OntheradiusofspatialanalyticityforthequarticgeneralizedKdVequation,Ann.HenriPoincaré 18(2017)3553–3564.
[27]S.Selberg,A.Tesfahun,Ontheradiusofspatialanalyticityforthe1dDirac-Klein-Gordonequations,J.Differ.Equ.259 (2015)4732–4744.
[28]C.Sulem,P-L. Sulem,H.Frisch,Tracingcomplexsingularitieswithspectralmethods,J.Comput.Phys.50 (8)(1983) 138–161.
[29]A.Tesfahun, Ontheradius of spatialanalyticity for cubicnonlinear Schrodingerequation, J.Differ. Equ.263 (2017) 7496–7512.
[30] A.Tesfahun,AsymptoticlowerboundfortheradiusofspatialanalyticitytosolutionsofKdVequation,Commun.Contemp.
Math.21 (08)(2019)1850061,https://doi.org/10.1142/S021919971850061X.
[31]A. Tesfahun, Remarkon the persistenceof spatial analyticity for cubic nonlinearSchrödinger equation on thecircle, NoDEANonlinearDiffer.Equ.Appl.26(2019)12.
[32]J.Zhang, Globalexistencefor roughsolutionsof afourth-ordernonlinearwaveequation,J.Math.Anal.Appl.369 (2) (2010)635–644.