• Tidak ada hasil yang ditemukan

ON THE PERSISTENCE OF SPATIAL ANALYTICITY FOR THE BEAM EQUATION

N/A
N/A
Protected

Academic year: 2023

Membagikan "ON THE PERSISTENCE OF SPATIAL ANALYTICITY FOR THE BEAM EQUATION"

Copied!
13
0
0

Teks penuh

(1)

Contents lists available atScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On the persistence of spatial analyticity for the beam equation

TamiratT. Duferab, Sileshi Mebrateb, Achenef Tesfahuna,∗

a DepartmentofMathematics,NazarbayevUniversity,QabanbaiBatyrAvenue53,010000Nur-Sultan, Kazakhstan

bDepartmentofMathematics,AdamaUniversityofScienceandTechnology,Ethiopia

a r t i cl e i n f o a b s t r a c t

Articlehistory:

Received11September2021 Availableonline11January2022 Submittedby H.Frankowska

Keywords:

Beamequation

Globalwell-posednesslowerbound Radiusofanalyticity

Gevreyspaces

Persistenceofspatialanalyticityisstudiedforsolutionofthebeamequationutt+ (m+ Δ2)u+|u|p−1u= 0 on Rn×R.Inparticular,fora classof analyticinitial datawithauniformradiusofanalyticityσ0,weobtainanasymptoticlowerbound σ(t)c/

tontheuniformradiusofanalyticityσ(t) ofsolutionu(·,t),ast→ ∞.

©2022ElsevierInc.Allrightsreserved.

1. Introduction

ThispaperisconcernedwithpersistenceofspatialanalyticityofsolutionsfortheCauchyproblemofthe fourthorderwaveequation

utt+

m+ Δ2

u+|u|p−1u= 0,

(u, ut)|t=0= (u0, u1), (1)

whereu:Rn×R−→R,p1,andm>0.

Equationslike(1) arealsoreferredtoasBretherton’stypeequationsorthebeamequation.Theoriginal Brethertonequation,writtendownforn= 1 by Bretherton[3],arised inthestudyofweakinteractionsof dispersivewaves.Asimilarequationforn= 2 wasproposedinLove[17] forthemotionofaclampedplate.

Recentdevelopmentsinarbitrarydimensionwereestablishedin[13–15,21,22].

Questionssuchaswell-posedness,blow-upinfinitetime,longtimeexistence,andtheexistenceofuniform bounds for global solutions of (1) are addressed by several authors. For instance, local well-posedness, scattering, and stability inthe energy spaceH2(Rn)×L2(Rn) was studiedby Levandoskyin[13,14] and

* Correspondingauthor.

E-mailaddresses:[email protected](T.T. Dufera),[email protected](S. Mebrate),[email protected] (A. Tesfahun).

https://doi.org/10.1016/j.jmaa.2022.126001 0022-247X/©2022ElsevierInc. Allrightsreserved.

(2)

LevandoskyandStrauss[15], resultswhichwereextendedbyPausader [23,24].Low-regularityglobalwell- posedness was also shownby Zhang [32] in dimensions 3 n 7 in the cubic case for data (u0,u1) Hs(Rn)×Hs2(Rn) satisfying

s >min

n−2 2 , n

4

.

Weremark thattheenergy

E(t) =1 2

Rn

u2t+ (Δu)2+mu2+ 2

p+ 1|u|p+1 dx is conservedbytheflowof(1),i.e., E(t)= const. forallt.

Inthispaper,weshallstudythepersistenceofspatialanalyticityforthesolutionoftheCauchyproblem (1),giveninitialdatainaclassofanalyticfunctions.BythePaley-WienerTheorem,theradiusofanalyticity ofafunctioncanberelatedtodecaypropertiesofitsFouriertransform.Itisthereforenaturaltotakedata for(1) intheGevreyspaceGσ,s(Rn),definedbythenorm

fGσ,s(Rn)=exp(σ|ξ|)ξsfˆL2ξ(Rn) (σ0), where ξ=

1 +|ξ|2.Whenσ= 0,thisspacecoincideswith theSobolevspaceHs(Rn),withnorm fHs(Rn)=ξsfˆL2ξ(Rn),

whileforanyσ >0,anyfunctioninGσ,s(Rn) hasaradiusofanalyticityofatleastσateachpointx∈Rn. This fact is contained in thefollowing theorem, whose proof can be found in[12] in the case s = 0 and n= 1;thegeneralcasefollows fromasimplemodification.

Paley-WienerTheorem.Letσ >0ands∈R.Iff ∈Gσ,s(Rn),thenf istherestrictiontoRn ofafunction F whichisholomorphicin thestrip

Sσ ={x+iy∈Cn : |y|< σ}. Moreover, thefunctionF satisfiestheestimates

sup

|y|<σF(·+iy)Hs <∞.

Information about thedomain of analyticity of asolution to apartial differential equation (PDE) can be used to gaina quantitative understandingof the structure of the equation, and to obtain insight into underlyingphysicalprocesses.Thestudyofreal-analyticsolutionstononlinearPDEhasdevelopedoverthe lastthreedecades.StartingwiththeworksofKatoandMasuda[11] fordispersivewave-typeequations,and Foias andTemam[6] fortheNavier-Stokesequations, analyticfunctionspaces havebecomepopulartools for the study of avarietyof questionsconnected with nonlinearevolutionary PDE. In particular, theuse of Gevrey-typespaceshasgiven riseto anumberof importantresultsinthestudy oflongtime dynamics of dissipative equation, such as estimating the asymptotic degrees of freedom (e.g., determining nodes) [18], approximating theglobal attractors/inertial manifolds [10] and arigorousestimate of the Reynold’s scale [4].

Given anonlineardispersivePDEintheindependentvariables(t,x),consider theCauchyproblemwith real analytic initial data at t= 0. If these data haveauniform radius of analyticityσ0, inthesense that

(3)

there exists aholomorphic extension to the complex strip of widthσ0, then we ask whetherthe solution at some later time t >0 also hasa uniform radius of analyticity σ= σ(t) >0, inwhich case we would, moreover,like to haveanexplicit lowerbound onσ(t).Heuristically,thepicture oneshouldhaveinmind isthatσ(t) isthedistancefromthex-axistothenearestcomplexsingularityoftheholomorphicextension ofthe solutionattime t. Ifat sometime tthis singularity actuallyhits thex-axis,thenthesolutionitself suffers a breakdown of regularity. This point of view is thebasis for the widely used singularity tracking method[28] innumericalanalysis,whereaspectralmethodis usedtoobtainanumericalestimateofσ(t).

Thisestimatecanthenbeusedtopredicteithertheformationofasingularityinfinitetimeoralternatively global regularity. Even in cases where singularity formation does not occur (as is the case for the beam equation), it is still of interest to obtain lower bounds on σ(t), as this has implications for the rate of convergenceofspectral methodsfortheequationoneislookingat (see[2] foranexampleofthis).

The spaces Gσ,s(Rn) were introduced by Foias and Temam [6] (see also [11]) in the study of spatial analyticityofsolutionstotheNavier-Stokesequations,andvarious refinementsoftheirmethodhavesince beenappliedtoprovelowerboundsontheradiusofspatialanalyticityforanumberofnonlinearevolution equations [5,7–9,16,19,20,25–27,29–31]. The method used here for proving lower bounds on the radius of analyticity was introduced in [27] in the context of the 1D Dirac-Klein-Gordon equations. This method is based on an approximate conservation laws, and has been applied to prove an algebraic lower bound (decayrate)of ordert1forsomeα∈(0,1] ontheradiusofspatialanalyticityofsolutionstoanumber ofnonlinear dispersiveandwave equations(seee.g.,[1,25–27,29–31]). Theoptimaldecayratethatcanbe obtainedinthissettingis1/t,whichcorresponds toα= 1 (seee.g.,[1,29,31]).Thisdecayrateisrelatedto thebehaviorof theexponentialweight,exp(σ|ξ|),thatsitsintheGevreynorm. Morespecifically,itstems from thesimpleestimate

exp(σ|ξ|)1(σ|ξ|)α·exp(σ|ξ|) (0α1),

whichfollowsfrom aninterpolationbetweenexpr−1expr andexpr−1rexpr forr0.

Inthe presentwork, inanattemptto improve thedecay rateobtainedso far, weintroduce amodified Gevreynorm1 by

fHσ,s(Rn)=cosh(σ|ξ|)ξsfˆL2ξ(Rn) (σ0),

wheretheexponentialweightexp(σ|ξ|) intheGevreynormisnowreplacedbyahyperbolicweightcosh(σ|ξ|).

Thesetwo weightsareequivalent inthesensethat 1

2exp(σ|ξ|)cosh(σ|ξ|)exp(σ|ξ|). (2) Thus,theassociatedGσ,s andHσ,s–normsareequivalent, i.e.,

fHσ,s(Rn)∼ fGσ,s(Rn), (3) andso thestatementofPaley-WienerTheorem stillholdsforfunctionsinHσ,s.

Note alsothatH0,s =G0,s =Hs. Thespace Hσ,s, however,hasanadvantage sincecosh(σ|ξ|) satisfies theestimate

cosh(σ|ξ|)1(σ|ξ|)2α·cosh(σ|ξ|) (0α1). (4) Thisfollows from

1 Asfarasweknowthe spaceHσ,sisnewtothispaperandwasnotusedbefore.

(4)

coshr−1coshr and coshr−1r2coshr (r∈R).

Therefore, inviewof (4),an applicationofourmethod inthe Hσ,s-set upcanyield adecayrateof order t1/2α for some α (0,1] provided that the nonlinear estimates in the derivation of the approximate conservation lawcanabsorbtheweight|ξ|2α.Inthisworkwemanaged toobtaintheoptimaldecayrateof t1/2 (whichcorrespondsto α= 1) fortheCauchyproblem (1).

Weremark thatas aconsequencetheembedding

Hσ,s⊂Hs (σ0) (5)

andtheexistingwell-posednesstheoryinH2(Rn)×L2(Rn),onecanconcludethattheCauchyproblem(1), with 1n3 andp1,hasaunique,global-in-timesolution,giveninitial data(u0,u1)∈Hσ0,2(Rn)× Hσ0,0(Rn) forsomeσ00.

Wenow stateourmain theorem.

Theorem 1(Lowerbound fortheradiusofanalyticity). Let1n3,p1isan odd integerandσ0>0.

If (u0,u1)∈Hσ0,2(Rn)×Hσ0,0(Rn),thenforany T >0thesolutionof (1) satisfies (u, ut)∈C

[0, T];Hσ,2(Rn)

×C1

[0, T];Hσ,0(Rn) with

σ:=σ(T) = min

σ0, cT12 ,

where c>0isaconstant depending ontheinitialdata norm.

In viewof the Paley-Wiener theorem and (3), this result impliesthat thesolution u(·,t) has radius of analyticityatleastσ(t) foreveryt>0.

Remark 1.The resultof Theorem 1can be extendedto dimension n= 4 if oneuses Strichartzestimates (see[21])insteadofjustSobolevembeddingsaswedointhispaper.It isalsopossible toextendtheresult forn5 butwith someupperboundrestrictiononp.However,wewillnotpursuethese issueshere.

The first step is to prove the following local-in-time result, where the radius of analyticity remains constant.

Theorem 2(Local well-posedness). Let 1 n 3, p 1 is an odd integer and σ >0. Given (u0,u1) Hσ,2(Rn)×Hσ,0(Rn),thereexistsatimeδ >0and auniquesolution

(u, ut)∈C

[0, δ];Hσ,2(Rn)

×C1

[0, δ];Hσ,0(Rn) of theCauchy problem(1)on Rn×[0].Moreover,theexistencetime isgivenby

δ=c0(u0Hσ,2+u1Hσ,0)(p1), (6) forsome constant c0>0.

Thesecond stepintheproofofTheorem1istoproveanapproximateconservation lawforthenormof thesolution,thatinvolvesasmallparameterσ >0 andwhichreducestotheexactenergyconservationlaw inthelimitasσ→0.Toderivethis approximateconservation law,weset

(5)

vσ(x, t) := cosh(σ|D|)u(x, t),

whereuisthesolutionto(1).Define amodified energyassociatedwithvσ by Eσ(t) = 1

2

Rn

(tvσ)2+ (Δvσ)2+mvσ2+ 2

p+ 1|vσ|p+1 dx.

Theorem 3(Approximate conservation law). Let 1 n 3, p 1 is an odd integer and σ > 0. Given (u0,u1)∈Hσ,2×Hσ,0,letubethelocal solutionof (1)on Rn×[0]that isobtained inTheorem2.Then

sup

0tδEσ(t) =Eσ(0) +δσ2· O

(Eσ(0))p+12

. (7)

Observethatinthelimit as σ→0,werecover the conservationE0(t)=E0(0) for0(note that v0 =u).Applyingthe lasttwo theorems repeatedly,and thenbytaking σ >0 smallenoughwe cancover anytime interval[0,T] andobtainthemainresult,Theorem 1.

Notation.For any positive numbers a and b, the notation a b stands for a cb, where c is a positive constantthatmaychangefrom linetoline.Moreover,wedenotea∼b whenabandba.

InthenextsectionsweproveTheorems2,3and1.

2. ProofofTheorem2

Theorem2caneasilybeprovedusingenergyinequality,Sobolevembeddingandastandardcontraction argument.Indeed,consider theCauchyproblem forthelinearbeam equation

utt+

m+ Δ2 u=F, (u, ut)|t=0= (u0, u1) whosesolutionisgivenbyDuhamel’sformula

u(t) =Sm (t)u0+Sm(t)u1+ t

0

Sm(t−s)F(s)ds, (8)

where

Sm(t) = sin (tΔm) Δm

.

Applyingcosh(σ|D|) to(8) andtakingtheH2-normonbothsidesyieldstheenergyinequality

sup

0tδ

(uHσ,2+utHσ,0)u0Hσ,2+u1Hσ,0+ δ 0

F(s)Hσ,0 ds (9)

forsomeδ >0.

Nowconsider theintegralformulationof(1),

u(t) =Sm (t)u0+Sm(t)u1+ t

0

Sm(t−s)up(s)ds, (10)

(6)

where weusedthefactthat|u|p−1u=up foroddp.

Thenby(9) andastandardcontractionargument,Theorem2reducestoprovingthenonlinearestimate

upHσ,0upHσ,2, (11)

whichisalso equivalent,by(3),toproving

upGσ,0upGσ,2.

SettingU = exp(σ|D|)u, thisestimatereducesfurtherto

exp(σ|D|) [(exp(−σ|D|)U)p]L2x UpH2. (12) ByPlancherel,

LHS (12) =Fx{exp(σ|D|) [(exp(−σ|D|)U)p]}(ξ)L2ξ

=

ξ=p j=1ξj

exp

σ

|ξ| − p j=1

j|

p

j=1

U(ξˆ j)12· · ·dξp

L2ξ

ξ=p j=1ξj

p j=1

|Uˆ(ξj)|dξ12· · ·dξp

L2ξ

=VpL2x

where V =F1

|U|

. To obtain thethird line weused thefactthat |ξ| p

j=1j|, whichfollows from thetriangleinequality.

Now bySobolevembedding,

VpL2x=VpL2px VpH2 =UpH2

forall2 p1 if1n4.Thisconcludestheproofof(12),andhence(11).

3. ProofofTheorem 3andTheorem1

Let 1n 3,p 1 is an oddinteger, σ >0, and δ > 0 bethe local existence time forthe solution obtained inTheorem 2,(6).Recall thatvσ(x,t)= cosh(σ|D|)u(x,t), whereuis thesolutionto (1). Thus, u(x,t)= sech(σ|D|)vσ(x,t).

3.1. Proofof Theorem3

Using integrationbypartsandequation (1),weobtain Eσ(t) =

Rn

tvσ

ttvσ+ Δ2vσ+mv+vσp dx

2 Thisestimatealsoholdsfor1pnn4 ifn5.

(7)

=

Rn

tvσ

cosh(σ|D|)

utt+ Δ2u+mu +vpσ

dx

=

Rn

tvσ[cosh(σ|D|)up+vpσ] dx

=

Rn

tvσ·Np(vσ) dx,

where

Np(vσ) =vσpcosh(σ|D|) [sech(σ|D|)vσ]p. Therefore,

Eσ(t) =Eσ(0) + t 0

Rn

tvσ(x, s)·Np(vσ(x, s))dxds. (13)

Wenowstateakeyestimatethatwillbe provedinthenextsection.

Lemma1.For∂tvσ∈L2x and vσ∈H2,wehavetheestimate

Rn

tvσ·NP(vσ)dx 2tvσL2xvσpH2 (14)

forsomeconstant C >0.

Nowweuse(13) and(14) toobtaintheapriorienergyestimate

0sup Eσ(t) =Eσ(0) +δσ2· O

tvσLδ L2xvσpLδH2

, (15)

wherewe usethenotation

Lδ X :=Lt X([0, δ]×Rn) withX =L2x orH2.

AsaconsequenceofTheorem 2weget

vσLδH2+tvσLδ L2x =uLδ Hσ,2+utLδ Hσ,0

C(u0Hσ,2+u1Hσ,0)

=C

vσ(·,0)H2+tvσ(·,0)L2x

.

(16)

Since

Eσ(0) = 1 2

Rn

[tvσ(x,0)]2+ (Δvσ(x,0))2+m[vσ(x,0)]2+ 2

p+ 1|vσ(x,0)|p+1 dx

vσ(·,0)H2+tvσ(·,0)L2x2

(8)

itfollows from(16) that

vσLδ H2+tvσLδ L2x [Eσ(0)]12. (17) Finally,using (17) in(15) weobtainthedesiredestimate(7).

3.2. Proofof Theorem1

Supposethat(u0,u1)∈Hσ0,2×Hσ0,0 forsomeσ0>0.This implies

vσ0(·,0) = cosh(σ0|D)|)u0∈H2, tvσ0(·,0) = cosh(σ0|D)|)u1∈L2. Then bySobolevembedding

Eσ0(0)vσ0(·,0)2H2+tvσ0(·,0)2L2x+vσ0(·,0)p+1H2 <∞.

Now followingtheargumentin[27] (seealso[25])wecanconstructasolutionon[0,T] forarbitrarilylarge time T by applying the approximate conservation (7), so as to repeat the local result in Theorem 3 on successive shorttimeintervalsofsizeδtoreachT byadjustingthestripwidthparameterσ∈(00] ofthe solutionaccordingtothesizeof T.

Thegoalistoprovethatforagivenparameterσ∈(00] and largeT >0, sup

t[0,T]Eσ(t)2Eσ0(0) for σ=c/√

T , (18)

where c>0 dependsonlyontheinitialdatanorm,σ0andp.ThiswouldimplyEσ(t)<∞forallt∈[0,T], and hence

(u, ut)(·, t)∈Hσ,2×Hσ,0 for σ=c/√

T and t∈[0, T].

Toprove(18) firstobservethatforagivenparameterσ∈(00] and0< t0δwehavebyTheorems2 and 3,

sup

t[0,t0]Eσ(t)Eσ(0) +Cδσ2(Eσ(0))p+12 Eσ0(0) +Cδσ2(Eσ0(0))p+12 ,

where we also used thefactthe Eσ(0)Eσ0(0) forσ σ0;this holds sincecoshr is increasing forr0.

Thus,

sup

t∈[0,t0]

Eσ(t)2Eσ0(0), (19)

provided

Cδσ2(Eσ0(0))p+12 Eσ0(0). (20) ThenwecanapplyTheorem2,withinitialtimet=t0andthetimestepδasin(6) toextendthesolution to [t0,t0+δ].ByTheorem 3,theapproximateconservationlaw, and(19) wehave

sup

[t0,t0+δ]

Eσ(t)Eσ(t0) +Cδσ2(2Eσ0(0))p+12 . (21)

(9)

Inthisway,wecovertimeintervals [0], [δ,2δ] etc.,andobtain Eσ(δ)Eσ(0) +Cδσ2(2Eσ0(0))p+12

Eσ(2δ)Eσ(δ) +Cδσ2(2Eσ0(0))p+12 Eσ(0) +C2δσ2(2Eσ0(0))p+12

· · ·

Eσ()Eσ(0) +Cnδσ2(2Eσ0(0))p+12 . Thiscontinuesas longas

Cnδσ2(2Eσ0(0))p+12 Eσ0(0) (22) sincethen

Eσ()Eσ(0) +Cnδσ2(2Eσ0(0))p+12 2Eσ0(0) sowe cantakecareonemorestep.Note alsothat(20) followsfrom(22).

Thus,theinductionstopsat thefirstintegernforwhich

Cnδσ2(2Eσ0(0))p+12 >Eσ0(0) andthenwehavereachedthefinaltime

T =nδ, when

CT σ2(2Eσ0(0))p−12 >1.

NotethatT willbearbitrarily largeforσ >0 smallenough.Moreover, σ2> C1(2Eσ0(0))−p+12 ·T1 proving

σcT12,

asclaimed.

4. ProofofLemma1

Firstweprovethefollowingstwo LemmaswhicharecrucialintheproofofLemma1.

Lemma2.Fora,b∈R,wehave

|coshb−cosha| 1 2

b2−a2 (coshb+ cosha). (23)

(10)

Proof. Note thatcoshris an increasingfunction forr0.Since coshr is even,i.e., coshr = cosh|r|, we mayassumea,b0.Bysymmetrywemayalsoassumeba.Then

coshb−cosha= b a

s 0

coshr dr dscoshb b a

s 0

dr ds=1 2

b2−a2

coshb.

Lemma 3.Letξ=p

j=1ξj forξjRn,wherep1isaninteger.Then

1cosh|ξ| p j=1

sechj| 2p

p j=k=1

j||ξk|. (24)

Proof. Firstobserve that p j=1

coshj|= 21p

s2,s3···,sp

cosh

1|+ p j=2

sjj|

, (25)

where s2,s3,· · ·,spareindependentsigns(+ or).Indeed,thecasep= 1 isobvious, whilethecasep= 2 follows fromtheidentity

2 cosh1|cosh2|= cosh(1| − |ξ2|) + cosh(1|+2|), whichalso implies(25) forp= 3.Thegeneralcasefollowsbyinduction.

It followsfrom(25) that

cosh

1|+ p j=2

sjj|

⎠+ cosh|ξ|2p p j=1

cosh(j|). (26)

Observealsothat

1|+ p j=2

sjj|

2

− |ξ|2 2

p j=k=1

j||ξk|. (27)

Applying(25),(23),(26) and(27) weobtain

p j=1

coshj| −cosh|ξ| =

21p

s2,s3···,sp

cosh

1|+ p j=2

sjj|

cosh|ξ|

=

21p

s2,s3···,sp

⎣cosh

1|+ p j=2

sjj|

cosh|ξ|

21−p

s2,s3···,sp

1 2

1|+ p j=2

sjj|

2

− |ξ|2

⎝cosh

1|+ p j=2

sjj|

⎠+ cosh|ξ|

(11)

21−p

s2,s3···,sp

p

j=k=1

j||ξk|

·2p p j=1

cosh(j|)

= 2p

p

j=k=1

j||ξk|

p

j=1

cosh(j|).

Dividingby!p

j=1cosh(j|) yieldsthedesiredestimate (24).

NowweproveLemma1.Recallthat

Np(vσ) =vσpcosh(σ|D|) [sech(σ|D|)vσ]p. ByCauchy-Schwarzinequality

Rn

tvσ·NP(vσ)dx tvσL2xNP(vσ)L2x,

andso wearereducedtoprove

NP(vσ)L2x σ2vσpH2. (28) TakingtheFouriertransformwehave

Fx[Np(vσ)](ξ) =

ξ=p j=1ξj

⎣1cosh(σ|ξ|) p j=1

sech(σ|ξj|)

p

j=1

"

vσ(ξj)12· · ·dξp (29)

Bysymmetry,wemayassume1||ξ2|· · ·|ξp|.ByLemma3,

1cosh(σ|ξ|) p j=1

sech(σ|ξj|) 2p

p j=k=1

|σξj||σξk|

c(p)σ21||ξ2|,

(30)

wherec(p)=p22p.Nowset

wσ:=Fx1(|"vσ|). Thenapplying(30) to(29) weobtain

|Fx[Np(vσ)](ξ)|c(p)σ2

ξ=p j=1ξj

1||ξ2||"vσ(ξ1)||"vσ(ξ2)| p j=3

|"vσ(ξj)|dξ12· · ·dξp

=c(p)σ2

ξ=p j=1ξj

1||ξ2|w"σ(ξ1)w"σ(ξ2) p j=3

|w"σ(ξj)|dξ12· · ·dξp

=c(p)σ2Fx

(|D|wσ)2·wpσ2 (ξ).

(12)

Therefore, usingPlancherel,HölderandSobolevembeddingweobtain Np(vσ)L2xc(p)σ2(|D|wσ)2·wp−2σ L2x

c(p)σ2|D|wσ2L4xwσpL2 x

2wσ2H2wσp−2H2

=2vσpH2

as desiredin(28).

References

[1]B.Belayneh, E. Tegegn,A. Tesfahun,Lower bound on theradius of analyticityof solution for fifthorder KdV-BBM equation,NoDEANonlinearDiffer.Equ.Appl.29 (6)(2022).

[2]M.Bjorkavag,H.Kalisch,ExponentialconvergenceofaspectralprojectionoftheKdVequation,Phys.Lett.A365 (4) (2007)278–283.

[3]F.P.Bretherton,Resonantinteractionbetweenwaves:thecaseofdiscreteoscillations,J.FluidMech.20(1964)457–479.

[4]P.Constantin,C.R.Doering,E.S.Titi,Rigorousestimatesofsmallscalesinturbulentflows,J.Math.Phys.37 (12)(1996) 6152–6156.

[5]A.B.Ferrari,E.S.Titi,Gevreyregularityfornonlinearanalyticparabolicequations,Commun.PartialDiffer.Equ.23 (1–2) (1998)1–16.

[6]C.Foias,R.Temam,GevreyclassregularityforthesolutionsoftheNavier-Stokesequations,J.Funct.Anal.87(1989) 359–369.

[7]H.Hannah,A.A.Himonas,G.Petronilho,GevreyregularityoftheperiodicgKdVequation,J.Differ.Equ.250 (5)(2011) 2581–2600.

[8]A.A. Himonas,K. Henrik, S.Selberg, Onpersistence ofspatial analyticity forthe dispersion-generalizedperiodickdv equation,NonlinearAnal.,RealWorldAppl.38(2017)35–48.

[9]A.A.Himonas,G.Petronilho,Analyticwell-posednessofperiodicgKdV,J.Differ.Equ.253 (11)(2012)3101–3112.

[10]D.A.Jones,E.S.Titi,Aremarkonquasi-stationaryapproximateinertialmanifoldsfortheNavier-Stokesequations,SIAM J.Math.Anal.25(1994)894–914.

[11]T.Kato,K.Masuda,Nonlinear evolutionequationsandanalyticityI,Ann. Inst.HenriPoincaré,Anal. NonLinéaire3 (1986)455–467.

[12]Y.Katznelson,AnIntroductiontoHarmonicAnalysis,correcteded.,DoverPublications,Inc.,NewYork,1976.

[13]S.P.Levandosky,Stabilityandinstabilityoffourth-ordersolitarywaves,J.Dyn.Differ.Equ.10 (1)(1998)151–188.

[14]S.P.Levandosky,Decayestimatesforfourthorderwaveequations,J.Differ.Equ.143 (2)(1998)360–413.

[15]S.P.Levandosky,W.A.Strauss,Timedecayforthenonlinearbeamequation,MethodsAppl.Anal.7 (3)(2000)479–487.

[16]C.D.Levermore,M.Oliver,AnalyticityofsolutionsforageneralizedEulerequation,J.Differ.Equ.133 (2)(1997)321–339.

[17]A.E.H.Love,ATreatiseontheMathematicalTheoryofElasticity,Dover,NewYork,1944.

[18]M. Oliver,E.S. Titi, Analyticity of theattractor andthe number of determining nodesfor a weakly damped driven nonlinearSchrödingerequation,IndianaUniv.Math.J.47(1998)49–73.

[19]M.Oliver,E.S.Titi,Onthedomainofanalyticityofsolutionsofsecondorderanalyticnonlineardifferentialequations,J.

Differ.Equ.174 (1)(2001)55–74.

[20]S.Panizzi,OnthedomainofanalyticityofsolutionstosemilinearKlein-Gordonequations,NonlinearAnal.75 (5)(2012) 2841–2850.

[21]B.Pausader,ScatteringandtheLevandosky-Straussconjectureforfourthordernonlinearwaveequations,J.Differ.Equ.

241(2007)237–278.

[22]B.Pausader,W.Strauss,Analyticityofthescatteringoperatorforthebeamequation,DiscreteContin.Dyn.Syst.25 (2) (2009)617–626.

[23]B.Pausader,ScatteringandtheLevandosky-Straussconjectureforfourth-ordernonlinearwaveequations,J.Differ.Equ.

241 (2)(2007)237–278.

[24]B.Pausader,Scatteringforthedefocusingbeamequationinlowdimensions,IndianaUniv.Math.J.59 (3)(2010)791–822.

[25] S.Selberg,D.O.daSilva,LowerboundsontheradiusofspatialanalyticityfortheKdVequation,Ann.HenriPoincaré (2016),https://doi.org/10.1007/s00023-016-0498-1.

[26]S.Selberg,A.Tesfahun,OntheradiusofspatialanalyticityforthequarticgeneralizedKdVequation,Ann.HenriPoincaré 18(2017)3553–3564.

[27]S.Selberg,A.Tesfahun,Ontheradiusofspatialanalyticityforthe1dDirac-Klein-Gordonequations,J.Differ.Equ.259 (2015)4732–4744.

[28]C.Sulem,P-L. Sulem,H.Frisch,Tracingcomplexsingularitieswithspectralmethods,J.Comput.Phys.50 (8)(1983) 138–161.

[29]A.Tesfahun, Ontheradius of spatialanalyticity for cubicnonlinear Schrodingerequation, J.Differ. Equ.263 (2017) 7496–7512.

(13)

[30] A.Tesfahun,AsymptoticlowerboundfortheradiusofspatialanalyticitytosolutionsofKdVequation,Commun.Contemp.

Math.21 (08)(2019)1850061,https://doi.org/10.1142/S021919971850061X.

[31]A. Tesfahun, Remarkon the persistenceof spatial analyticity for cubic nonlinearSchrödinger equation on thecircle, NoDEANonlinearDiffer.Equ.Appl.26(2019)12.

[32]J.Zhang, Globalexistencefor roughsolutionsof afourth-ordernonlinearwaveequation,J.Math.Anal.Appl.369 (2) (2010)635–644.

Referensi

Dokumen terkait

Therefore, Nasir Jamil 2013: 167 contend, that children who are in condition during the coaching period do not mean they cannot get their rights, who have been sentenced to a criminal