• Tidak ada hasil yang ditemukan

Stability of differential systems on the first approach

N/A
N/A
Protected

Academic year: 2023

Membagikan "Stability of differential systems on the first approach"

Copied!
4
0
0

Teks penuh

(1)

Вестник КазНУ, сер. мат., мех., инф. 2012, №1(72) 3

Stability of differential systems on the first approach

T.M. Aldibekov, M.M. Aldazharova

al-Farabi Kazakh National University, Almaty, Kazakhstan e-mail: tamash59@list.ru, a_maira77@mail.ru

Abstract

In the article we consider linear system of differential equations in critical cases of characteristic exponents of Lyapunov. Linear system is investigated at small disturbances.

Exponential stability of the trivial solution of nonlinear system of the differential equations on the first approach relatively to some monotonously increasing function is proved .

Let’s consider

˙

x=A(t)x (1)

a linear system with a continuous real coefficients, where t ≥ t0 > 1, x ∈ Rn, n ∈ ℵ, A(t)−n×n matrix, A(t)∈C[t0,+∞),

kA(t)k ≤Kϕ(t), K >0, ϕ(t)∈C[t0,+∞), ϕ(t)>0

q(t) =

t

Z

t0

ϕ(s)ds.

We assume, that the linear system (1) has the finite general exponents with respect to q(t) and inequalities are carried outlnt < q(t)< t.

Given linear system

˙

x=A(t)x+f(t, x) (2)

where,n−dimensional vector function f(t, x),continuous on t≥t0 and continuous differen- tiable on x∈Rn, f(t,0) = 0.

Definition 1. Trivial solution x = 0 of the system (2) is called exponential stable with respect to q(t) fort →+∞, if for any solution x(t)≡x(t;t0, x0) of this system in some area t0 ≤t <∞,kxk ≤h inequality is valid

kx(t)k ≤Nkx(t0)ke−α(q(t)−q(t0)), t≥t0

where N and α – positive constants, which aren’t depend from choice of the solution x(t).

Notice, if q(t) =t, then we obtain usual definition of exponential stability of the trivial solution x= 0 of the system (2).

Theorem 1. If following conditions are satisfied:

1) linear system (1) generalized-regular with respect to q(t),

2) higher generalized exponent with respect toq(t) is negative i. e., λ1(q)<0

(2)

4 T.M. Aldibekov, M.M. Aldazharova Stability of differential systems on the first . . .

3) n− dimensional vector function f(t, x) satisfies inequality kf(t, x)k ≤ϕ(t)kxkm

where

m >1 + 1

1(q)|,

then trivial solution of nonlinear system (2) exponential stable with respect to q(t) for t → +∞.

Proof.Let’s take γ >0 such, that 1

m−1 < γ <|λ1(q)|

On system (2) fulfill transformation x=ye−γ[q(t)−q(t0)]

(3) Then we obtain

dy

dt =B(t)y+g(t, y) (4)

B(t) =A(t) +γdq(t) dt E, whereE− n×n− dimensional individual matrix

g(t, y) =eγ[q(t)−q(t0)]f(t, ye−γ[q(t)−q(t0)]

)

and y(t0) = x(t0). Moreover, linear system

˙

y=B(t)y (5)

is generalized regular and has negative higher generalized exponent. Vector function g(t, y) is continuous on t≥t0 and continuous differentiable on y∈Rn.

Let’s transfer from the differential equation (4) with the entry condition y(t0) = x(t0) =x0

applying a method of arbitrary constants to the integral equation

y(t) =H(t)y(t0) +

t

Z

t0

K(t, τ)g(t, y(τ))dτ (6)

where H(t) – normed fundamental matrix of the linear system (5), K(t, τ) =H(t)H−1(τ),kH(t)k ≤C1, (C1 ≥1), t≥t0

kK(t, τ)k ≤C2eε[q(τ)−q(t0)]

(3)

Вестник КазНУ, сер. мат., мех., инф. 2012, №1(72) 5

for t0 ≤τ ≤t <+∞,where C2 ≥1and ε >0 are arbitrary.

Let’s take ε such, that

0< ε < min{(m−1)γ−1

2 ,1

2} Further, estimating vector functiong(t, y)we obtain

kg(t, y)k ≤C3e[ε−(m−1)γ][q(t)−q(t0)]kykm,(C3 >1) Now, from the integral equation (6) estimating on norm, we obtain that

ky(t)k ≤C3ky(t0)k+

t

Z

t0

C2C3e[2ε−(m−1)γ][q(τ)−q(t0)]kykmdτ (7)

Notice that for enough small neighborhood of the pointy(t0)owing to condition lnt < q(t)

Inequality is carried out

(m−1)C1m−1ky(t0)km−1

t

Z

t0

C2C3e−[(m−1)γ−2ε][q(τ)−q(t0)]

dτ < 1.

From here using Lemma of Bichary we obtain

ky(t)k ≤ C1ky(t0)k [1−(m−1)C1m−1ky(t0)km−1

t

R

t0

C2C3e−[(m−1)γ−2ε][q(τ)−q(t0)]dτ]m−11

(8)

Hence, solution y(t) isdefinedon t ≥ t0 > 1 and inequality is valid ky(t)k ≤ Nky(t0)k, where N =N(t0)>0

Coming back to the x(t)we have

kx(t)k ≤Nkx(t0)ke−γ(q(t)−q(t0))

for kx(t0)k<4, where 4 is enough small. Thus, trivial solution of the nonlinear system (2) is exponential stable on Lyapunov with respect to q(t)for t→+∞. The theorem is proved.

Reference

[1]Aldibekov T.M.Analog of the theorem of Lyapunov about stability on the first approach // the Differential equations. – 2006. – Vol. 42, No. 6. – Page 859-860. – R.Rus. 06.11- 13B.188.

[2]Aldibekov T.M. About stability on the first approach // Modern problems of science and education. – M, 2008. – No.– Page 133.

(4)

6 T.M. Aldibekov, M.M. Aldazharova Stability of differential systems on the first . . .

[3]Demidovich B.P.Lectures on the mathematical theory of stability. // – M, 1967. – 472 pages.

Т.M. Алдибеков, M.M. Алдажарова, Ус- тойчивость дифференциальных систем по первому приближению,Вестник КазНУ, сер. мат., мех., инф. 2012, №1(72), 3 – 6 Рассматривается линейная система диф- ференциальных уравнении в критических случаях характеристических показателей Ляпунова. Исследуется линейная систе- ма при малых возмущениях. Доказана экспоненциальная устойчивость три- виального решения нелинейной системы дифференциальных уравнений по первому приближению относительно некоторой монотонно возрастающей функции.

Т.М. Алдибеков, М.М. Алдажарова,Бiрiн- шi жуықтау бойынша дифференциалдық жүйелердiң орнықтылығы, ҚазҰУ хабаршысы, мат., мех., инф. сериясы 2012, №1(72), 3 – 6

Ляпунов сипаттауыш көрсеткiштерiнiң сын жағдайдағы дифференциалдық теңдеулер сызықты жүйесi қарастырыла- ды. Аз ауытқулары бар сызықты жүйе зерттеледi. Сызықты емес дифферен- циалдық теңдеулер жүйесiнiң тривиал шешiмiнiң қайсыбiр монотонды өспелi функцияға қатысты бiрiншi жуықтау бойынша экспоненциалды орнықтылығы дәлелденген.

Referensi

Dokumen terkait

Sikap siswa mengenai STEM sebelum diberikan perlakuan yaitu pembelajaran berbasis STEM didapatkan dari hasil angket yang diberikan oleh siswa pada pertemuan pertama

In total, 598 counsellors were invited to complete the 55-item pre-course questionnaire (T0). The pre-course questionnaire was divided into three subsections. In the first