ContentslistsavailableatScienceDirect
Applied Soft Computing
jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e/ a s o c
A new fuzzy peer assessment methodology for cooperative learning of students
Kok Chin Chai
a,∗, Kai Meng Tay
a, Chee Peng Lim
baFacultyofEngineering,UniversitiMalaysiaSarawak,Malaysia
bCentreforIntelligentSystemsResearch,DeakinUniversity,Australia
a r t i c l e i n f o
Articlehistory:
Received23December2014 Receivedinrevisedform1March2015 Accepted31March2015
Availableonline14April2015 Keywords:
Perceptualcomputing Peerassessment Fuzzypreferencerelations Linguisticgrades Individualweightingfactor
a b s t r a c t
Inthispaper,anewfuzzypeerassessmentmethodologythatconsidersvaguenessandimprecisionof wordsusedthroughouttheevaluationprocessinacooperativelearningenvironmentisproposed.Instead ofnumerals,wordsareusedintheevaluationprocess,inordertoprovidegreaterflexibility.Theproposed methodologyisasynthesisofperceptualcomputing(Per-C)andafuzzyrankingalgorithm.Per-Cis adoptedbecauseitallowsuncertaintiesofwordstobeconsideredintheevaluationprocess.Meanwhile, thefuzzyrankingalgorithmisdeployedtoobtainappropriateperformanceindicesthatreflectastudent’s contributioninagroup,andsubsequentlyrankthestudentaccordingly.Acasestudytodemonstratethe effectivenessoftheproposedmethodologyisdescribed.Implicationsoftheresultsareanalyzedand discussed.Theoutcomesclearlydemonstratethattheproposedfuzzypeerassessmentmethodologycan bedeployedasaneffectiveevaluationtoolforcooperativelearningofstudents.
©2015ElsevierB.V.Allrightsreserved.
1. Introduction
Cooperativelearning is aneducational approach or strategy in which students work in small groups tohelp each otherto learnacademiccontent[1].Theimportanceofcooperativelearn- inginengineeringdisciplineshasbeenexplainedandhighlighted in[2–4].Cooperativelearningplaysanimportantroletoimprove students’softskills,e.g.,communicationandteamwork,whichis theessenceinengineeringstudies[2].Whilecooperativelearning offersremarkablebenefits(e.g.,improvingcollaborativeandcrit- icalthinkingskills)tostudentsatthetertiarylevel(i.e.,thethird stageoflearningaftergraduatingfromthesecondaryschool)[1], itisyettobewidelyadoptedowingtoanumberofpracticalchal- lenges[5].Asearchintheliteraturerevealsthattheassessmentof anindividualstudentinagroupisnotaneasytask,sinceagroup markisoftennotaclearandfairreflectionofeachindividual’seffort [5–7].Besidesthat,itisdifficultforaninstructortocloselymoni- toreachstudent’seffortsinagroup;thereforeitisnotsuitablefor theinstructortoassesseachstudent’scontribution[8,9].Totackle thesechallenges,peerassessmenthasbeenintroducedtoevaluate eachstudent’scontributioninagroupwork[5–13].Severalsuc- cessfulcasestudiesinpeerassessmenthavebeenreported,e.g.,in
∗Correspondingauthor.Tel.:+60146884403.
E-mailaddresses:[email protected](K.C.Chai),[email protected] (K.M.Tay),[email protected](C.P.Lim).
civilengineering[5],biologicalsciences[10],primarymathematics education[11],andcomputerstudies[13].Inaddition,substantial evidencetoshowthatpeerassessmentcanleadtoimprovements inqualityandeffectivenesslearningisavailable[14].
Generally, there are two types of peer assessment [10]: (i) involvingstudentsin aclasstoassessotherstudents’ work;(ii) involvingstudentstoassessthecontribution/performanceofother studentswithinthesamegroup.Thesetwotypesofpeerassess- mentcanbefurtherclassifiedintotwo;i.e.,formativeorsummative assessment[15,16].Thegoalsofformativeassessmentaretomon- itorstudents’learningcapabilities,gathertheirongoingfeedbacks, andimprovetheirlearningexperience[15,16].Ontheotherhand, summativeassessmentevaluatesstudents’learningcapabilitiesat theendof aninstructionalunit [15,16]. Typically,aninstructor needstodecidewhethertousetheformativeorsummativeform ofpeerassessment[14].Thispaperfocusesonsummativeassess- ment,whichfocusesontheoutcomeofalearningprocess[9].The procedureforsummativeassessmentisfurtherdetailedinSection 2.4.
Traditionally,theLikertscale(anumericalgradingscale)isused inawayequivalenttopsychologicalmeasurement[6,7,10,12].As anexample,a numericalgradingscale(e.g.,1to5)canbeused forassessmentofgroupmembers[6,7,12],whereby“1”indicates
“didn’tcontribute”,“2”indicates“willingbutnotsuccessful”,“3”indi- cates“average”,“4”indicates“aboveaverage”, and“5” indicates
“outstanding”[6,7,12].Eventhoughtheuseofnumeralsin peer assessmentis popular,it suffersfromproblemsassociated with http://dx.doi.org/10.1016/j.asoc.2015.03.056
1568-4946/©2015ElsevierB.V.Allrightsreserved.
psychologicalmeasurementintermsofthemeaningpertainingto thenumeralsused(see[17]forastudyonthetheoreticalrelation- shipbetweenmeasurementandmarking).Itwouldbemorenatural todefineassessmentgradesusingsubjectiveandvaguelinguis- ticterms[17].Furthermore,theconventionalmethodaggregates individualscorestoproduceatotalscore.Insomesituations(as illustratedinSection4.3),itisdifficulttodistinguishtheranking orderofstudentsusingthesamenumeralscore.
Fuzzy set theory has been used in education assessment [9,18–23].Itisusefultodealwithlinguisticgradessuchas“didn’t contribute”,“willingbutnotsuccessful”,and“average”inagrading system,whichinvolveasubstantialamountoffuzzinessandvague- ness[18].Itisworthmentioningthatfuzzysettheoryisanefficient andeffectivemethodtorepresentuncertainties[18,19].Comparing withmethodsbasedonnumericalgradingscores[6,7,12],fuzzyset theoryoffersanalternativetolinguisticevaluationinwhich“fuzzy”
words,insteadofnumerals,areusedduringtheassessmentproce- dure[9,18–23].Besidesthat,“computingwithwords”,ascoinedby Zadeh,isalsoamethodologyrelatedtofuzzysettheory,whereby theobjectsofcomputationarewordsandpropositionsdrawnfrom anaturallanguage[24,25].
Motivated by the success of fuzzy set theory in education assessment [9,18–23], this paper aims topropose a fuzzy peer assessmentmethodologythatevaluateseachstudent’scontribu- tioninagroupwork.Theproposedmethodologyisasynthesisof perceptualcomputing(Per-C)[25–29]andafuzzyrankingalgo- rithmthatusesfuzzypreferencerelations[30].Therationalefor theproposedmethodologyhingesona number ofimperatives.
Firstly, the available information is too imprecise to be justi- fied with numerals, which is more suitable to be represented using words [25]. In this paper, Per-C is adopted owingto its effectiveness in handlinginherent uncertainties in words [25].
Specifically,Per-Cisabletohandlesubjectivity,vagueness,impre- cision,anduncertaintywhileachievingtractabilityandrobustness inmodellinghumandecision-making behaviours[25–29].Com- paringwithtype-1fuzzymodels[9,18–23],Per-Cadoptsinterval type-2fuzzysets(IT2FSs)intacklingadecisionmakingproblem [25–29].IT2FShasmoreflexibilityinpreservingandprocessing uncertaintiesthantype-1fuzzyset[25].Indeed,Per-Chasbeen successfullyimplementedtoundertakeanumberof fuzzymul- tiplecriteria hierarchicaldecision making problems[25–29]. In [25–29],Per-Cfocusesonrankingthesequenceofoutcomes,map- ping the outcomesinto wordsand/or classifying theoutcomes intodifferentcategories. Nevertheless,the useofPer-C in peer assessmentisstillnew.Inthispaper,therelativeimportanceof theoutcomes,i.e.,thecontributionofeachstudentwithrespect tothosefromotherstudents,isexaminedindetail,whichisyet tobeinvestigated in theliterature, e.g.[25–29]. In this aspect, ourpreliminarywork[30],asdiscussedinSection2.3,isfurther extendedtoservethispurpose.Then,theeffectivenessandpracti- calityoftheproposedmethodologyareevaluatedwithacasestudy inanengineeringcourse(i.e.,MultiprocessorsArchitecture)atUni- versitiMalaysiaSarawak.Theresultsfromtheconventionaland proposedmethodologiesareanalyzedanddiscussed.Inessence, thispapercontributestoanewfuzzypeerassessmentmethodology inwhichhumanlinguisticwordsareadoptedintheentireassess- mentprocess.Besidesthat,theproposedmethodologyprovides aninsightpertainingtoeachindividual’scontribution;therefore providingpersonalizedassessmentinacooperativelearningenvi- ronment.
Therestofthispaperisorganizedasfollows.InSection2,the background of fuzzysets, perceptual computing,fuzzy ranking algorithms and peer assessment in problem-based learning is presented.InSection3,anewtechniqueforfuzzypeerassessment isexplainedindetail.In Section4,a casestudyisconductedto demonstratetheusefulnessoftheproposedfuzzypeerassessment
Fig.1. Themembershipfunctionofatrapezoidalfuzzyset.
methodology. Concluding remarks and suggestions for future researcharepresentedinSection5.
2. Preliminaries
Anumberofnotationsanddefinitionsrelatedtotype-1fuzzy sets(T1FSs)andintervaltype-2fuzzysets(IT2FSs)arepresentedin Section2.1.AreviewonperceptualcomputingispresentedinSec- tion2.2.Ourpreliminaryworkrelatedtoafuzzyrankingalgorithm isreviewedinSection2.3.Finally,anoverviewonpeerassessment inproblem-basedlearningispresentedinSection2.4.
2.1. Definitions
ConsiderasetoftrapezoidalT1FSs,i.e.,Aiwherei=1,2,...,m,in theuniverseofdiscourse,U.AtrapezoidalT1FSAiisparameterized asAi=(ai1,ai2,ai3,ai4,;Hi),asillustratedinFig.1.
Definition1. [30,31]:Afuzzymembershipfunction,Ai,ofAi,as showninFig.1,isdefinedasfollows:
Ai(X)=
⎧ ⎪
⎪ ⎪
⎪ ⎨
⎪ ⎪
⎪ ⎪
⎩
LA
i(X),ai1≤X≤ai2, Hi,,ai2≤X≤ai3, RA
i(X),ai3≤X≤ai4, 0,otherwise.
(1)
whereLA
iiscontinuousandstrictlyincreasingininterval[ai1,ai2], asdefinedinEq.(2),RA
i iscontinuousandstrictlydecreasingin interval[ai3,ai4],asdefinedinEq.(3),andHi∈[0,1].Besidesthat, ai1,ai2,ai3,ai4 are real values, i.e., ∀ai1, ai2, ai3, ai4∈x, suchthat ai1≤ai2≤ai3≤ai4,and∃x∈U.
LA
i: [ai1,ai2]→[(x−ai1)/(ai2−ai1) ]Hi (2)
RA
i:[ai3,ai4]→
(ai4−x)/(ai4−ai3)
Hi. (3)
Definition2. [30,32,33]:AnIT2FS ˜Aiisdenotedas ˜Ai=
A˜i,A-i , and ˜AiisparameterizedinEq.(4).Theupperandlowermembership functionsof ˜Ai(i.e.,A¯
i andA
-i respectively)arerepresentedby type-1membershipfunctions.
A˜i=( ¯Ai,A-i)=
( ¯ai1,a¯i2,a¯i3,a¯i4; ¯Hi),(a-i1,a-i2,a-i3,a-i4;H-i) (4) Definition3. [32]: Thefuzzyadditionoperationbetweentwo IT2FSsisdefinedasfollows:
Fig.2.ThestructureofPer-C[25–29].
A˜1⊕A˜2
=(( ¯a11,a¯12,a¯13,a¯14;H1),(a-11,a-12,a-13,a-14;H-1)),
⊕
a¯21,a¯22,a¯23,a¯24; ¯H2 ,(a-21,a-22,a-23,a-24;H-2)
=
¯
a11+¯a21,a¯12+a¯22,a¯13+a¯23,a¯14+a¯24;min
H¯1,H¯2
,(a-11+a-21,a-12+ a-22,a-13+a-23,a-14+a-24;min (H-1,H-2).
(5)
Definition4. [32]:Thefuzzymultiplicationoperationbetween anIT2FSandcrispvaluekisdefinedasfollows:
kA˜1
=((k×a¯11,k×a¯12,k×a¯13,k×a¯14,k; ¯H1), (k×a-11,k×a-12,k×a-13,k×a-14,k;H-1).
(6)
2.2. Reviewonperceptualcomputing
ThegeneralstructureofPer-CisdepictedinFig.2.Itconsists ofthreecomponents[25–29],i.e.,anencoder,acomputing-with- words(CWW)engine,andadecoder.Linguisticgradesorwords fromhumansareconvertedintoIT2FSsthroughtheencoder.The CWWengineaggregatestheoutputsfromtheencoder.Thedecoder mapsthe outputsof the CWW engineintoa recommendation, whichcanbeintheformofaword,rank,orclass.However,the decoderrankstheoutputsindependentlywithoutconsideringtheir relativeimportancewithrespecttotherecommendation.Never- theless,itisimperative torankeach student’scontributionand deriveasetofperformanceindicesthatreflectsthestudent’srel- ativecontributioninfuzzypeerassessment(i.e.,peerassessment scores(PA)).Whilemanyfuzzyrankingalgorithmsareavailablein theliterature,tothebestofourknowledge,onlyafewsolutions (e.g.,[30]and[32])arefocusedontherelativeimportanceoftwo ormoreIT2FSs.ThedetailsarepresentedinSection2.3.
2.3. Reviewonfuzzyrankingalgorithms
Asdiscussedearlier,ourfocusisoninvestigatingtherelative importanceoftwoormoreIT2FSs.Assuch,themethodsin[30]
and[32]areconsidered.Specifically,ourpreliminarywork[30], whichisanextensionofthatin[32],formsthefoundationofthe proposedmethod.In[30],westudiedtherationality,i.e.,thefulfil- mentofthesixreasonableorderingpropertiesasstatedin[25,34], andpresentedanumberofimprovementsascomparedwiththose
Fig.3.ExampleoftwoIT2FSs.
in[32].AssumethatasetofIT2FSs, ˜Ai,wherei=1,2,...,m.Tobet- terclarifytheexplanation,asimulatedexamplewithtwoIT2FSs (i.e., ˜A1=((5.03,7.03,8.25,9.38;1),(6.03,7.75,7.93,8.82;0.75))and ˜A2
=((4.03,6.03,7.07,8.93;1),(5.03,6.57,6.60,8.00;0.75)),asillustrated inFig.3,isconsidered.Thefuzzyrankingalgorithmin[30]issum- marizedinfivesteps,asfollows.
Step1. Discretizethesupportof ¯AiandA-iof ˜AiintoNpoints,i.e., xA¯i,kandxA
-i,k,k=1,2,3,...,N,andobtainA¯i(xA¯i,k)andA-i(xA -i,k), respectively.
Asanexample,thediscretizedpointsof ¯Aiareexpressedina sequenceofxA¯i,1,xA¯i,2,...,xA¯i,N,whereXA¯i,1andXA¯i,Narethe leftandright-endpointsof ¯Ai,respectively.Thediscretizedpoints inthehorizontalcomponentof ¯Ai andA-i,i.e.,xA¯
i,k andxA -i,k are computedusingEqs.(7)and(8),respectively.Ontheotherhand,the discretizedpointsintheverticalcomponentof ¯AiandA-i,i.e.,A¯
i(xA¯
i) andA
-i(xA
-i)arecomputedusingEq.(1).Thediscretizedpointsof A¯iareexpressedinEqs.(9)and(11)aswellasA-iareexpressedin Eqs.(10)and(12),asfollows.
xA¯i,k=xA¯i,1+(k−1)
xA¯i,N−xA¯i,1N−1
. (7)
xA -i,k=xA
-i,1+(k−1)
xA-i,N−xA -i,1 N−1
. (8)
xA¯
i=
⎡
⎢ ⎢
⎣
xA¯
1,1 ··· xA¯
1,N
..
. . .. ... xA¯m,1 ··· xA¯m,N
⎤
⎥ ⎥
⎦
. (9)xA -i=
⎡
⎢ ⎢
⎣
xA
-1,1 ··· xA -1,N ..
. . .. ... xA-m,1 ··· xA-m,N
⎤
⎥ ⎥
⎦
. (10)A¯i(xA¯i)=
⎡
⎢ ⎢
⎣
A¯
1(xA¯
1,1) ··· A¯
1(xA¯
1,N) ..
. . .. ... A¯
m(xA¯
m,1) ··· A¯
m(xA¯
m,N)
⎤
⎥ ⎥
⎦
. (11)A -i(xA
-i)=
⎡
⎢ ⎢
⎣
A -1(xA
-1,1) ··· A -1(xA
-1,N) ..
. . .. ... A
-m(xA
-m,1) ··· A -m(xA
-m,N)
⎤
⎥ ⎥
⎦
. (12)WiththeexampleinFig.3,theleft-andright-endpointsof ¯A1
(i.e.,5.03and9.38)and ¯A2(i.e.,4.03and8.93)arediscretizedinto N=1000usingEq.(7).Theleft-andright-endpointsofA-1andA-2 arecomputedusingEq.(8).Thediscretizedpointsfor ¯A1and ¯A2as wellasA-1andA-2arerepresentedasmatrices,i.e.,Eqs.(9)and(11) aswellasEqs.(10)and(12),respectively.
Step2. ComputeP( ¯Ai≥A¯j)andP(A-i≥A-j)usingEqs.(13)and(14), respectively.NotethatP( ¯Ai≥A¯j)andP(A-i≥A-j)aretheratiosof thedistancebetweentwoFSsoffavourableoutcomestothetotal distancepertainingtotwoFSsoftheentirepossibleoutcomes.
P( ¯Ai≥A¯j)=max
1−max
¯EjiU E¯jiL
,0
. (13)
where, EUji = max
k=1,2...,N(xA¯
j,k)− min
k=1,2...,N(xA¯
i,k) +1
N
N k=1(max(xA¯
j,k−xA¯
i,k,0)+max(A¯
j(xA¯
j,k)−A¯
i(xA¯
i,k),0))
ELji=(xA¯
i,N−xA¯
i,1)+(xA¯
j,N−xA¯
j,1) +1
N
N k=1xA¯j,k−xA¯
i,k
+
A¯j(xA¯
j,k)−A¯
i(xA¯
i,k)
i,j=1,2,3,...,m
P(A-i≥A-j)=max
1−max
EjiU EjiL,0
,0
. (14)
where, EUji = max
k=1,2...,N(xA
-j,k)− min
k=1,2...,N(xA -i,k)
+1 N
N k=1(max(xA -j,k−xA
-i,k,0)+max(A-j(xA
-j,k)−A-i(xA -i,k),0))
ELji=(xA -i,N−xA
-i,1)+(xA -j,N−xA
-j,1) +1
N
N k=1(
xA -j,k−xA-i,k
+A-j(xA -j,k)−A¯
i(xA¯
i,k)
)
i,j=1,2,3,...,m
Step3. GeneratethefuzzypreferencematricesasinEqs.(15)and (16).
P¯ =
⎡
⎢ ⎢
⎢ ⎢
⎢ ⎢
⎢ ⎢
⎣
p( ¯A1≥A¯1) ··· p( ¯A1≥A¯j) ··· p( ¯A1≥A¯m) ..
. ··· ... ··· ... p( ¯Ai≥A¯1) ··· p( ¯Ai≥A¯j) ··· p( ¯Ai≥A¯m)
..
. ··· ... ··· ... p( ¯Am≥A¯1) ··· p( ¯Am≥A¯j) ··· p( ¯Am≥A¯m)
⎤
⎥ ⎥
⎥ ⎥
⎥ ⎥
⎥ ⎥
⎦
. (15)
P-=
⎡
⎢ ⎢
⎢ ⎢
⎢ ⎢
⎢ ⎢
⎣
p(A-1≥A-1) ··· p(A-1≥A-j) ··· p(A-1≥A-m) ..
. ··· ... ··· ... p(A-i≥A-1) ··· p(A-i≥A-j) ··· p(A-i≥A-m)
..
. ··· ... ··· ... p(A-m≥A-1) ··· p(A-m≥A-j) ··· p(A-m≥A-m)
⎤
⎥ ⎥
⎥ ⎥
⎥ ⎥
⎥ ⎥
⎦
. (16)
Based ontheaforementionedexample,the fuzzypreference matricesfor ¯A1and ¯A2(i.e., ¯P)andforA-1andA-2(i.e.,P)arecomputed usingEq.(13)andEq.(14)inStep2,respectively.Thesimulation outcomesfromStep2arecompiledandwritteninEqs.(15)and (16),asfollows.
P¯ =
0.5000 0.6098 0.3902 0.5000,P-=
0.5000 0.7036 0.2964 0.5000Fig.4. Theproceduretoassessanindividualstudent’scontributioninagroup project[9].
Step4. Computetherankingindicesof ¯AiandA-iusingEqs.(17) and(18),respectively.
RI( ¯Ai)= 1 m(m−1)
⎛
⎝
mj=1
p( ¯Ai≥A¯j)+m 2 −1
⎞
⎠
(17)RI(A-i)= 1 m(m−1)
⎛
⎝
mj=1
p(A-i≥A-j)+m 2 −1
⎞
⎠
(18)Again,basedonthesameexample,usingEq.(17),theranking indicesfor ¯A1 and ¯A2 are0.5549and 0.4451,respectively.Using Eq.(18),therankingindicesforA-1andA-2are0.6018and0.3982, respectively.
Step5. Therankingindexof ˜AiiscomputedusingEq.(19).
RI( ˜Ai)= RI(A-i)+RI( ¯Ai)
2 (19)
Ahigherrankingindexof ˜Aiindicatesahigherrankingof ˜Ai. Withthesameexample,usingEq.(19),therankingindicesof ˜A1and A˜2are0.5784and0.4216,respectively.Therefore, ˜A1hasahigher rankingthan ˜A2.
2.4. Overviewonpeerassessmentinproblem-basedlearning 2.4.1. Background
Asummativeassessmentprocedure,asdiscussedin[9],ispre- sentedinFig.4.Firstly,studentsaredividedintoseveralgroups, andasetofpeerassessmentquestionnairesthathasbeenagreed uponbytheinstructorandstudentsisdistributed.Then,eachgroup proceedswiththeprocessofcooperativelearning.Attheendofthe cooperativelearningprocess,thestudentsarerequiredtosubmit andpresenttheirfindingsforassessment.Theirachievementsare evaluatedbytheinstructoraswellasbytheirpeers,asshownin the5thstageinFig.4.Theresultsfrompeerassessment(denotedas thePAscores)areaggregatedandtheIndividualWeightingFactor (IWF)isderived,asinthe6thstage.IWFisameasureofeachindi- vidual’scontributioninhis/hergroup.Thereareseveralmethods tocomputeIWF[5,6].Inthispaper,themethodin[5]isadopted owingtoanumberofadvantages,i.e.,itdiscouragesfree-riders, encouragesabove-averagecontributions,anddiscouragesindivid- ualisticbehavioursinateam.Finally,theresultthatreflectseach student’seffortiscomputed.
Table1
Anexampleofpeerassessment(i.e.,group#1)usingtheconventionalmethod[5,6].
StudentBeingAssessed #1A #1D
SpecificCriteria,i Evaluators #1B #1C #1D #1A #1B #1C
Weighing
1.Participatedingroupmeetings (20%) 0.80 1.00 1.00 0.60 0.80 1.00
2.Communicatedconstructivelytodiscussion (20%) 1.00 1.00 1.00 1.00 0.80 1.00
3.Generallywascooperativeingroupactivities (15%) 0.60 0.60 0.60 0.60 0.75 0.60
4.Contributedtogoodproblem-solvingskills (15%) 0.60 0.45 0.45 0.60 0.60 0.45
5.Contributedusefulideas (10%) 0.50 0.30 0.30 0.50 0.40 0.30
6.Demonstratedgoodinteresttotaskgiven (10%) 0.40 0.40 0.50 0.40 0.50 0.50
7.Prepareddraftsofreportingoodquality (10%) 0.50 0.40 0.40 0.50 0.50 0.40
AggregatedResultsfromeachevaluator 4.40 4.15 4.25 4.20 4.35 4.25
Table2
Anexampleofgroupassessmentfromtheinstructor.
ProjectMarkingForm GroupID:#1
GeneralAspects SpecificCriteria GroupScore
ProjectReport(60%) 1.Correctuseofmethods(25%) 20
2.Design,simulateandanalyzethesystemtomeettherequirementsoftheproject(25%) 23
3.Deliverytheoutcomesoftheprojectinwrittenforms(25%) 19
4.Structureandpresentationoftheprojectreport(25%) 22
Totalmark(outof60%): 50.4
ProjectPresentation(40%) 5.Deliverytheoutcomesoftheprojectinoralforms(25%) 18
6.Reliabilityoftheproposedmethod(25%) 22
7.Efficiencyandflexibilityoftheproposedmethod(25%) 22
8.Responsestoquestionsanddefendtheirprojectswithvalidreasoningandarguments(25%) 20
Totalmark(outof40%): 32.8
Totalgroupscore(outof100%) 83.2
Inthispaper,acooperativelearningactivitypertainingtoan engineeringcourse(i.e.,MultiprocessorsArchitecture)atUniversiti MalaysiaSarawak, wasstudied.Thegoalsof cooperative learn- ingweretoimprovestudents’problem-solvingskillsin groups.
Studentswererequiredtofocusona taskrelatedtocomputing problems,i.e.,designingamultiprocessor-basedsystemfordata analysis.
Atotal of 28students participated in thecooperative learn- ingactivity.Inaccordance withFig.4,theyweredividedinto7 groupsbythecourseinstructor.Eachgroupconsistsoffourmem- berswithdifferentproficiencylevelsandbackground.Thestudents wererequiredtocompletetheirprojectwithinagivendeadline.
Then,theywererequiredtosubmittheirprojectreportandpresent thesoftwarethattheydeveloped.Peerassessmentwasconducted usinganevaluationformprovidedbytheinstructor.Eachstudent wasassessedbasedonsevencriteria,asshowninTable1.Eachcri- terionwastaggedwithaweightpredefinedbytheinstructor,i.e., W1,W2,W3,W4,W5,W6,andW7,correspondingto20%,20%,15%, 15%,10%,10%,and10%,respectively.Anexampleofthestudents’
peerassessmentresultsisshowninTable1.
Eachgroup(i.e.,#g,whereg=1,2,3,...,7)consistedoffour students(i.e.,Sg,s∈[Sg,A,Sg,B,Sg,C,Sg,D]).Sg,R and Sg,rrepresented the student being assessed and the (three) evaluators, where Sg,R,Sg,r∈Sg,s,respectively.Self-evaluationwasnotpracticed,i.e., Sg,R∈/Sg,r. ˜Wg,rindicatedtheevaluator‘sweight(i.e.,ameasureof theevaluator’sexpertiselevel).Inthisstudy,eachevaluatorwas givenanequalweight.Asanexampleofthepeerassessmentstruc- tureofgroup#1isdepictedinFig.5.
Besidesthat,eachgroupwasassessedbytheinstructorbasedon twogeneralcriteriai.e.,projectreportandprojectpresentation,as showninTable2.Thesetwogeneralcriteriawerefurtherdivided intoanumberofspecificcriteria.Anexampleofthegroupassess- mentstructure(i.e.,forgroup#1)isshowninTable2,whereby group#1scored83.2%outof100%.
2.4.2. Theconventionalpeerassessmentmethodology
The conventional peer assessment methodology in [5,6] is reviewed.Themethodologies,aspresentedin[5,6],canberep- resentedbyEqs.(20)and(21).Firstly,apeerassessmentscore(i.e., PA),whichistheratiooftheactualsumofscorestothehighest possiblescore,iscalculated.Then,theIWFthatreflectseachstu- dent’scontributioniscomputedusing Eq.(21)[5].Finally,each individual’smarkiscomputedusingtheparabolicequationofEq.
(22),where˛isthescalefactorthathasanimpactonthespreadof theindividualmarks.Inthispaper,˛=1.2isadopted(asindicated in[5]).
PA= Actualsumscored
Highestpossiblescore (20)
IWF= PA
Average PA score (21)
IM=GM×
⎧ ⎪
⎪ ⎨
⎪ ⎪
⎩
IWF, IWF≤1 IWF−(IWF−1)2
2ˇ , 1<IWF<1+ˇ 1+0.5ˇ, IMF≥1+ˇ
(22)
whereˇ=˛(1−0.01GM),GM denotesthegroupmarkfromthe instructor
Conventionally,thefive-pointLikertscaleiscommonlyused, whereby“1”,“2”,“3”,“4”,and“5”indicate“poor”,“belowaverage”,
“average”,“aboveaverage”,and“excellent”,respectively.Consider theexampleshowninTable1.Students#1Aand#1Dareevalu- ated.Student#1Aisrated4,5,and5byEvaluators#1B,#1C,and
#1D,respectively,forthefirstspecificcriterioni.e.,“participatedin groupmeetings”.Sincethecriterionisweightedat20%,theratings (i.e.,4,5,and5)arenormalizedto0.80,1.00,and1.00,respectively, aspresentedinTable1.ByapplyingEqs.(20)and(21),PAandIWF arecomputed.TheresultsaretabulatedinTable3.
Fig.5.Anexampleofpeerassessmentsinagroup#1forassessingstudent#1A.
Table3
TheoutcomesofGroup#1usingtheconventionalmethodology.
Students #1A #1D
Peerassessmentscore,PA 0.8533 0.8533
IndividualWeightingFactor,IWF 1.0503 1.503
3. Anewmethodologyforfuzzypeerassessment
Inthissection,theproposednewmethodologyforfuzzypeer assessmentisdescribed.Fig.6showstheoverallfuzzypeerassess- mentframework.Inthispaper,thefocusisonenhancingthe5th and6thstagesoftheconventionalmethodology(asillustratedin Fig.4)byusingthePer-Cparadigm[25–29].Thedetailsofthepro- posedmethodologyaresummarizedinstages 5.1–5.4andstage 6.0,asfollows.
3.1. Encoder
The encoder converts human linguistic words into IT2FSs.
ThisoperationisperformedbasedontheIntervalApproach(IA),
wherebytheIAcodebookcanbefoundin[25–27].Inthispaper,five words(i.e.,Poor,BelowAverage,Average,AboveAverage,andExcel- lent,abbreviatedasP,BA,A,AA,andEX)areretrieved.Thedetails ofthesefivewords(namelylinguisticgrades)aresummarizedin Table4andillustratedinFig.7.Eachlinguisticgradepertaining tothespecificcriterionisfurtherdescribedbytheinstructor.The interpretationoftheselinguisticgradesisexplainedinTableA1 (AppendixA),whichprovidesthedetailstoeachevaluatortoaid his/herassessments.
3.2. Computing-with-words
Table5depictstheassessmentofstudents#1Aand#1Dwith linguisticgrades.UsingtheCWWengine,theassessmentsfromall evaluatorsarefirstlyaggregatedwithEq.(23).
y˜g,r=
7 i=1X˜g,r,iwi. (23)
where ˜Xg,r,idenotesthelinguisticgradegivenbyanevaluator(i.e., r),gindicatesthegroupthatrbelongsto(i.e.,g=1,2,3,...,7),and
Fig.6. Theproposedfuzzypeerassessmentframework.
Table4
IT2FSforlinguisticterms[25,26].
LinguisticGrades Abbreviations UMF( ¯a1,a¯2,a¯3,a¯4; ¯H) LMF(a-1,a-2,a-3,a-4;H- )
‘Poor’ P [0.00,0.00,1.50,3.50;1] [0.00,0.00,0.50,2.50;1.00]
‘BelowAverage’ BA [0.50,2.50,3.50,5.50;1] [1.50,3.00,3.00,4.50;0.75]
‘Average’ A [2.50,4.50,5.50,7.50;1] [3.50,5.00,5.00,6.50;0.75]
‘AboveAverage’ AA [4.50,6.50,7.50,9.50;1] [5.50,7.00,7.00,8.50;0.75]
‘Excellent’ E [6.50,8.50,10.0,10.0;1] [7.50,9.50,10.0,10.0;1.00]
Fig.7. Linguisticgrades(a)Poor;(b)BelowAverage;(c)Average;(d)AboveAverageand(e)Excellent.
Table5
Anexampleofpeerassessmentusingtheproposedmethodology.
StudentBeingAssessed #1A #1D
SpecificCriteria,i Evaluators #1B #1C #1D #1A #1B #1C
Weighing
1.Participatedingroupmeetings (20%) AA EX EX A AA EX
2.Communicatedconstructivelytodiscussion (20%) EX EX EX EX AA EX
3.Generallywascooperativeingroupactivities (15%) AA AA AA AA EX AA
4.Contributedtogoodproblem-solvingskills (15%) AA AA A AA AA A
5.Contributedusefulideas (10%) EX EX A EX AA A
6.Demonstratedgoodinteresttotaskgiven (10%) AA AA EX AA EX EX
7.Prepareddraftsofreportingoodquality (10%) EX EX AA EX EX AA
idenotesthespecificcriterion(i.e.,i=1,2,3,...,7).Asanexample, X˜1,B,1isthelinguisticgradegiventothefirstspecificcriterion(i.e.,
“participatedingroupmeetings”)byEvaluatorBingroup#1(i.e.,
#1B)and ˜X1,B,1isAAinTable5.Notethatwidenotesthenormalized weightofWi(i.e.,wi∈[0,1]).Asanexample,W1=20%andw1= 0.20.Ontheotherhand, ˜yg,rdenotestheaggregatedoutcomesof Evaluatorringroup#g.
TheresultsfromallevaluatorsareaggregatedusingEq.(24).
Y˜g,R=
r∈s,R/∈ry˜g,rW˜g,r
r∈s,R/∈rW˜g,r . (24)
where ˜Wg,rindicatestheexpertiselevel(orweight)ofEvaluatorrin group#g.Inthispaper, ˜Wg,A=W˜g,B=W˜g,C=W˜g,Di.e.,allstudents areequallyweighted.Therefore,Eq.(24)canbesimplifiedto
Y˜g,R= 1
|r|
r∈s,R/∈ry˜g,r. (25)
where|r|referstothenumberofevaluatorsinvolved.Noticethat fuzzyadditionandmultiplicationoperations(asinDefinitions3 and4)areusedinEqs.(23),(24)and(25).
3.3. Decoder
Therolesofthedecoderaretwo-fold,i.e.,tomaptheaggregated outcomes(representedinIT2FS,i.e., ˜Yg,R)fromCWWtorecom- mendationintermofwords(Stage5.3)andtoranktheaggregated outcomesof students inthe samegroup(Stage5.4). Therank- ingindicesareusedtoderiveIWFinthelatterstage.Theformer attemptstomaptheaggregatedoutcomes,i.e., ˜Yg,R,tothewords listedinTable4.TheassociatedIT2FSsoftheselinguisticgrades, i.e.,poor,belowaverage,average,aboveaverageandexcellent,are denotedas ˜YP, ˜YBA, ˜YA, ˜YAA,and ˜YEX,respectively,andtheircorre- spondingIT2FSsareshowninFig.7.UsingtheJaccardsimilarity indicator[25],thesimilarityindicatorsbetween ˜Yg,Rand ˜YLGare denotedasSJ( ˜Yg,R,Y˜LG),where ˜YLG∈[ ˜YP, ˜YBA, ˜YA, ˜YAA, ˜YEX].Eq.(26) showsthesimilarityindicator.SJ( ˜Yg,R,Y˜LG)∼=1indicates ˜Yg,Rissim- ilarto ˜YLG.
SJ( ˜Yg,R,Y˜LG)∼=
Tt=1min(¯Y˜
g,R(yt),¯Y˜
LG(yt))+
Tt=1min(
-Y˜g,R(yt), -Y˜LG(yt))
Tt=1max(¯Y˜
g,R(yt),¯Y˜
LG(yt))+
Tt=1max(
-Y˜g,R(yt),
-Y˜LG(yt)). (26) where¯Y˜
g,R(yt)and
-Y˜g,R(yt)aswellas¯Y˜
LG(yt)and
-Y˜LG(yt)are theupperandlowermembershipfunctionsof ˜Yg,Rand ˜YLG,respec- tively.yt(t=1,2,...,T)areequallyspacedinthesupportregion of ˜Yg,R∪Y˜LG.ConsideranoutputspaceY. ˜Yg,R,Y˜LG,andytarethe elements in Y (i.e., ˜Yg,R,Y˜LG,yt∈Y).In this paper, each aggre- gatedoutcome,i.e., ˜Yg,R,ismappedtotwolinguisticgradeswith thetwo largest similarity measures.SJ( ˜Yg,R,Y˜LG)is represented
Table6
Interpretationofeachstudent’scontribution.
LinguisticGrades Poor,( ˜YP) BelowAverage,( ˜YBA) Average,( ˜YA) AboveAverage,( ˜YAA) Excellent,( ˜YEX) Interpretation A‘sleeping’team
memberwhorelieson otherstocompletethe overallproject.
Apassiveteam memberwhodoesnot careabouttheoverall project.
Agoodteammember butneedstotryharder tocompletetheoverall project.
Astronggroup memberwhotrieshard tocompletethe project.
Agroupleaderwho workshardto completetheoverall project.
in percentage (%) by multiplyingSJ( ˜Yg,R,Y˜LG) with100%. These similarityindicatorsmaptheoutcomes, ˜Yg,R,intorecommenda- tionsasdescribedinTable6.
To rank the aggregated outcomes of students in the same group, consider group #g consists of four students and the assessmentoutcomesaredenotedas ˜Yg,R∈[ ˜Yg,A,Y˜g,B,Y˜g,C,Y˜g,D].
Y˜g,R arethefuzzyoutcomesrepresentedbyIT2FSs.Thesefuzzy outcomesare ranked based onthe algorithm proposed in [30]
andreviewedinSection2.3.TheresultsaredenotedasRI( ˜Yg,R)∈ [RI( ˜Yg,A),RI( ˜Yg,B),RI( ˜Yg,C),RI( ˜Yg,D)] in which RI( ˜Yg,A)+RI( ˜Yg,B)+ RI( ˜Yg,C)+RI( ˜Yg,D)=1.Basedontherankingindex,RI( ˜Yg,R),theIWF ofeachstudent(i.e.,IWF( ˜Yg,R))isobtainedusingEq.(27).
IWF( ˜Yg,R)=
S×RI( ˜Yg,R). (27) where|S|denotesthenumberofstudentsinthegroup.Subsequently,eachstudent’smark,IM,canbederivedbysub- stitutingtheresultsfromEq.(27)intoEq.(22).
4. Acasestudy
Inthissection,arealcasestudyisconducted.Avarietyofaspects fromtheinitialsurveytotheendresultsarediscussedandanalyzed.
4.1. Survey
A survey onthe selection of the type of assessment grades (i.e.,linguisticgradesornumerals)forpeerassessmentwasfirstly conducted.Theresponsesindicatedthattheuseofbothlinguis- tic gradesand numeral wasacceptable.While linguisticgrades wereperceivedasmorenaturalthannumeralsforpeerassessment, acleardescriptionfor eachlinguisticgradeshouldbeprovided.
Therefore,aguideline,aspresentedinTableA1(AppendixA),was prepared.
4.2. Results
Thesimulationresultsfromtheproposedfuzzypeerassessment methodologyarerepresentedasIT2FSs,asshowninFig.8.Asan example,Fig.8(a)presentstheresultofstudentsingroup#1.The legends(i.e.,#1A,#1B,#1Cand#1D)indicatethefourstudents ingroup#1.Themarkofstudent#1AisrepresentedasanIT2FS.
Thedetailedresultsfrombothconventionalandproposedmethod- ologiesarepresentedinTable7.Column“Students”indicatesthe studentidentification,columns“ConventionalIWF”and“Proposed IWF”showtheresultsfromEqs.(21)and(27),respectively.Col- umn“GM”indicatesthegroupmarksfromtheinstructor.Columns
“IMwithConventionalIWF(%)”and“IMwithProposedIWF(%)”
indicateeachstudent’smarks,astheoutcomeofEq.(22).Column
“PeerRating”indicatestheresultsfromEq.(26).Asanexample,row
“#1A”representsstudentAingroup#1.He/sheattainsIMF=1.0503 andIMF=1.0869usingtheconventionalandproposedmethodolo- gies.His/hergroupisawardedanoverallassessmentof83.20%.The conventionalmethodologyindicatesthatstudent#1A’sindividual markis86.90%.Meanwhile,theproposedmethodologyawardsstu- dent#1A88.87%,andhe/sheiscategorizedasan“aboveaverage”
(65.1%)and“excellent”(25.5%)student.
4.3. Analysis
TheresultsinTable7arefurtherillustratedinFig.9forthepur- poseofvisualization.Fig.9showsthegroupmarksaswellasthe scoresofeachstudentbasedontheconventional andproposed methodologies. Thegreen, blue,and red rectangularbars, indi- catethegroupmarks,IM(individualmark)usingtheconventional methodology,andIMusingtheproposedmethodologies,respec- tively.Thegroupmarksdonotreflectindividualcontributionsasall studentsinthesamegroupreceivethesamescore.Asanexample, students#1A,#1B,#1C,and#1Dattainthesamescoreof83.20%.
Suchassessmentapproachcanbesupplementedwiththeconven- tionalandproposedmethodologies.AscanbeseeninFig.9,the outcomesfromtheconventionalandproposedmethodologiesare well-correlated;buttheproposedmethodologyisabletodistin- guishstudentswithsimilarscores.Asanexample,students#1A,
#1B,#1C,and#1Daregiven86.90%,77.14%,80.90%,and86.90%
respectively,usingtheconventionalmethodology;thereforethey areranked1,4,3,and1,respectively.Meanwhile,thesestudents aregiven88.87%,72.79%,79.01%,and89.95%,respectively,using theproposedmethodology;thereforetheyareranked2,4,3,and1, respectively.TheconventionalmethodologyprovidesthesameIM forstudents#1Aand#1D(i.e.,86.90%).However,theirperformance canbedistinguishedwiththeproposedmethodology.
Itisalsoworthmentioningthattheproposedmethodologypro- videsbothcrispscoresandrecommendations.Asanexample,IT2FS forstudent#1A,asinFig.8(a),canbedefuzzifiedtoprovidetwo meaningfulinterpretationsi.e.,acrispscoreof88.87%andarec- ommendationoftheachievementbeing“aboveaverage”(65.1%) and“excellent”(25.5%).FromTable6,student#1Aismostlikely a stronggroupmember whotrieshard tocompletetheproject (“aboveaverage”).Student#1Aisalsopotentiallyagroupleader whoworkshardtocompletetheproject(“excellent”).Compared withtheconventionalmethodologywhichonlyprovidesanindi- vidualmark,theproposedmethodologyprovidesmoremeaningful evaluationoutcomes.
4.4. Similaritymeasure
Theresultsfromthefuzzyrankingalgorithm[30]andJaccard similaritymeasurealgorithm[25]areingoodagreement.Asan example,IWF( ˜Y1,A)andIWF( ˜Y1,D)are1.0869and1.0886,respec- tively.ThisshowsthatIWF( ˜Y1,D)isslightlylargerthanIWF( ˜Y1,A), whichisinagreementwithbothstudents’scores,i.e.,student#1A withAA(65.1%),EX(25.5%)andstudent#1DwithAA(65.1%),EX (25.6%).Theresultsofstudents#1Aand#1Dareindeedveryclose, buttheircontributionsareslightlydifferent.
4.5. Detectionofpossiblefreeriders
Anotherkeybenefitoftheproposedmethodologyisitsabilityto detectfreerider(s)inagroup.Anillustrativeexampleisasfollows.
Assumethatstudent#1Aisafreerider,andhis/hergradeis“poor”, asshowninTable8.
The aggregated resultsusingthe proposedmethodologyare illustratedinFig.10andTable9.Thegroupmarksdonotreflect individualcontributionsasstudentsfromthesamegrouparegiven
Fig.8.Aggregatedresultsofthestudentsineachgroup:(a)Group#1;(b)Group#2;(c)Group#3;(d)Group#4;(e)Group#5;(f)Group#6;(g)Group#7.
Table7
Theoutcomesusingtheconventionalandproposedmethodologies.
Students ConventionalIWF ProposedIWF GM(%) IMwithConventionalIWF(%) IMwithproposedIWF(%) PeerRating(Recommendations)
#1A 1.0503 1.0869 83.200 86.900 88.870 AA(65.1%),EX(25.5%)
#1B 0.9272 0.8749 83.200 77.141 72.790 A(27.4%),AA(67.4%)
#1C 0.9723 0.9497 83.200 80.896 79.013 A(19.8%),AA(90.7%)
#1D 1.0503 1.0886 83.200 86.900 88.951 AA(65.1%),EX(25.6%)
#2A 0.9857 0.9686 87.600 86.349 84.849 AA(37.6%),EX(48.3%)
#2B 0.9785 0.9533 87.600 85.723 83.513 AA(39.8%),EX(45.5%)
#2C 1.0250 1.0549 87.600 89.620 91.520 AA(27.6%),EX(68.0%)
#2D 1.0107 1.0232 87.600 88.507 89.474 AA(30.9%),EX(60.1%)
#3A 1.0052 1.0078 79.000 79.405 79.609 AA(16.5%),EX(89.3%)
#3B 0.8769 0.7922 79.000 69.278 62.587 A(41.1%),AA(45.7%)
#3C 1.0590 1.1008 79.000 83.154 85.372 AA(65.1%),EX(25.7%)
#3D 1.0590 1.0991 79.000 83.154 85.290 AA(65.1%),EX(25.5%)
#4A 1.0741 1.1215 80.000 85.084 87.259 AA(76.0%),EX(21.8%)
#4B 1.0569 1.0934 80.000 84.056 86.017 AA(83.8%),EX(19.4%)
#4C 0.9753 0.9636 80.000 78.024 77.086 A(26.6%),AA(69.5%)
#4D 0.8937 0.8216 80.000 71.493 65.725 A(46.0%),AA(41.1%)
#5A 0.9002 0.8338 68.600 61.755 57.200 A(41.1%),AA(46.0%)
#5B 1.0531 1.0889 68.600 72.004 73.980 AA(79.8%),EX(20.5%)
#5C 1.0786 1.1304 68.600 73.470 75.997 A(68.6%),EX(24.3%)
#5D 0.9682 0.9469 68.600 66.415 64.956 A(25.9%),AA(71.0%)
#6A 0.9260 0.8701 72.000 66.669 62.644 A(30.8%),AA(60.3%)
#6B 1.0344 1.0614 72.000 74.360 76.017 AA(79.8%),EX(20.5%)
#6C 0.9885 0.9778 72.000 71.174 70.404 A(19.8%),AA(90.7%)
#6D 1.0511 1.0907 72.000 75.421 77.650 AA(72.3%),EX(23.0%)
#7A 0.8665 0.7805 63.000 54.587 49.170 A(48.7%),AA(38.8%)
#7B 1.0599 1.1009 63.000 66.541 68.632 AA(72.3%),EX(23.0%)
#7C 1.0768 1.1262 63.000 67.450 69.820 AA(65.1%),EX(25.5%)
#7D 0.9969 0.9925 63.000 62.801 62.526 A(19.8%),AA(90.7%)
Table8
Anillustrativeexamplei.e.,student#1Aisassessedas“poor”fortheentireassessment.
StudentBeingAssessed #1A
Evaluators #1B #1C #1D
SpecificCriteria,i
Weighing
1.Participatedingroupmeetings (20%) P P P
2.Communicatedconstructivelytodiscussion (20%) P P P
3.Generallywascooperativeingroupactivities (15%) P P P
4.Contributedtogoodproblem-solvingskills (15%) P P P
5.Contributedusefulideas (10%) P P P
6.Demonstratedgoodinteresttotaskgiven (10%) P P P
7.Prepareddraftsofreportingoodquality (10%) P P P
Fig.9.Peerassessmentresultsfor28studentsusingthreedifferentmethods.
Fig.10.AggregatedresultsofthestudentsinGroup#1withpossiblefreerider.
Table9
Theoutcomesfortheillustrativeexample.
Students ConventionalIWF ProposedIWF GM(%) IMwithConventionalIWF