THE CAUCHY PROBLEM FOR THE SYSTEM OF EQUATIONS OF THERMOELASTICITY IN E
nI.E.NIYOZOV AND O.I.MAKHMUDOV
Department of Mechanics and Mathematics, Samarkand State University Boulevard 15, 103004, Samarkand, Uzbekistan..
[email protected], [email protected]
ABSTRACT: In this paper, we consider the problem of analytical continuation of solutions to the system of equations of thermoelasticity in a bounded domain. That is, we make a detailed analysis of the Cauchy problem regarding the values of thermoelasticity in bounded regions and the associated values of their strains on a part of the boundary of this domain.
ABSTRAK: Di dalam kajian ini, kami menyelidiki masalah keselanjaran analitik bagi penyelesaian-penyelesaian terhadap sistem persamaan-persamaan termoelastik di dalam domain bersempadan berdasarkan nilai-nilainya dan nilai tegasannya bagi sebahagian daripada sempadan domain tersebut, iaitu kami mengkaji masalah Cauchy.
KEYWORDS: Cauchy problem; system theory of elasticity; elliptic system; ill-posed problem; Carleman matrix; regularization
1. INTRODUCTION
In this paper, we consider the problem of analytical continuation of the solution of the system equations of the thermoelasticity in spacious bounded domain from its values and values of its strains on part of the boundary of this domain, i.e., we study the Cauchy problem. Since, in many actual problems, either a part of the boundary is inaccessible for measurement of displacement and tensions or only some integral characteristics are available. Therefore, it is necessary to consider the problem of continuation for the solution of elasticity system of equations to the domain by values of the solutions and normal derivatives in the part of boundary of domain.
The system of equations of thermoelasticity is elliptic. Therefore, the Cauchy problem for this system is ill-posed. For ill-posed problems, one does not prove the existence theorem: the existence is assumed a priori. Moreover, the solution is assumed to belong to some given subset of the function space, usually a compact one [1]. The uniqueness of the solution follows from the general Holmgren theorem [2]. On establishing uniqueness in the article studio of ill-posed problems, one comes across important questions concerning the derivation of estimates of conditional stability and the construction of regularizing operators. Our aim is to construct an approximate solution using the Carleman function method.
Let
x
= (x
1, ….., x
n) and y = (y
1, ….., y
n) be points of the n-dimensional Euclidean spaceE
n,D
a bounded simply connected domain inE
n, with piecewise-smooth boundary consisting of a piece ∑ of the planey
n = 0 and a smooth surfaceS
lying in the half-space yn > 0.Suppose U(x)=(u1(x),...,un(x),un+1(x)) is a vector function which satisfies the following system of equations of thermoelasticity in
D
[3]:0,
= ) ( ) ,
( U x
B ∂
xω
(1)where ( , )= ( , ) ,
1) ( 1) ( + × +
∂
∂x Bkj x n n
B ω ω
and ( , )= ( ) ( ) , , =1,..., ,
2
2 k j n
x B x
j k j
k x
j
k ∂ ∂
+ ∂ + +
∆
∂
ω δ µ ρω λ µ
, 1,...,
= ,
= ) , (
1) ( 1)
(
k n
B x
n x
n k
+
+
∂
− ∂
∂ ω γ
, 1,...,
= ,
= ) ,
1)
(
(
j n
i x B
j x
j
n
∂
∂ ∂
+
ω ωη
,
= ) ,
1)(
( 1)
(
θ
ω
iω
Bn+ n+ ∂x ∆+δ
ij is the Kronecker delta, ω is the frequency of oscillation and λ, µ, ρ, θ its coefficients which characterize the medium, satisfying the conditions0.
>
0,
>
0,
>
0,
>
2 3 0,
> η
θ γ ρ µ λ
µ +
The system (1) may be written in the following manner:
+ +
∆
+
− +
+
∆
0,
=
0
= )
( 2
divu i i v v
u gradv
divu grad u
θ ωη ω
ρω γ
µ λ µ
where U(x)=(u(x),v(x)).
This system is elliptic, since, its characteristic matrix is
, 1 0
0 0
0 )
( )
( )
(
0 )
( )
( )
(
= )
( 2
2 1
= 2 2 1
2
1 2
1 2
1
= 2 1
Λ
Λ Λ
Λ Λ
Λ
Λ Λ
n i
n
i
n i
n
i
ξ ξ µ α ξ
µ ξ µ λ ξ
ξ µ α
ξ ξ µ α ξ
ξ µ α ξ
µ ξ µ λ ξ
χ + + + +
+ +
+ +
∑
∑
and for arbitrary
ξ = ( ξ
1,..., ξ
n)
with real components satisfying the conditions1,
2
=
1
= i n
i
∑ ξ
we have0.
) (
= )
( ξ µ
2λ + µ ≠ χ
det
Statement of the problem. Find a regular solution
U
of the system (1) in the domainD
by using its Cauchy data on the surfaceS
:, ),
(
= ) ( )) ( , ( ), (
= )
(y f y R y U y g y y S
U ∂y ν ∈ (2)
where R(∂y,ν(y)) is the stress operator, i.e.,
( , ( ))= ( , ( ), ) =
1) ( 1) (+ × +
∂
∂y y Rkj y y n n
R ν ν γ
… … … …
… … … … . .
0 0 … … … ,
, ) , (
= ) , (
=T y Tkj y nxn
T ∂ ν ∂ ν
, 1,...,
= , ), ) (
( ) (
= ) ,
( k j n
y y y
T y kj
k j j k y
kj
ν λ ν µ ν µ λ δ ν
∂ + ∂
∂ + + ∂
∂
∂ ∂
)) ( ),..., ( (
= )
(y
ν
1 yν
n yν
is the unit outward normal vector on ∂D at a pointy
, ),, , (
= f1 fn+1
f Κ g=(g1,Κ,gn+1) are given continuous vector functions on
S
.2. CONSTRUCTION OF THE CARLEMAN MATRIX AND APPROXIMATE SOLUTION FOR THE CAP TYPE DOMAIN
It is well known that any regular solution U(x) of the system (1) is specified by the formula
−
∂
−
∫
∂ (Ψ( , ){ ( , ( )) ( )}= ) (
2U x x y R y y U y
D
ω ν
~( , )} ( )) , ,
)) ( ,
~(
{R ∂y y Ψ y−x *U y dsy x∈D
−
ν ω
(3)where the symbol *− means the operation of transposition, Ψ is the matrix of the fundamental solutions for the system of equations of steady-state oscillations of thermoelasticity: given by
, )
, (
= ) ,
( Ψ (+1)×(+1)
Ψ x ω kj xω n n
+
∂
∂
− ∂
−
−
Ψ
∑
+ +j k l nl kj n j n
k l
j
k x x x
2 1)
( 1)
( 3
1
=[(1 )(1 ) 2
= ) ,
( δ α
πµ δ δ
δ ω
,
|
| )
|
| ( ]exp )
(1 )
(1 ( 1) ( 1) ( 1) ( 1) ( 1)
1)
( x
x i x
i x kn jn l l
k n k n
j j n j n
k l
γ λ δ δ δ
γδ δ
ωηδ
β + + + + + + +
∂
− ∂
∂ −
− ∂ +
0,
= 1,2,3;
= 2 ,
) )(
2 ( 2
) (
(1 1)
= (
3
1
= 2
3 2
1 2 2
2 1 1 1
l l l
l l l
l i l
πρω α δ λ
λ µ λ π
δ δ λ
α ωθ −
∑
− +
+
−
− − −
0,
= 1,2,3;
= ), )(
2 ( 2
) (
1)
= (
3
1
= 2
1 2 2 2 1
l l l
l l
l l β
λ λ µ λ π
δ
β δ
∑
− +
+
−
, ) 2 (
= 0,
= 1,2,3;
= ) ,
( 2
) )(
( 1)
= (
12 2 13
1
= 2
1 2 2
2 1 2 1 2
+
−− +
−
− ∑ γ ρω λ µ
λ λ π
δ δ
γ λ k l k
l l l
l l
l l
), , (
= ) ,
~ ( , )
,
~ (
= ) ,
~(
1) ( 1)
(
ω ω
ω
ω
x x xx Ψkj n n Ψkj Ψkj −
Ψ Π Π+ × +
= )) ( ,
~(
y R ∂y
ν
… … … …
… … … … . .
0 0 … … … .
Definition. By the Carleman matrix of the problem (1),(2) we mean an (n+1)×(n+1) matrix Π(
y,x,ω, τ
) depending on the two pointsy,x
and a positive numerical number parameterτ
satisfying the following two conditions:), , , ( ) , (
= ) , , , (
1) Π y x ω τ Ψ x − y ω + G y x τ
where the matrix G(y,x,
τ
) satisfies system (1) with respect to the variable y on D, and Ψ(y,x) is a matrix of the fundamental solutions of system (1);), (
|) ) , , , ( ) , (
|
| ) , , , ( (|
2)
∫
∂D\S Π y xω τ
+ R ∂yν
Π y xω τ
dsy ≤ε τ
where
ε ( τ ) → 0,
as τ →∞; here |Π| is the Euclidean norm of the matrix ,||
=||Π (+1)×( +1)
Π ij n n i.e., | |= 2.
1 2 1
1
= ,
Π
Π
∑
n+ ijj i
In particular, | |= 2.
1 2 1
1
=
∑
+ m nm
u U
From the definition of Carleman matrix it follows that.
Theorem 1. Any regular solution
U
(x
) of system (1) in the domainD
is specified by the formula−
∂
∫
∂( Π ( , , , ){ ( , ) ( )}
= ) (
2 U x y x R
yU y
D
ω τ ν
~ ( , ) ( , , , )} ( )) , ,
{ R ∂
yΠ y x
*U y ds
yx ∈ D
− ν ω τ
(4)where Π(
y,x,ω, τ
) is the Carleman matrix.Using this matrix, one can easily conclude the estimated stability of solution of the problem (1), (2) and also indicate effective method decision this problem as in [4 - 6].
With a view to construct an approximate solution of the problem (1), (2) we construct the following matrix:
, )
, , (
= ) , ,
( Π ( +1)×( +1)
Π y x
ω
kj y xω
n n (5)+
∂
∂
− ∂
−
−
Π
∑
+ +j k l nl kj n
j n
k l
kj y x x x
2 1)
( 1)
( 3
1
=[(1 )(1 ) 2
= ) , ,
(
δ α
πµ δ δ
δ ω
), , , ( ] )
(1 )
(1 ( 1) ( 1) ( 1) ( 1) ( 1)
1)
( kn j n l l
k n k n
j j n j n
k
l y x k
x
i x + Φ
∂
− ∂
∂ −
− ∂
+
β ωηδ
+δ
+γδ
+δ
+δ
+δ
+γ
where
) , ) (
= ( ) , , ( )
( 2 2
2
0 u s
du ku x
y s u i
y s u i Im K k
x y x K C
n n
n n n
+
− + +
+
Φ
∫
∞ + ψ (6)
≥ +
≥ 1, 1,
2
= , cos
1, ,
2
= ),
= ( )
( 0
m m
n ku
m m n ku ku uJ
ψ J
0( u )
-Bessel's function of order zero,2 1 1 2
1
1
) ... ( )
(
= y − x + + y
n−− x
n−s
and
+
−
−
⋅
−
−
−
⋅
−
−
−
1.
2
= , 1)!
( 2) ( 2 1) (
2
= , 2)!
( 2) ( 2 1)
= ( , 2
2 =
m n m
n
m n m
C n C
n n
m
n n
m
n πω
π πω
K
(ω),ω =u
+iv
(u
,v
are real), is an entire function taking real values on the real axis and satisfying the conditions:,
<
)
(u ≠∞for u ∞
K
K ( u ) = / 0,
. ,
0,...,
= ,
<
) , (
|=
) ( exp
|
sup ( ) 1
1
R u m p
u p M K
Imk p
v
∈
∞
≥
ω ν
The following theorem was proved in [7].
Lemma 1. For function
Φ
(y,x,k
) the following formula is valid|,
=|
), , , ( ) (
= ) , ,
( y x k ikr g y x k r y x
C
nΦ ϕ
n+
n−
where
ϕ
n - are fundamental solutions of the Helmholtz equation,g
n(y,x,k
) is a regular function that is defined for ally
andx
satisfies the Helmholtz equation:0.
= )
(∂y gn −k2gn
∆
In (6) we put
K ( ω ) = exp ( τω )
. Then),
, (
= ) , ,
( y x k Φ y − x k
Φ
τs u
du ku x
y s u i
x y s u Im i
k s x y C
n n
n n m
m
n +
− + +
− + +
∂
− ∂
Φ −
∫
∞−
2 2
2 1 0
1 exp ( ) ( )
= ) ,
( τ ψ
τ
, ) sin (
) ( cos
) ( exp
= 2
2 2
2 1 0
1
du ku s
u s x u
y s u
x
y m n n
m n
n τ ψ
α τ
τ
+
− + + +
∂ −
− ∂ −
∫
∞− (7)
.
= ) ,
(
τ
τ
τ ∂
Φ
− ∂ Φ′ y x k
, ) sin (
) (
exp
= ) ,
( 2
2 1 0
1
du ku s
u s u x s
y k
x y
C m
m n n
n τ ψ
τ τ
+ +
∂
− ∂
−
Φ′ −
∫
∞−
), , ( )
( exp
= ) ,
( 1
1
s s k
x y k
x y
C m
m n n
n τ
τ ψ
τ′∂
− ∂
−
Φ′ −
−
−
−
′
k k
s J
m n k s
k
>
), ) (
2 ( 1
2
= , ) (
cos
<
0,
=
2 2 0
2 2
τ τ
π τ
τ ψτ
Now, in formulas (5) and (6) we set
Φ ( y , x , k ) = Φ
τ( y − x , k )
and construct the matrixΠ ( y , x , ω ) = Π ( y , x , ω , τ )
From Lemma 1 we obtain,
Lemma 2. The matrix Π(
y,x,ω, τ
) given by (5) and (6) is Carleman's matrix for problem (1), (2).Indeed by (5), (6) and Lemma 1 we have
), , , ( ) , , (
= ) , , ,
( y x ω τ Ψ y x ω + G y x τ Π
where
, ) , , (
= ) , ,
( y x τ G y x τ
G
kj+
∂
∂
− ∂
−
− + +
∑
j k l nl kj n
j n
k l
j
k y x x x
G
2 1)
( 1)
( 3
1
=[(1 )(1 ) 2
= ) , ,
(
δ α
πµ δ δ
δ τ
+
∂
− ∂
∂ −
− ∂
+ + + + +
k n k n
j j n j n
k
l i
ωηδ
( 1)(1δ
( 1)) xγδ
( 1)(1δ
( 1)) xβ
1.
1,...,
= , ), , , , (
1) ]
( 1)
( +
+
δ
kn+δ
jn+γ
l gn y x klτ
k j nBy a straightforward calculation, we can verify that the matrix G(y,x,
τ
) satisfies the system (1) with respect to the variabley
everywhere inD
. By using (5), (6) and (7) we obtain), ( exp ) (
|), ) , , , ( ) , (
|
| ) , , , (
(| 1
\ n
m y
S y
D Π y x
ω τ
+ R ∂ν
Π y xω τ
ds ≤C xτ
−τ
x∫
∂ (8)Where
C
1(x
) is a bounded function inside ofD
. Let us set. )) ( )}
, , , ( ) ,
~( { )}
( ) , ( ){
, , , ( (
= ) (
2 y y * y
S y x R U y R n y x U y ds
x
Uτ
∫
Πω τ
∂ν
− ∂ Πω τ
(9)The following theorem holds.
Theorem 2. Let
U
(x
) be a regular solution of the system (1) inD
such that.
\ ,
| ) ( ) , (
|
| ) (
| U y + R ∂
yν U y ≤ M y ∈ ∂ D S
(10)Then for τ ≥1 the following estimate is valid:
).
( exp ) (
| ) ( ) (
|U y −Uτ y ≤MC2 xτm −τxn By formulas (4) and (9) we have
. )) ( )}
, , , ( ) ,
~( { )}
( ) , ( ){
, , , ( (
|=
) ( ) (
|
2 *
\S y y y
D y x R U y R y x U y ds
x U x
U − τ
∫
∂ Π ω τ ∂ ν − ∂ ν Π ω τNow on the basis of (8) and (10) we obtain the required estimate.
Next we write out a result that allows us to calculate
U
(x
) approximately if, instead ofU
(y
) and R(∂y,ν
)U(y), its continuous approximations fδ(y) and gδ(y) are given on the surfaceS
:1.
<
<
0 ,
| ) ( ) ( ) , ( max|
| ) ( ) (
max| f y − fδ y + R ∂y ν U y −gδ y ≤δ δ
S S
(11) We define a function
U
τδ(x )
by setting, )) ( )}
, , , ( ) ,
~( { ) ( ) , , , ( (
= ) (
2 y * y
S y x g y R y x f y ds
x
Uτδ
∫
Πω τ
δ − ∂ν
Πω τ
δ (12)where
0.
>
max ,
= 1 ,
= 0 0 n n
n D n
x x M x
x ln
δ τ
Then the following theorem holds:
Theorem 3. Let
U
(x
) be a regular solution of the system (1) inD
satisfying the condition (10). Then the following estimate is valid:. ,
) (
| ) ( ) (
| 3 0 M x D
ln x
C x U x U
m xn
xn
∈
≤
− τδ
δ δ
From all of the above results we immediately obtain a stability estimate.
Theorem 4. Let
U
(x
) be a regular solution of the system (1) inD
satisfying the conditions:S D y M y U R
y
U( )| | ( y, ) ( )| , \
| + ∂
ν
≤ ∈∂and
. 1,
<
<
0 ,
| ) ( ) , (
|
| ) (
| U y + R ∂
yν U y ≤ δ δ y ∈ S
Then
, ) ( )
(
| ) (
| 4 0
m xn
xn
ln M x
C x
U
≤ δ δ
where ds C
y C x
x
C n y
D
, ~
|
| 1
= ~ )
4(
∫
∂ − is a constant depending on λ,µ
, ω. Corollary 1. The limits) (
= ) lim ( ), (
= ) lim (
0
x U x U x
U x
U τδ
τ δ
τ→∞ →
hold uniformly on each compact subset of
D .
3.
REGULARIZATION OF SOLUTION OF THE PROBLEM (1), (2) FOR A CONE TYPE DOMAIN
Let
x = ( x
1, Κ , x
n)
andy = ( y
1, Κ , y
n)
be points in En, Dρ be a bounded simply connected domain inE
n whose boundary consists of a cone surface1
>
0,
>
2 ,
= ,
= ,
=
:
1 12 12 21ρ
ρ τ π
α τ
α
ρy
ny + + y
n− ρtg y
nΣ Κ
and a smooth surface
S
lying in the cone. Assume x0=(0,...0,xn)∈Dρ.We construct Carleman matrix. In formula (5), (6) we set
( )
[ ]
, >0, >1.= )
(
ω
Eρτ ω
xnτ ρ
K −
Then
0
>
), , (
= ) , ,
( y x k Φ y − x k k
Φ
τs u
du ku x
y s u i
x y s u i Im E
k s x y C
n n
n n m
m
n +
− + +
− + +
∂
− ∂
Φ −
∫
∞−
2 2
2 1 0
1 ( ( )) ( )
= ) ,
( ρ τ ψ
τ (13)
.
= ) ,
( τ
τ
τ ∂
Φ
− ∂ Φ′ y x k
[ ]
{
(}
( ) ,= ) ,
( 2
2 1 0
1
s u
du x ku
y s u i E s Im
k x y
C m n n
m
n ′ + + − +
∂
− ∂
Φ′τ −−
∫
∞ ρτ ψ
Where
E
ρ(w) is Mittag-Löffer`s entire function [8]. For the functions Φτ(y−x,k) hold Lemma 1 and Lemma 2.Further, we may show similar estimate for
U
τ (x
) andU
τδ (x
) (in cone case) defined in (9) and (12), as Theorems 1, 2, 3, and 4.For the simplicity let us consider
n
= 3, since the other cases are considered analogously.Suppose that
D
ρ is a bounded simple connected domain inE
3 with boundary consisting of part ∑ of the surface of the cone0,
>
1,
>
2 ,
= ,
=
32 32 2 2
1
y y tg y
y ρ
ρ τ π
τ
ρ ρ+
and of a smooth part of the surface
S
lay inside the cone. Assumex
0= (0,0, x
3) ∈ D
ρ. We construct Carleman`s matrix. In formulas (5), (6) we takecos , )
( )
( 4
= 1 ) , ,
( 2
3 3 2
1
0 3 1
2 u s
du ku x
y s u i
w Im E
x E k
x
y + + − +
Φ
∫
∞ρ ρ
ρ ρ τ
τ τ
π
(14)
where
w = i u
2+ s + y
3. For the functions Φτ(y,x,k) holds Lemma 1.It follows from the properties of
E
ρ(w) that fory ∈ Σ
and 0<u<∞ the function) , , ( y x k
Φ
τ defined by (13) its gradient and the second partial derivatives 1,2,3,= , ), , ,
2 (
j y k
y k x y
j k∂
∂ Φ
∂ τ
tends to zero as
τ
→∞, for a fixedx ∈ D
ρ.
Then from (5) we find that the matrix Π(
y,x,ω, τ
) and its stresses ), , , ( ) ,
( ν y x ω τ
R ∂y Π also converge to zero as
τ → ∞
for ally ∈ Σ ,
i.e., Π(y,x,ω, τ
) is the Carleman matrix for the domainD
ρ and the partΣ
of the boundary.If
U
(x
) is a regular solution of the system (1) then the following integral formula . )) ( )}, , , ( ) ,
~( { )}
( ) , ( ){
, , , ( (
= ) (
2 y y * y
D y x R U y R y x U y ds
x
U
ω τ ν ν ω τ
ρ
Π
∂
−
∂
∫
∂ Πholds. For
x ∈ D
ρ we denote byU
τ(x )
the following:. )) ( )}
, , , ( ) ,
~( { )}
( ) , ( ){
, , , ( (
= ) (
2 y y * y
S y x R U y R y x U y ds
x
Uτ
∫
Πω τ
∂ν
− ∂ν
Πω τ
(15)Then the following theorem holds.
Theorem 5. Let
U
(x
) be a regular solution of the system (1) inD
ρ such that. ,
| ) ( ) , (
|
| ) (
| U y + R ∂
yν U y ≤ M y ∈ Σ
(16)Then for τ ≥1 the following estimate is valid:
), (
exp ) (
| ) ( ) (
| U x
0− U
τx
0≤ MC
ρx
0τ
3− τ x
3ρwhere
x
0= (0,0, x
3) ∈ D
ρ, x
3> 0,
.
|,
=|
1 ,
= )
( 3 0 0
0
0 ds r y x C constant
C r x
Cρ ρ
∫
Σ y − ρ −Let us take continuous approximations
f
δ(y
) andg
δ(y
) ofU
(y
) and R(∂y,ν)U(y), respectively, i. e.,1
<
<
0 ,
| ) ( ) ( ) , ( max|
| ) ( ) (
max|U y − fδ y + R ∂y ν U y −gδ y ≤δ δ
S S
and define the following function
, )) ( )}
, , , ( ) ,
~ ( { ) ( ) , , , ( (
= ) (
2
y * yS
y x g y R y x f y ds
x
U
τδ∫ Π ω τ
δ− ∂ ν Π ω τ
δThen the following theorem holds.
Theorem 6. Let
U
(x
) be a regular solution of the system (1) in the domainD
ρ satisfying the condition (16), then, ) ( ) (
| ) ( ) (
| 0 0 0 3
δ δ
ρ δ
τ
lnM x
C x U x
U − ≤ q
where =( ρ ) ρ , ρ =max ( 3)ρ,
τ δ
τ
M R Re i s yln R
S
− +
1 .
= 1 ) ( , ) (
= 4
0 3 0 0
3
dsy
r C r
x R C
q x
+
∫
Σρ ρ
ρ
The theorem is proved analogously as Theorems 3 and 4.
Corollary 2. The limits
) (
= ) lim ( ), (
= ) lim (
0
x U x U x
U x
U τδ
τ δ
τ→∞ →
hold uniformly on each compact subset of
D
ρ.
REFERENCES
[1] Lavrent'ev, M. M. “Some Ill-Posed Problems of Mathematical Physics.” , Springer- Verlag, (1967).
[2] Petrovskii, I. G. “Lectures on Partial Differential Equations [in Russian].”, Fizmatgiz Press, Moscow(1962).
[3] Kupradze, V. D., Burchuladze, T. V., Gegeliya, T. G. “Three-Dimensional Problems of the Mathematical Theory of Elasticity [in Russian]”, Nauka Press, Moscow(1968).
[4] Makhmudov, O. I., Niyozov, I. E. “The Cauchy problem for the Lame system in infinite domains in Rm. Journal of inverse and Ill-Posed Problems, 14(2006):905-24.
[5] Makhmudov, O. I., Niyozov, I. E. “Regularization of a solution to the Cauchy Problem for the System of Thermoelasticity.” Contemporary Mathematics. AMS, Primary, 382(2005):35-72.
[6] Makhmudov, O. I., Niyozov, I. E., Tarkhanov, N. “The Cauchy Problem of Couple-Stress Elasticity.” Contemporary Mathematics. AMS, 455(2008):207-310.
[7] Yarmukhamedov, Sh. Ya. “Cauchy problem for the Laplace equation.” Journal.
Dokl.Acad.Nauk SSSR [Soviet Math.Dokl.], 357(1997):320-357.
[8] Dzharbashyan, M. M. “Integral Transformations and Representations of Functions in a Complex Domain [in Russian],”Nauka Press, Moscow. (1966)