• Tidak ada hasil yang ditemukan

View of A comparative study on the vibration of functionally graded Magneto-Electro-Elastic rectangular plate rested on a Pasternak foundation based on exponential and first-order shear deformation theories

N/A
N/A
Protected

Academic year: 2024

Membagikan "View of A comparative study on the vibration of functionally graded Magneto-Electro-Elastic rectangular plate rested on a Pasternak foundation based on exponential and first-order shear deformation theories"

Copied!
17
0
0

Teks penuh

(1)

VOL. 14, ISSUE 3, 7205 – 7221

DOI: https://doi.org/10.15282/jmes.14.3.2020.21.0566 ORIGINAL ARTICLE

A comparative study on the vibration of functionally graded Magneto-Electro- Elastic rectangular plate rested on a Pasternak foundation based on exponential and first-order shear deformation theories

H.R. Talebi Amanieh1, S.A. Seyed Roknizadeh1,2, A. Reza1

1 Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran Phone: +986133348420-4; Fax: +986133329200

2 Department of Mechanical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

ARTICLE HISTORY Revised: 28th Apr 2020 Accepted: 15th May 2020 KEYWORDS

FG-MEE plate;

in-plane vibrations;

out-of-plane vibrations;

first-order shear deformation theory;

exponential shear deformation theory;

Pasternak foundation

INTRODUCTION

The exprimental and theorical dynamic responses of elastic bodies and applications under various external conditions have been investigated by many researchers [1-8] . Furthermore, the vibration analysis of a thin plate, with or without piezoelectric effects, has been the subject of several investigations. The electrostatic coupling effect of piezoelectric structures is defined as their ability to transform mechanical strains into electrical signals or vice versa. This effect has been also examined extensively over the past decades [9-12]. Regarding the substantial application of transverse vibrations in rectangular plates, several investigations have been devoted to this subject [13]. However, despite the probability of exciting in-plane vibrations in some structures, only a few studies have been focused on in-plane free vibrations due to the higher values of in-plane natural frequencies compared to the excitation frequencies.

Bardell et al. [14] studied the free vibrations of isotropic rectangular plates using the Rayleigh-Ritz method for simply- supported, clamped, and free boundary conditions. Farag and Pan [15] investigated the free and forced in-plane vibrations of rectangular plates; however, the forced responses were only studied in excitation with in-plane point force using orthogonal properties of the mode shapes and modal characteristics in different boundary conditions. The closed-form solutions were addressed for the in-plane vibrations of rectangular plates with simply-supported and clamped boundary conditions by Gorman [16-18] through superposition methods. In another study by Hosseini Hashemi and Moradi, a closed-form solution was obtained for the Mindlin plate using the Helmholtz decomposition [19]. Xing and Liu [20]

presented exact solutions for in-plane free vibration of rectangular plates using the direct separation method. In-plane natural frequencies and mode shapes of composite materials were examined by Dozio and Lorenzo [21] through the use of the Ritz method.

Recent years have witnessed remarkable developments in the field of intelligent materials, including piezoelectric and piezomagnetic materials. These materials are capable of converting one form of energy (e.g. magnetic, electrical, and mechanical) to another; they re also called magneto-electro-elastic (MEE) composites.

Pan and Heyliger [22] investigated the linear vibrations of multilayer MEE rectangular plates under simply-supported boundary conditions using the theory of thin plates and classical plate theory. They also derived the governing equations, natural frequencies, and mode shape by propagator matrix method. Buchanan and George [23] examined and compared the vibrations of the multi-layered and multi-phase MEE plates. They obtained a solution by extracting shape functions using Galerkin's finite element method and considering the 3-node elements.

In 2010, Liu et al. [24] studied the exact solution for the vibrations of isotropic MEE rectangular thin plates. They looked for an exact free vibration solution for two-layered material consisting of BaTiO3-CoFe2O4; besides, the effect of volume fraction on natural frequencies was addressed. In 2014, free vibrations of MEE plates on elastic foundation were

ABSTRACT – In this paper, the in-plane and out-of-plane free vibrations of the functionally graded magneto-electro-elastic (FG-MEE) rectangular plate on a pasternak foundation were evaluated based on exponential shear deformation theory (ESDT) and first order shear deformation theory (FSDT). The material properties of FG-MEE varied along the thickness according to a power-law distribution model. It was assumed that the FG-MEE plate is subjected to initial external electrical and magnetic potentials; mreover, simply-supported boundary conditions were considered for all the edges of the FG-MEE plate. Firstly, the corresponding partial differential equations (PDEs) were derived using Hamilton’s principle, then, the natural frequencies were determined by solving the obtained equations through Navier’s approach according to the assumed boundary conditions. The results revealed that the natural frequencies of the plate decrease/increase with the increase of the electric/magnetic potentials. Moreover, the results showed a 0.03%, difference between the natural frequencies of the plate with a thickness-to-length ratio of 0.1 based on FSDT and ESDT; when the aspect ratio was increased to 0.2 and 0.3 this difference rose to 0.2% and 0.5%, respectively.

(2)

investigated by Li and Zhang [25] using first-order shear deformation theory (also known as Mindlin theory). Ke et al.

[26] analyzed the free vibration of MEE nanoplates based on classical and nonlocal theories.

Recently, a new class of advanced materials has been introduced in the field of intelligent structures known as functionally grade Magneto-electro-elastic (FG-MEE) products. These materials can be exploited in sensors and actuators. Unlike ordinary multi-layered plates with abrupt material properties variations between the layers, these plates are benefited from the gradual alteration of material properties across their thickness which can significantly improve their performance and life.

In 2005, Bhangale and Ganesan [27] investigated the free vibrations of nonhomogeneous FG-MEE cylindrical shells under simply-supported boundary conditions. The inner and outer surfaces of the shell were made from piezoelectric and piezomagnetic materials, respectively, and the problem was solved by the use of the finite element method introduced by Buchanan [28]. Tsai and Wu [29] in 2008 used an approximated method to evaluate the three-dimensional (3-D) free vibration of FG-MEE shells with simply-supported boundary conditions and solved the derived equations using the state space method. Wu and Lu [30] analyzed the vibrations of FG-MEE rectangular plates by modified Pagano's method considering a 3-D plate under simply-supported boundary conditions. The multi-scale method was utilized for solving the 3-D vibrations of FG-MEE shells under simply-supported boundary conditions and classical shell theory assumptions by Wu and Tsai[31] . Hosseini et al.[32] evaluated the sensitivity of FG-MEE nanoplates with attached nanoparticles as a nanosensor considering nonlocal Mindlin plate assumption and using the Navier’s method. Shooshtari and Mantashloo [33] studied the linear and nonlinear free vibrations of the FG-MEE rectangular plates based on third-order shear deformation theory. By omitting the rotational and in-plane inertia terms, they obtained the vibrational equations and solved the equations using Lindstedt- Poincare method.

Exponential shear deformation theory was first proposed by Karama et al. [34] in 2003 during studying a multilayer beam. Their new multi-layered structure exponential model exactly and automatically satisfied the continuity condition of displacements and transverse shear stresses at interfaces, as well as the boundary conditions for a laminated composite with the help of the Heaviside step function. Sayyed and Ghugal [35] examined the buckling and free vibrations of isotropic thick plates with exponential shear deformation theory. In their research, the exponential functions were aligned to the applied thickness and the displacements included shear transverse deformation and rotational inertia. The frequencies obtained by the ESDT theory for all modes of vibration were in excellent agreement with the exact values and higher-order shear deformation theory of frequencies for the simply supported square plate. Kharde et al. [36]

investigated the isotropic plate vibrations using exponential shear deformation theory. They obtained the differential equations and boundary conditions using the principle of virtual work and their results were compared with the results of other shear deformation theories as well as the exact solutions found in other papers. Khorshidi et al. [37, 38] investigated the free vibration and buckling of rectangular nano-plates based on a nonlocal theory with exponential shear deformation.

Khorshidi et al. [39] investigated the free vibrations of functionally graded composite rectangular nanoplates based on the nonlocal theory by exponential shear deformation in the thermal environment.

First-order shear deformation theory (FSDT) can be considered as an improvement to the classical plate theory (CPT). It is based on the hypothesis that the normal to the undeformed mid-plane remains straight but not necessarily normal to the mid-plane after deformation. This is known as FSDT because the thickness-wise displacement field for the in-plane displacement is linear or of the first order. In Mindlin’s theory, the transverse shear stress is assumed to be constant through the thickness of the plate, but this assumption violates the shear stress-free surface conditions on the top and bottom of the plate. Exponential shear deformation theory (ESDT) is used for free vibration analysis of thick rectangular plates which includes the effect of transverse shear deformation and rotary inertia. The displacement field of the theory contains three variables as in the FSDT of the plate.

The FG-MEE materials are a new class of smart materials with coupling electrical, magnetic, and mechanical properties whose exact behavior has to be properly explored. In fact, to improve our understanding of these materials it is necessary to analyze them with higher-order theories such as ESDT and examine the validity of more common theories such as FSDT. To the best of the authors’ knowledge, there is no available literature in the field of in-plane and out-of- plane vibrations of FG-MEE plates on Pasternak foundation based on the exponential shear deformation theory and first- order shear deformation theory. Accordingly, in this paper, the equations of plate displacement were written based on the ESDT and FSDT and the constitutive equations were obtained. Moreover, the electrical and magnetic potential functions were obtained according to the initial conditions which satisfied the Maxwell equations as well. Finally, Navier’s method was used to solve the differential equations obtained based on the Hamilton principle.

KINEMATICS OF DIFFERENT THEORIES

A moderately thick FG-MEE rectangular plate with the respective length, width, and thickness of π‘Ž, 𝑏, and β„Ž with simply-supported edges was considered in this research as depicted in Figure 1.

(3)

Figure 1. FG-MEE Rectangular plate rest on Pasternak foundation

According to Figure 2, the considered FG plate is constructed from piezomagnetic (CoFe2O4) and piezoelectric (BaTiO3) materials. It is assumed that the material properties continuously varied across the plate thickness according to the power-law model as follows [30]:

𝑃(𝑧) = (𝑃2βˆ’ 𝑃1)(𝑧 β„Ž+1

2)𝑝+ 𝑃1 (1)

where, P represents the properties of the constructed materials, including Young's modulus, density, and electrical and magnetic coefficients. In this research, 𝑃1and 𝑃2 correspond to the properties of CoFe2O4 and BaTiO3, respectively.

Figure 2. FG-MEE Rectangular plate

Exponential Shear Deformation Theory

The displacement fields can be expressed according to the exponential shear deformation theory as follows [38]:

𝑒(π‘₯, 𝑦, 𝑧, 𝑑) = 𝑒0(π‘₯, 𝑦, 𝑑) βˆ’ π‘§πœ•π‘€(π‘₯, 𝑦, 𝑑)

πœ•π‘₯ + 𝑓(𝑧)πœƒπ‘₯(π‘₯, 𝑦, 𝑑) 𝑣(π‘₯, 𝑦, 𝑧, 𝑑) = 𝑣0(π‘₯, 𝑦, 𝑑) βˆ’ π‘§πœ•π‘€(π‘₯, 𝑦, 𝑑)

πœ•π‘¦ + 𝑓(𝑧)πœƒπ‘¦(π‘₯, 𝑦, 𝑑) 𝑀(π‘₯, 𝑦, 𝑧, 𝑑) = 𝑀(π‘₯, 𝑦, 𝑑)

(2)

where𝑓(𝑧) = 𝑧 (π‘’βˆ’2(β„Žπ‘§)

2

).𝑒0, 𝑣0 and 𝑀0 are the mid-plane displacements in x, y, and z directions, respectively. πœƒπ‘₯and πœƒπ‘¦ denote the rotations of the mid-plane along the x and y axes, respectively.

Based on the above relations for displacement, linear strains for a rectangular plate can be expressed as follows [36]:

πœ€π‘₯ = 𝑒,π‘₯= 𝑒0,π‘₯βˆ’ 𝑧 𝑀,π‘₯π‘₯+ 𝑓(𝑧)πœƒπ‘₯,π‘₯

πœ€π‘¦= 𝑣,𝑦= 𝑣0,π‘¦βˆ’ 𝑧 𝑀,𝑦𝑦+ 𝑓(𝑧)πœƒπ‘¦,𝑦 𝛾π‘₯𝑧= 𝑒,𝑧+ 𝑀,π‘₯= 𝑓(𝑧),π‘§πœƒπ‘₯

𝛾𝑦𝑧 = 𝑣,𝑧+ 𝑀,𝑦= 𝑓(𝑧),π‘§πœƒπ‘¦

𝛾π‘₯𝑦= 𝑒,𝑦+ 𝑣,π‘₯ = 𝑒0,𝑦+ 𝑣0,π‘₯ βˆ’ 2𝑧 𝑀,π‘₯𝑦+ 𝑓(𝑧)(πœƒπ‘₯,𝑦+ πœƒπ‘¦,π‘₯)

(3)

First-order Shear Deformation Theory

The displacement fields can be expressed according to the first-order shear deformation theory as follows [30]:

𝑒(π‘₯, 𝑦, 𝑧, 𝑑) = 𝑒0(π‘₯, 𝑦, 𝑑) + π‘§πœƒπ‘₯(π‘₯, 𝑦, 𝑑)

𝑣(π‘₯, 𝑦, 𝑧, 𝑑) = 𝑣0(π‘₯, 𝑦, 𝑑) + π‘§πœƒπ‘¦(π‘₯, 𝑦, 𝑑) (4) where 𝑒0, 𝑣0 and 𝑀0 are the mid-plane displacements in x, y, and z directions, respectively. πœƒπ‘₯ and πœƒπ‘¦ denote the rotations of the mid-plane along the x and y axes, respectively.

(4)

πœ€π‘₯= 𝑒,π‘₯= 𝑒0,π‘₯+ π‘§πœƒπ‘₯,π‘₯

πœ€π‘¦= 𝑣,𝑦= 𝑣0,𝑦+ π‘§πœƒπ‘¦,π‘₯ 𝛾π‘₯𝑧= 𝑒,𝑧+ 𝑀,π‘₯= π‘˜(𝑀0,π‘₯+ πœƒπ‘₯) 𝛾𝑦𝑧 = 𝑣,𝑧+ 𝑀,𝑦= π‘˜(𝑀0,𝑦+ πœƒπ‘¦)

𝛾π‘₯𝑦= 𝑒,𝑦+ 𝑣,π‘₯= 𝑒0,𝑦+ 𝑣0,π‘₯ + 𝑧(πœƒπ‘₯,𝑦+ πœƒπ‘¦,π‘₯)

(5)

CONSTITUTIVE EQUATION

The constitutive equations of FG-MEE are given in the following form [30]:

𝜎 = 𝐢(𝑧)πœ€ βˆ’ 𝑒(𝑧)𝐸 βˆ’ π‘ž(𝑧)𝐻 𝐷 = 𝑒(𝑧)π‘‡πœ€ + πœ‚(𝑧)𝐸 + 𝑑(𝑧)𝐻 𝐡 = π‘ž(𝑧)π‘‡πœ€ + 𝑑(𝑧)𝐸 + πœ‡(𝑧)𝐻

(6) where, 𝜎, πœ€, 𝐷, 𝐡, E and H are stress vector, strain vector, electrical displacement, magnetic flux vector, electric field, and magnetic field vectors, respectively. C, πœ‚, πœ‡, e, π‘ž, and 𝑑 are matrices corresponding to the elastic, dielectric, magnetic, piezoelectric piezomagnetic, and magneto-electric coefficients, respectively. As mentioned before, these coefficients are not constant along the thickness of FG-MEE materials and vary as a function of z according to Eq. (1).

The matrix representation of the above-mentioned coefficients can be written as:

𝐢(𝑧) = [

𝑐11(𝑧) 𝑐12(𝑧) 0 0 0 𝑐12(𝑧) 𝑐22(𝑧) 0 0 0

0 0 𝑐44(𝑧) 0 0

0 0 0 𝑐55(𝑧) 0

0 0 0 0 𝑐66(𝑧)]

πœ‡(𝑧) = [

πœ‡11(𝑧) 0 0 0 πœ‡22(𝑧) 0

0 0 πœ‡33(𝑧)

]

𝑒(𝑧) = [

0 0 𝑒31(𝑧)

0 0 𝑒32(𝑧)

0 𝑒24(𝑧) 0 𝑒15(𝑧) 0 0

0 0 0 ]

π‘ž(𝑧) = [

0 0 π‘ž31(𝑧)

0 0 π‘ž32(𝑧)

0 π‘ž24(𝑧) 0 π‘ž15(𝑧) 0 0

0 0 0 ]

πœ‚(𝑧) = [

πœ‚11(𝑧) 0 0 0 πœ‚22(𝑧) 0

0 0 πœ‚33(𝑧)

] 𝑑(𝑧) = [

𝑑11(𝑧) 0 0 0 𝑑22(𝑧) 0

0 0 𝑑33(𝑧)

]

(7)

It should be noted that if the electric and magnetic fields are a negative scalar gradient of electrical and magnetic potentials, the Maxwell Equations can be written considering quasi-static approximation [30]:

𝐸𝑗= βˆ’πœ•Ξ¦(π‘₯, 𝑦, 𝑧, 𝑑)

πœ•π‘— 𝐻𝑗 = βˆ’πœ•Ξ¨(π‘₯, 𝑦, 𝑧, 𝑑)

πœ•π‘— (𝑗 = π‘₯, 𝑦, 𝑧)

(8)

It is supposed that the MEE plate is subjected to the electrical potential of πœ™0and magnetic potential of πœ“0 boundary conditions in the upper and lower surfaces of the plate along the 𝑧 direction. These boundary conditions are expressed as follows:

Ξ¦ (π‘₯, 𝑦, βˆ’β„Ž

2, 𝑑) = βˆ’πœ™0 , Ξ¦ (π‘₯, 𝑦,β„Ž

2, 𝑑) = πœ™0 Ξ¨(π‘₯, 𝑦, βˆ’β„Ž

2, 𝑑) = βˆ’πœ“0 , Ξ¨(π‘₯, 𝑦,β„Ž

2, 𝑑) = πœ“0

(9)

Regarding the mentioned electromagnetic boundary conditions, the distributions of electrical and magnetic potentials can be expressed as a sum of the cosine function and linear variations [30]:

Ξ¦(π‘₯, 𝑦, 𝑧, 𝑑) = βˆ’cos (πœ‹π‘§

β„Ž) πœ™(π‘₯, 𝑦, 𝑑) +2π‘§πœ™0

β„Ž Ξ¨(π‘₯, 𝑦, 𝑧, 𝑑) = βˆ’cos (πœ‹π‘§

β„Ž) πœ“(π‘₯, 𝑦, 𝑑) +2π‘§πœ“0 β„Ž

(10)

(5)

EQUATION OF MOTION

The governing differential equations of motion for an FG-MEE rectangular plate can be derived using Hamilton’s principle:

∫ (𝛿𝑇 βˆ’ π›Ώπ‘ˆ + 𝛿𝑉) = 0

𝑑2

𝑑1

(11) where 𝛿𝑇, π›Ώπ‘ˆ, and 𝛿𝑉 denote the virtual kinetic energy, the virtual strain energy, and the virtual work done by externally applied forces, respectively. To obtain the kinetic and potential energies for the studied plate, the following equations can be used:

π‘ˆ =1

2∭(𝜎π‘₯πœ€π‘₯+

𝑣

𝜎π‘₯πœ€π‘₯+ 𝜏π‘₯𝑦𝛾π‘₯𝑦+ πœπ‘¦π‘§π›Ύπ‘¦π‘§+ 𝜏π‘₯𝑧𝛾π‘₯𝑧)𝑑𝑉 𝑇 =1

2∬ 𝜌(𝑧)(𝑒̇2+ 𝑣̇2+ 𝑀̇2)𝑑𝑆

𝑠

(12)

𝛿𝑇 = ∫ [

𝐼0(𝑒̇0𝛿𝑒̇0+ 𝑣̇0𝛿𝑣̇0+ 𝑀̇0𝛿𝑀̇0)

+𝐼1(𝑒̇0π›ΏπœƒΜ‡π‘₯+ πœƒΜ‡π‘₯𝛿𝑒̇0+ 𝑣̇0π›ΏπœƒΜ‡π‘¦+ πœƒΜ‡π‘¦π›Ώπ‘£Μ‡0) +𝐼2(πœƒΜ‡π‘₯π›ΏπœƒΜ‡π‘₯+ πœƒΜ‡π‘¦π›ΏπœƒΜ‡π‘¦)

] 𝑑𝐴

π›Ώπ‘ˆ = ∫

[

𝑁π‘₯πœ•π›Ώπ‘’0

πœ•π‘₯ + π‘π‘¦πœ•π›Ώπ‘£0

πœ•π‘¦ + 𝑀π‘₯πœ•π›Ώπœƒπ‘₯

πœ•π‘₯ + π‘€π‘¦πœ•π›Ώπœƒπ‘¦

πœ•π‘¦ +𝑁π‘₯𝑦(πœ•π›Ώπ‘’0

πœ•π‘¦ +πœ•π›Ώπ‘£0

πœ•π‘₯ ) + 𝑀π‘₯𝑦(πœ•π›Ώπœƒπ‘₯

πœ•π‘¦ +πœ•π›Ώπœƒπ‘¦

πœ•π‘₯ ) +𝑄π‘₯(π›Ώπœƒπ‘₯+πœ•π›Ώπ‘€0

πœ•π‘₯ ) + 𝑄𝑦(π›Ώπœƒπ‘¦+πœ•π›Ώπ‘€0

πœ•π‘¦ ) ]

𝑑𝐴

βˆ’ ∫ ∫ (𝐷π‘₯𝛿𝐸π‘₯+ 𝐷𝑦𝛿𝐸𝑦+ 𝐷𝑧𝛿𝐸𝑧

+𝐡π‘₯𝛿𝐻π‘₯+ 𝐡𝑦𝛿𝐻𝑦+ 𝐡𝑧𝛿𝐻𝑧)

β„Ž 2

βˆ’β„Ž 2

𝑑𝑧𝑑𝐴

𝛿𝑉 = ∫ π‘žπ›Ώπ‘€0𝑑𝐴

π‘ž = βˆ’π‘˜π‘€π‘€0+ π‘˜π‘†(𝑀0,π‘₯π‘₯+ 𝑀0,𝑦𝑦) + (𝑁𝐸π‘₯+ 𝑁𝑀π‘₯)𝑀0,π‘₯π‘₯+ (𝑁𝐸𝑦+ 𝑁𝑀𝑦)𝑀0,𝑦𝑦

(13)

ESDT

According to Eq. (13), forces and momentums are defined as follows:

{ 𝑁π‘₯

𝑁𝑦 𝑁π‘₯𝑦

} = ∫ { 𝜎π‘₯ πœŽπ‘¦ 𝜏π‘₯𝑦

}

βˆ’β„Ž 2 β„Ž 2

𝑑𝑧 { 𝑀π‘₯

𝑀𝑦 𝑀π‘₯𝑦

} = ∫ { 𝜎π‘₯ πœŽπ‘¦ 𝜏π‘₯𝑦

}

βˆ’β„Ž 2 β„Ž 2

𝑧𝑑𝑧

{ 𝑅π‘₯ 𝑅𝑦

𝑅π‘₯𝑦

} = ∫ { 𝜎π‘₯

πœŽπ‘¦

𝜏π‘₯𝑦} 𝑓(𝑧)

βˆ’β„Ž/2

β„Ž/2

𝑑𝑧 {𝑄π‘₯

𝑄𝑦} = ∫ {𝜏π‘₯𝑧

πœπ‘¦π‘§} 𝑓(𝑧),𝑧

βˆ’β„Ž 2 β„Ž 2

𝑑𝑧

{ 𝐼0

𝐼1

𝐼2

} = ∫ { 1 𝑧 𝑧2

}

βˆ’β„Ž 2 β„Ž 2

𝜌(𝑧)𝑑𝑧 { 𝐼3

𝐼4 𝐼5

} = ∫ { 𝑓(𝑧) 𝑧 𝑓(𝑧) 𝑓(𝑧)2

}

βˆ’β„Ž/2

β„Ž/2

𝜌(𝑧) 𝑑𝑧

(14)

The governing equations of motion for the rectangular plate are expressed as follows:

(6)

𝑁π‘₯,π‘₯+ 𝑁π‘₯𝑦,𝑦= 𝐼0π‘’Μˆ βˆ’ 𝐼1π‘€Μˆ,π‘₯+ 𝐼3πœƒΜˆπ‘₯

𝑁𝑦,𝑦+ 𝑁π‘₯𝑦,π‘₯= 𝐼0π‘£Μˆ βˆ’ 𝐼1π‘€Μˆ,𝑦+ 𝐼3πœƒΜˆπ‘¦ 𝑅π‘₯,π‘₯+ 𝑅π‘₯𝑦,π‘¦βˆ’ 𝑄π‘₯ = 𝐼3π‘’Μˆ βˆ’ 𝐼4π‘€Μˆ,π‘₯+ 𝐼5πœƒΜˆπ‘₯ 𝑅𝑦,𝑦+ 𝑅π‘₯𝑦,π‘₯βˆ’ 𝑄𝑦= 𝐼3π‘£Μˆ βˆ’ 𝐼4π‘€Μˆ,𝑦+ 𝐼5πœƒΜˆπ‘¦

𝑀π‘₯,π‘₯π‘₯+ 2𝑀π‘₯𝑦,π‘₯𝑦+ 𝑀𝑦,𝑦𝑦+ π‘ž = 𝐼0π‘€Μˆ + 𝐼1(π‘’Μˆ,π‘₯+ π‘£Μˆ,𝑦) βˆ’ 𝐼2(π‘€Μˆ,π‘₯π‘₯+ π‘€Μˆ,𝑦𝑦) + 𝐼4(πœƒΜˆπ‘₯,π‘₯+ πœƒΜˆπ‘¦,𝑦)

∫ (πœ•π·π‘₯

πœ•π‘₯ Cos(πœ‹π‘§ β„Ž) +πœ•π·π‘¦

πœ•π‘¦ Cos(πœ‹π‘§ β„Ž) +πœ‹

β„Žπ·π‘§Sin(πœ‹π‘§ β„Ž))

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧 = 0

∫ (πœ•π΅π‘₯

πœ•π‘₯ Cos(πœ‹π‘§ β„Ž) +πœ•π΅π‘¦

πœ•π‘¦ Cos(πœ‹π‘§ β„Ž) +πœ‹

β„Žπ΅π‘§Sin(πœ‹π‘§ β„Ž))

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧 = 0

(15)

By substituting the displacement from Eq. (2) into the strain of Eq. (3) and rewriting Eq. (14), we will have:

{ 𝑁π‘₯

𝑁𝑦

𝑁π‘₯𝑦

} = ∫ [

𝑐11(𝑧) 𝑐12(𝑧) 0 𝑐12(𝑧) 𝑐22(𝑧) 0

0 0 𝑐66(𝑧)

] {

𝑒0,π‘₯βˆ’ 𝑧 𝑀,π‘₯π‘₯+ 𝑓(𝑧)πœƒπ‘₯,π‘₯

𝑣0,π‘¦βˆ’ 𝑧 𝑀,𝑦𝑦+ 𝑓(𝑧)πœƒπ‘¦,𝑦

𝑒0,𝑦+ 𝑣0,π‘₯ βˆ’ 2𝑧 𝑀,π‘₯𝑦+ 𝑓(𝑧)(πœƒπ‘₯,𝑦+ πœƒπ‘¦,π‘₯) }

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧

βˆ’ ∫ [

0 0 𝑒31(𝑧) 0 0 𝑒32(𝑧) 0 0 0

] { 0 0

βˆ’πœ™,𝑧 }

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧 βˆ’ ∫ [

0 0 π‘ž31(𝑧) 0 0 π‘ž32(𝑧) 0 0 0

] { 0 0

βˆ’πœ“,𝑧 }

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧

{ 𝑅π‘₯

𝑅𝑦

𝑅π‘₯𝑦

} = ∫ [

𝑐11(𝑧) 𝑐12(𝑧) 0 𝑐12(𝑧) 𝑐22(𝑧) 0

0 0 𝑐66(𝑧)

] {

𝑒0,π‘₯βˆ’ 𝑧 𝑀,π‘₯π‘₯+ 𝑓(𝑧)πœƒπ‘₯,π‘₯

𝑣0,π‘¦βˆ’ 𝑧 𝑀,𝑦𝑦+ 𝑓(𝑧)πœƒπ‘¦,𝑦

𝑒0,𝑦+ 𝑣0,π‘₯ βˆ’ 2𝑧 𝑀,π‘₯𝑦+ 𝑓(𝑧)(πœƒπ‘₯,𝑦+ πœƒπ‘¦,π‘₯) } 𝑓(𝑧)

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧

βˆ’ ∫ [

0 0 𝑒31(𝑧) 0 0 𝑒32(𝑧) 0 0 0

] { 0 0

βˆ’πœ™,𝑧 }

π‘§π‘˜+1

π‘§π‘˜

𝑓(𝑧) 𝑑𝑧 βˆ’ ∫ [

0 0 π‘ž31(𝑧) 0 0 π‘ž32(𝑧) 0 0 0

] { 0 0

βˆ’πœ“,𝑧 } 𝑓(𝑧)

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧

{𝑄𝑦

𝑄π‘₯} = ∫ [𝑐44(𝑧) 0

0 𝑐55(𝑧)] {𝑓(𝑧),π‘§πœƒπ‘¦

𝑓(𝑧),π‘§πœƒπ‘₯}

π‘§π‘˜+1

π‘§π‘˜

𝑓(𝑧),𝑧𝑑𝑧

βˆ’ ∫ [𝑒24(𝑧) 0

0 𝑒15(𝑧)] {𝐸𝑦 𝐸π‘₯}

π‘§π‘˜+1

π‘§π‘˜

𝑓(𝑧),𝑧𝑑𝑧 βˆ’ ∫ [π‘ž24(𝑧) 0

0 π‘ž15(𝑧)] {𝐻𝑦 𝐻π‘₯} 𝑓(𝑧),𝑧

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧

{ 𝑀π‘₯

𝑀𝑦

𝑀π‘₯𝑦

} = ∫ [

𝑐11(𝑧) 𝑐12(𝑧) 0 𝑐12(𝑧) 𝑐22(𝑧) 0

0 0 𝑐66(𝑧)

] {

𝑒0,π‘₯βˆ’ 𝑧 𝑀,π‘₯π‘₯+ 𝑓(𝑧)πœƒπ‘₯,π‘₯

𝑣0,π‘¦βˆ’ 𝑧 𝑀,𝑦𝑦+ 𝑓(𝑧)πœƒπ‘¦,𝑦

𝑒0,𝑦+ 𝑣0,π‘₯ βˆ’ 2𝑧 𝑀,π‘₯𝑦+ 𝑓(𝑧)(πœƒπ‘₯,𝑦+ πœƒπ‘¦,π‘₯) }

π‘§π‘˜+1

π‘§π‘˜

𝑧𝑑𝑧

βˆ’ ∫ [

0 0 𝑒31(𝑧) 0 0 𝑒32(𝑧) 0 0 0

] { 0 0

βˆ’πœ™,𝑧 }

π‘§π‘˜+1

π‘§π‘˜

𝑧𝑑𝑧 βˆ’ ∫ [

0 0 π‘ž31(𝑧) 0 0 π‘ž32(𝑧) 0 0 0

] { 0 0

βˆ’πœ“,𝑧 }

π‘§π‘˜+1

π‘§π‘˜

𝑧𝑑𝑧

{ 𝐷π‘₯

𝐷𝑦 𝐷𝑧

} = [

0 0 0 𝑒15(𝑧) 0

0 0 𝑒24(𝑧) 0 0

𝑒31(𝑧) 𝑒32(𝑧) 0 0 0 ]

{

𝑒0,π‘₯βˆ’ 𝑧 𝑀,π‘₯π‘₯+ 𝑓(𝑧)πœƒπ‘₯,π‘₯ 𝑣0,π‘¦βˆ’ 𝑧 𝑀,𝑦𝑦+ 𝑓(𝑧)πœƒπ‘¦,𝑦 𝑓(𝑧),π‘§πœƒπ‘¦

𝑓(𝑧),π‘§πœƒπ‘₯

𝑒0,𝑦+ 𝑣0,π‘₯ βˆ’ 2𝑧 𝑀,π‘₯𝑦+ 𝑓(𝑧)(πœƒπ‘₯,𝑦+ πœƒπ‘¦,π‘₯)}

+ [

πœ‚11(𝑧) 0 0 0 πœ‚22(𝑧) 0

0 0 πœ‚33(𝑧)

] { 𝐸π‘₯ 𝐸𝑦 𝐸𝑧

} + [

𝑑11(𝑧) 0 0 0 𝑑22(𝑧) 0

0 0 𝑑33(𝑧)

] { 𝐻π‘₯ 𝐻𝑦 𝐻𝑧

}

{ 𝐡π‘₯ 𝐡𝑦 𝐡𝑧

} = [

0 0 0 π‘ž15(𝑧) 0

0 0 π‘ž24(𝑧) 0 0

π‘ž31(𝑧) π‘ž32(𝑧) 0 0 0 ]

{

𝑒0,π‘₯βˆ’ 𝑧 𝑀,π‘₯π‘₯+ 𝑓(𝑧)πœƒπ‘₯,π‘₯ 𝑣0,π‘¦βˆ’ 𝑧 𝑀,𝑦𝑦+ 𝑓(𝑧)πœƒπ‘¦,𝑦 𝑓(𝑧),π‘§πœƒπ‘¦

𝑓(𝑧),π‘§πœƒπ‘₯

𝑒0,𝑦+ 𝑣0,π‘₯ βˆ’ 2𝑧 𝑀,π‘₯𝑦+ 𝑓(𝑧)(πœƒπ‘₯,𝑦+ πœƒπ‘¦,π‘₯)}

+ [

𝑑11(𝑧) 0 0 0 𝑑22(𝑧) 0

0 0 𝑑33(𝑧)

] { 𝐸π‘₯

𝐸𝑦 𝐸𝑧

} + [

πœ‡11(𝑧) 0 0 0 πœ‡22(𝑧) 0

0 0 πœ‡33(𝑧)

] { 𝐻π‘₯

𝐻𝑦 𝐻𝑧

}

(16)

(7)

By substitution of Eq. (16) into the equations of motion in Eq. (15), the governing equations can be obtained:

𝐴11𝑒0,π‘₯π‘₯βˆ’ 𝐡11𝑀,π‘₯π‘₯π‘₯+ 𝑆11πœƒπ‘₯,π‘₯π‘₯ + 𝐴12𝑣0,𝑦π‘₯βˆ’ 𝐡12𝑀,𝑦𝑦π‘₯+ 𝑆12πœƒπ‘¦,𝑦π‘₯+ 𝐸11πœ™,π‘₯+ 𝐹11πœ“,π‘₯

+𝐴66(𝑒0,𝑦𝑦+ 𝑣0,π‘₯𝑦) βˆ’ 2𝐡66𝑀,π‘₯𝑦𝑦+ 𝑆66(πœƒπ‘₯,𝑦𝑦+ πœƒπ‘¦,π‘₯𝑦) = 𝐼0π‘’Μˆ βˆ’ 𝐼1π‘€Μˆ,π‘₯+ 𝐼3πœƒΜˆπ‘₯

(17-1) 𝐴12𝑒0,π‘₯π‘¦βˆ’ 𝐡12𝑀,π‘₯π‘₯𝑦+ 𝑆12πœƒπ‘₯,π‘₯𝑦 + 𝐴22𝑣0,π‘¦π‘¦βˆ’ 𝐡22𝑀,𝑦𝑦𝑦+ 𝑆22πœƒπ‘¦,𝑦𝑦+ 𝐸11πœ™,𝑦+ 𝐹11πœ“,𝑦

+𝐴66(𝑒0,𝑦π‘₯+ 𝑣0,π‘₯π‘₯) βˆ’ 2𝐡66𝑀,π‘₯π‘₯𝑦+ 𝑆66(πœƒπ‘₯,𝑦π‘₯+ πœƒπ‘¦,π‘₯π‘₯) = 𝐼0π‘£Μˆ βˆ’ 𝐼1π‘€Μˆ,𝑦+ 𝐼3πœƒΜˆπ‘¦ (17-2) 𝑆11𝑒0,π‘₯π‘₯βˆ’ π‘Œ11𝑀,π‘₯π‘₯π‘₯+ 𝐺11πœƒπ‘₯,π‘₯π‘₯ + 𝑆12𝑣0,𝑦π‘₯βˆ’ π‘Œ12𝑀,𝑦𝑦π‘₯+ 𝐺12πœƒπ‘¦,𝑦π‘₯+ 𝐸12πœ™,π‘₯+ 𝐹12πœ“,π‘₯

+𝑆66(𝑒0,𝑦𝑦+ 𝑣0,π‘₯𝑦) βˆ’ 2π‘Œ66𝑀,π‘₯𝑦𝑦+ 𝐺66(πœƒπ‘₯,𝑦𝑦+ πœƒπ‘¦,π‘₯𝑦)

βˆ’π»55πœƒπ‘₯+ 𝐽2πœ™,π‘₯+ 𝐽3πœ“,π‘₯ = 𝐼3π‘’Μˆ βˆ’ 𝐼4π‘€Μˆ,π‘₯+ 𝐼5πœƒΜˆπ‘₯

(17-3)

𝑆12𝑒0,π‘₯π‘¦βˆ’ π‘Œ12𝑀,π‘₯π‘₯𝑦+ 𝐺12πœƒπ‘₯,π‘₯𝑦 + 𝑆22𝑣0,π‘¦π‘¦βˆ’ π‘Œ22𝑀,𝑦𝑦𝑦+ 𝐺22πœƒπ‘¦,𝑦𝑦+ 𝐸12πœ™,𝑦+ 𝐹12πœ“,𝑦 +𝑆66(𝑒0,𝑦π‘₯+ 𝑣0,π‘₯π‘₯) βˆ’ 2π‘Œ66𝑀,π‘₯π‘₯𝑦+ 𝐺66(πœƒπ‘₯,𝑦π‘₯+ πœƒπ‘¦,π‘₯π‘₯)

βˆ’π»44πœƒπ‘¦+ 𝐿2πœ™,𝑦+ 𝐿3πœ“,𝑦= 𝐼3π‘£Μˆ βˆ’ 𝐼4π‘€Μˆ,𝑦+ 𝐼5πœƒΜˆπ‘¦

(17-4)

𝐡11𝑒0,π‘₯π‘₯π‘₯βˆ’ 𝐷11𝑀,π‘₯π‘₯π‘₯π‘₯+ π‘Œ11πœƒπ‘₯,π‘₯π‘₯π‘₯ + 𝐡12𝑣0,𝑦π‘₯π‘₯βˆ’ 𝐷12𝑀,𝑦𝑦π‘₯π‘₯+ π‘Œ12πœƒπ‘¦,𝑦π‘₯π‘₯ + 𝐸22πœ™,π‘₯π‘₯ +𝐹22πœ“,π‘₯π‘₯+ 𝐡12𝑒0,π‘₯π‘¦π‘¦βˆ’ 𝐷12𝑀,π‘₯π‘₯𝑦𝑦+ π‘Œ12πœƒπ‘₯,π‘₯𝑦𝑦 + 𝐡22𝑣0,𝑦𝑦𝑦 βˆ’ 𝐷22𝑀,𝑦𝑦𝑦𝑦+ π‘Œ22πœƒπ‘¦,𝑦𝑦𝑦

βˆ’4𝐷66𝑀,π‘₯π‘₯𝑦𝑦+ 2 π‘Œ66(πœƒπ‘₯,𝑦𝑦π‘₯+ πœƒπ‘¦,π‘₯π‘₯𝑦) + 𝐸22πœ™,𝑦𝑦+ 𝐹22πœ“,𝑦𝑦 + 2𝐡66(𝑒0,𝑦𝑦π‘₯+ 𝑣0,π‘₯π‘₯𝑦) +(𝑁𝐸π‘₯+ 𝑁𝑀π‘₯) 𝑀0,π‘₯π‘₯+ (𝑁𝐸𝑦+ 𝑁𝑀𝑦) 𝑀0,𝑦𝑦π‘₯ βˆ’ π‘˜π‘€π‘€0+ π‘˜π‘†(𝑀0,π‘₯π‘₯+ 𝑀0,𝑦𝑦)

= 𝐼0π‘€Μˆ + 𝐼1(π‘’Μˆ,π‘₯+ π‘£Μˆ,𝑦) βˆ’ 𝐼2(π‘€Μˆ,π‘₯π‘₯+ π‘€Μˆ,𝑦𝑦) + 𝐼4(πœƒΜˆπ‘₯,π‘₯+ πœƒΜˆπ‘¦,𝑦)

(17-5)

𝐽2πœƒπ‘₯,π‘₯+ 𝑄1πœ™,π‘₯π‘₯+ 𝑄2πœ“,π‘₯π‘₯+ 𝐿2πœƒπ‘¦,𝑦+ 𝑋1πœ™,𝑦𝑦+ 𝑋2πœ“,𝑦𝑦

𝐸11(𝑒0,π‘₯+ 𝑣0,𝑦) βˆ’ 𝐸22(𝑀,π‘₯π‘₯+ 𝑀,𝑦𝑦) + 𝐸12(πœƒπ‘₯,π‘₯+ πœƒπ‘¦,𝑦) βˆ’ 𝑃1πœ™ βˆ’ 𝑃2πœ“ = 0 (17-6) 𝐽3πœƒπ‘₯,π‘₯+ 𝑄2πœ™,π‘₯π‘₯+ 𝑄3πœ“,π‘₯π‘₯+ 𝐿3πœƒπ‘¦,𝑦+ 𝑋2πœ™,𝑦𝑦+ 𝑋3πœ“,𝑦𝑦

𝐹11(𝑒0,π‘₯+ 𝑣0,𝑦) βˆ’ 𝐹22(𝑀,π‘₯π‘₯+ 𝑀,𝑦𝑦) + 𝐹12(πœƒπ‘₯,π‘₯+ πœƒπ‘¦,𝑦) βˆ’ 𝑃2πœ™ βˆ’ 𝑃3πœ“ = 0 (17-7) Where

𝐴11, 𝐡11, 𝐷11, 𝑆11, π‘Œ11, 𝐺11=∫ 𝐢11(𝑧)(1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝐻44 =∫ 𝐢44(𝑧) 𝑓2(𝑧),𝑧 𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝐴12, 𝐡12, 𝐷12, 𝑆12, π‘Œ12, 𝐺12=∫ 𝐢12(𝑧)(1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝐻55 =∫ 𝐢55(𝑧) 𝑓2(𝑧),𝑧 𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝐴22, 𝐡22, 𝐷22, 𝑆22, π‘Œ22, 𝐺22=∫ 𝐢22(𝑧)(1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝐽2=∫ 𝑒15(𝑧)Cos(πœ‹

β„Žπ‘§) 𝑓(𝑧),𝑧 𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝐴66, 𝐡66, 𝐷66, 𝑆66, π‘Œ66, 𝐺66=∫ 𝐢66(𝑧)(1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝐽3=∫ π‘ž15(𝑧)Cos(πœ‹

β„Žπ‘§) 𝑓(𝑧),𝑧𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝐸11, 𝐸12, 𝐸22=∫ 𝑒31(𝑧)(πœ‹

β„Ž)Sin(πœ‹

β„Žπ‘§)(1, 𝑓(𝑧), 𝑧)𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝐿2=∫ 𝑒24(𝑧)Cos(πœ‹

β„Žπ‘§) 𝑓(𝑧),𝑧𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝐹11, 𝐹12, 𝐹22=∫ π‘ž31(𝑧)(πœ‹

β„Ž)Sin(πœ‹

β„Žπ‘§)(1, 𝑓(𝑧), 𝑧)𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝐿3=∫ π‘ž24(𝑧)Cos(πœ‹

β„Žπ‘§) 𝑓(𝑧),𝑧𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝑄1=∫ πœ‚11(𝑧)[Cos(πœ‹

β„Žπ‘§)]

2

𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝑄2=∫ 𝑑11(𝑧)[Cos(πœ‹ β„Žπ‘§)]

2

𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝑋1=∫ πœ‚22(𝑧)[Cos(πœ‹

β„Žπ‘§)]

2

𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝑋2=∫ 𝑑22(𝑧)[Cos(πœ‹ β„Žπ‘§)]

2

𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝑃1=∫ πœ‚33(𝑧)[(πœ‹

β„Ž)Sin(πœ‹ β„Žπ‘§)]

2

𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝑃2=∫ 𝑑33(𝑧)[(πœ‹ β„Ž)Sin(πœ‹

β„Žπ‘§)]

2

𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝑄3=∫ πœ‡11(𝑧)[Cos(πœ‹

β„Žπ‘§)]

2

𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝑋3=∫ πœ‡22(𝑧)[Cos(πœ‹ β„Žπ‘§)]

2

𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

(8)

𝑃3=∫ πœ‡33(𝑧)[(πœ‹ β„Ž)Sin(πœ‹

β„Žπ‘§)]

2

𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

FSDT

According to Eq. (13), forces and momentums are defined as follows:

{ 𝑁π‘₯ 𝑁𝑦 𝑁π‘₯𝑦

} = ∫ { 𝜎π‘₯ πœŽπ‘¦

𝜏π‘₯𝑦}

βˆ’β„Ž/2

β„Ž/2 𝑑𝑧 { 𝑀π‘₯ 𝑀𝑦 𝑀π‘₯𝑦

} = ∫ { 𝜎π‘₯ πœŽπ‘¦

𝜏π‘₯𝑦}

βˆ’β„Ž/2

β„Ž/2 𝑧𝑑𝑧

{𝑄π‘₯

𝑄𝑦} = π‘˜ ∫ {𝜏π‘₯𝑧 πœπ‘¦π‘§}

βˆ’β„Ž/2

β„Ž/2

𝑑𝑧 { 𝐼0

𝐼1

𝐼2

} = ∫ { 1 𝑧 𝑧2

}

βˆ’β„Ž/2

β„Ž/2

𝜌(𝑧) 𝑑𝑧

(18)

The governing equations of motion for the rectangular plate are expressed as follows:

𝑁π‘₯,π‘₯+ 𝑁π‘₯𝑦,𝑦= 𝐼0π‘’Μˆ + 𝐼1πœƒΜˆπ‘₯ 𝑁𝑦,𝑦+ 𝑁π‘₯𝑦,π‘₯= 𝐼0π‘£Μˆ + 𝐼1πœƒΜˆπ‘¦ 𝑀π‘₯,π‘₯+ 𝑀π‘₯𝑦,π‘¦βˆ’ 𝑄π‘₯= 𝐼1π‘’Μˆ + 𝐼2πœƒΜˆπ‘₯

𝑀𝑦,𝑦+ 𝑀π‘₯𝑦,π‘₯βˆ’ 𝑄𝑦= 𝐼1π‘£Μˆ + 𝐼2πœƒΜˆπ‘¦

𝑄π‘₯,π‘₯+ 𝑄𝑦,𝑦+ π‘ž = 𝐼0π‘€Μˆ

∫ (πœ•π·π‘₯

πœ•π‘₯ Cos(πœ‹π‘§ β„Ž) +πœ•π·π‘¦

πœ•π‘¦ Cos(πœ‹π‘§ β„Ž) +πœ‹

β„Žπ·π‘§Sin(πœ‹π‘§ β„Ž))

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧 = 0

∫ (πœ•π΅π‘₯

πœ•π‘₯ Cos(πœ‹π‘§ β„Ž) +πœ•π΅π‘¦

πœ•π‘¦ Cos(πœ‹π‘§ β„Ž) +πœ‹

β„Žπ΅π‘§Sin(πœ‹π‘§ β„Ž))

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧 = 0

(19)

By substituting the displacement from Eq. (4) into the strain of Eq. (5) and rewriting Eq. (19), we have:

{ 𝑁π‘₯ 𝑁𝑦 𝑁π‘₯𝑦

} = ∫ [

𝑐11(𝑧) 𝑐12(𝑧) 0 𝑐12(𝑧) 𝑐22(𝑧) 0

0 0 𝑐66(𝑧)

] {

𝑒0,π‘₯+ π‘§πœƒπ‘₯,π‘₯ 𝑣0,𝑦+ π‘§πœƒπ‘¦,𝑦

𝑒0,𝑦+ 𝑣0,π‘₯ + 𝑧(πœƒπ‘₯,𝑦+ πœƒπ‘¦,π‘₯) }

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧

βˆ’ ∫ [

0 0 𝑒31(𝑧) 0 0 𝑒32(𝑧) 0 0 0

] { 0 0

βˆ’πœ™,𝑧

}

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧 βˆ’ ∫ [

0 0 π‘ž31(𝑧) 0 0 π‘ž32(𝑧) 0 0 0

] { 0 0

βˆ’πœ“,𝑧

}

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧

{𝑄𝑦

𝑄π‘₯} = π‘˜ ∫ [𝑐44(𝑧) 0

0 𝑐55(𝑧)] {𝑀0,𝑦+ πœƒπ‘¦

𝑀0,π‘₯+ πœƒπ‘₯}

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧

βˆ’ ∫ [𝑒24(𝑧) 0

0 𝑒15(𝑧)] {𝐸𝑦 𝐸π‘₯}

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧 βˆ’ ∫ [π‘ž24(𝑧) 0

0 π‘ž15(𝑧)] {𝐻𝑦 𝐻π‘₯}

π‘§π‘˜+1

π‘§π‘˜

𝑑𝑧

{ 𝑀π‘₯ 𝑀𝑦 𝑀π‘₯𝑦

} = ∫ [

𝑐11(𝑧) 𝑐12(𝑧) 0 𝑐12(𝑧) 𝑐22(𝑧) 0

0 0 𝑐66(𝑧)

] {

𝑒0,π‘₯+ π‘§πœƒπ‘₯,π‘₯ 𝑣0,𝑦+ π‘§πœƒπ‘¦,𝑦

𝑒0,𝑦+ 𝑣0,π‘₯ + 𝑧(πœƒπ‘₯,𝑦+ πœƒπ‘¦,π‘₯) }

π‘§π‘˜+1

π‘§π‘˜

𝑧𝑑𝑧

βˆ’ ∫ [

0 0 𝑒31(𝑧) 0 0 𝑒32(𝑧) 0 0 0

] { 0 0

βˆ’πœ™,𝑧

}

π‘§π‘˜+1

π‘§π‘˜

𝑧𝑑𝑧 βˆ’ ∫ [

0 0 π‘ž31(𝑧) 0 0 π‘ž32(𝑧) 0 0 0

] { 0 0

βˆ’πœ“,𝑧

}

π‘§π‘˜+1

π‘§π‘˜

𝑧𝑑𝑧

{ 𝐷π‘₯ 𝐷𝑦 𝐷𝑧

} = [

0 0 0 𝑒15(𝑧) 0

0 0 𝑒24(𝑧) 0 0

𝑒31(𝑧) 𝑒32(𝑧) 0 0 0 ]

{

𝑒0,π‘₯+ π‘§πœƒπ‘₯,π‘₯

𝑣0,𝑦+ π‘§πœƒπ‘¦,𝑦 𝑀0,𝑦+ πœƒπ‘¦ 𝑀0,π‘₯+ πœƒπ‘₯

𝑒0,𝑦+ 𝑣0,π‘₯ + 𝑧(πœƒπ‘₯,𝑦+ πœƒπ‘¦,π‘₯)}

+ [

πœ‚11(𝑧) 0 0 0 πœ‚22(𝑧) 0

0 0 πœ‚33(𝑧)

] { 𝐸π‘₯ 𝐸𝑦 𝐸𝑧

} + [

𝑑11(𝑧) 0 0 0 𝑑22(𝑧) 0

0 0 𝑑33(𝑧)

] { 𝐻π‘₯ 𝐻𝑦 𝐻𝑧 }

(20)

(9)

{ 𝐡π‘₯

𝐡𝑦

𝐡𝑧

} = [

0 0 0 π‘ž15(𝑧) 0

0 0 π‘ž24(𝑧) 0 0

π‘ž31(𝑧) π‘ž32(𝑧) 0 0 0 ]

{

𝑒0,π‘₯+ π‘§πœƒπ‘₯,π‘₯

𝑣0,𝑦+ π‘§πœƒπ‘¦,𝑦 𝑀0,𝑦+ πœƒπ‘¦

𝑀0,π‘₯+ πœƒπ‘₯

𝑒0,𝑦+ 𝑣0,π‘₯ + 𝑧(πœƒπ‘₯,𝑦+ πœƒπ‘¦,π‘₯)}

+ [

𝑑11(𝑧) 0 0 0 𝑑22(𝑧) 0

0 0 𝑑33(𝑧)

] { 𝐸π‘₯

𝐸𝑦 𝐸𝑧

} + [

πœ‡11(𝑧) 0 0 0 πœ‡22(𝑧) 0

0 0 πœ‡33(𝑧)

] { 𝐻π‘₯

𝐻𝑦 𝐻𝑧

}

By substitution of Eq. (20) into the equations of motion in Eq. (19), the governing equations will be obtained as follows:

𝐴11𝑒0,π‘₯π‘₯+ 𝐡11πœƒπ‘₯,π‘₯π‘₯+ 𝐴12𝑣0,𝑦π‘₯+ 𝐡12πœƒπ‘¦,𝑦π‘₯+ 𝐸11πœ™,π‘₯+ 𝐹11πœ“,π‘₯

+𝐴66(𝑒0,𝑦𝑦+ 𝑣0,π‘₯𝑦) + 𝐡66(πœƒπ‘₯,𝑦𝑦+ πœƒπ‘¦,π‘₯𝑦) = 𝐼0𝑒0,𝑑𝑑+ 𝐼1πœƒπ‘₯,𝑑𝑑 (21-1) 𝐴12𝑒0,π‘₯𝑦 + 𝐡12πœƒπ‘₯,π‘₯𝑦+ 𝐴22𝑣0,𝑦𝑦+ 𝐡22πœƒπ‘¦,𝑦𝑦+ 𝐴66(𝑒0,𝑦π‘₯+ 𝑣0,π‘₯π‘₯) + 𝐡66(πœƒπ‘₯,𝑦π‘₯+ πœƒπ‘¦,π‘₯π‘₯)

+𝐺11πœ™,𝑦+ 𝐻11πœ“,𝑦= 𝐼0𝑣0,𝑑𝑑+ 𝐼1πœƒπ‘¦,𝑑𝑑 (21-2)

𝐡11𝑒0,π‘₯π‘₯+ 𝐷11πœƒπ‘₯,π‘₯π‘₯+ 𝐡12𝑣0,𝑦π‘₯+ 𝐷12πœƒπ‘¦,𝑦π‘₯+ 𝐡66(𝑒0,𝑦𝑦+ 𝑣0,π‘₯𝑦 ) + 𝐷66(πœƒπ‘₯,𝑦𝑦+ πœƒπ‘¦,π‘₯𝑦)

βˆ’πΎπ΄55(𝑀0,π‘₯+ πœƒπ‘₯) + (𝐸22+ 𝐾𝐽2)πœ™,π‘₯+ (𝐹22𝐾𝐽3)πœ“,π‘₯= 𝐼1𝑒0,𝑑𝑑+ 𝐼2πœƒπ‘₯,𝑑𝑑

(21-3) 𝐡12𝑒0,π‘₯𝑦+ 𝐷12πœƒπ‘₯,π‘₯𝑦+ 𝐡22𝑣0,𝑦𝑦+ 𝐷22πœƒπ‘¦,𝑦𝑦+ 𝐡66(𝑒0,𝑦π‘₯+ 𝑣0,π‘₯π‘₯) + 𝐷66(πœƒπ‘₯,𝑦π‘₯+ πœƒπ‘¦,π‘₯π‘₯)

βˆ’πΎπ΄44(𝑀0,𝑦+ πœƒπ‘¦) + (𝐺22+ 𝐾𝐿2)πœ™,𝑦+ (𝐻22𝐾𝐿3)πœ“,𝑦= 𝐼1𝑣0,𝑑𝑑+ 𝐼2πœƒπ‘¦,𝑑𝑑 (21-4) 𝐾𝐴44(𝑀0,𝑦𝑦+ πœƒπ‘¦,𝑦) + 𝐾𝐴55(𝑀0,π‘₯π‘₯+ πœƒπ‘₯,π‘₯) βˆ’ 𝐾𝐿2πœ™,π‘¦π‘¦βˆ’ 𝐾𝐿3πœ“,𝑦𝑦

βˆ’πΎπ½2πœ™,π‘₯π‘₯βˆ’ 𝐾𝐽3πœ“,π‘₯π‘₯βˆ’ π‘˜π‘€π‘€0+ π‘˜π‘†(𝑀0,π‘₯π‘₯+ 𝑀0,𝑦𝑦) + (𝑁𝐸π‘₯+ 𝑁𝑀π‘₯)𝑀0,π‘₯π‘₯ +(𝑁𝐸𝑦+ 𝑁𝑀𝑦)𝑀0,𝑦𝑦= 𝐼0π‘Š0,𝑑𝑑

(21-5)

𝐽2(𝑀0,π‘₯π‘₯+ πœƒπ‘₯,π‘₯) + 𝑄1πœ™,π‘₯π‘₯+ 𝑄2πœ“,π‘₯π‘₯+ 𝐿2(𝑀0,𝑦𝑦+ πœƒπ‘¦,𝑦) + 𝑋1πœ™,𝑦𝑦+ 𝑋2πœ“,𝑦𝑦

𝐸11𝑒0,π‘₯+ 𝐺11𝑣0,𝑦+ 𝐸22πœƒπ‘₯,π‘₯+ 𝐺22πœƒπ‘¦,π‘¦βˆ’ 𝑃1πœ™ βˆ’ 𝑃2πœ“ = 0 (21-6) 𝐽3(𝑀0,π‘₯π‘₯+ πœƒπ‘₯,π‘₯) + 𝑄2πœ™,π‘₯π‘₯+ 𝑄3πœ“,π‘₯π‘₯+ 𝐿3(𝑀0,𝑦𝑦+ πœƒπ‘¦,𝑦) + 𝑋2πœ™,𝑦𝑦+ 𝑋3πœ“,𝑦𝑦

𝐹11𝑒0,π‘₯+ 𝐻11𝑣0,𝑦+ 𝐹22πœƒπ‘₯,π‘₯+ 𝐻22πœƒπ‘¦,π‘¦βˆ’ 𝑃2πœ™ βˆ’ 𝑃3πœ“ = 0 (21-7) Where

𝐴44=∫ 𝐢44(𝑧)𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝐴55=∫ 𝐢55(𝑧)𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝐺11, 𝐺22=∫ 𝑒32(𝑧)(πœ‹

β„Ž)Sin(πœ‹

β„Žπ‘§)(1, 𝑧)𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝐻11, 𝐻22=∫ π‘ž32(𝑧)(πœ‹ β„Ž)Sin(πœ‹

β„Žπ‘§)(1, 𝑧)𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝑁π‘₯𝐸=∫ 2𝑒31(𝑧)πœ™0

β„Ž 𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝑁π‘₯𝑀=∫ 2π‘ž31(𝑧)πœ“0 β„Ž 𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝑁𝑦𝐸=∫ 2𝑒32(𝑧)πœ™0

β„Ž 𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝑁𝑦𝑀=∫ 2π‘ž32(𝑧)πœ“0 β„Ž 𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝐽2=∫ 𝑒15(𝑧)Cos(πœ‹

β„Žπ‘§)𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝐽3=∫ π‘ž15(𝑧)Cos(πœ‹ β„Žπ‘§)𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄ 𝐿2=∫ 𝑒24(𝑧)Cos(πœ‹

β„Žπ‘§)𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

𝐿3=∫ π‘ž24(𝑧)Cos(πœ‹ β„Žπ‘§)𝑑𝑧

β„Ž 2⁄

βˆ’β„Ž 2⁄

(10)

SOLUTION METHOD

In this section, Navier’s method is utilized to solve the linear and coupled governing equations for FGMEE, which were obtained in Eqs. (17 and 21). The simply-supported boundary conditions for in-plane vibrations of the rectangular plate are as follows [40]:

𝑒0= 𝑁𝑦= 0 π‘Žπ‘‘ (𝑦 = 0, 𝑏)

𝑣0= 𝑁π‘₯ = 0 π‘Žπ‘‘ (π‘₯ = 0, π‘Ž) (22-1)

Besides, simply-supported boundary conditions for out-of-plane vibrations of a rectangular plate are expressed as follows [41]:

𝑀0= πœƒπ‘₯= 𝑀𝑦= 0 π‘Žπ‘‘ (𝑦 = 0, 𝑏)

𝑀0= πœƒπ‘¦= 𝑀π‘₯ = 0 π‘Žπ‘‘ (π‘₯ = 0, π‘Ž) (22-2) To solve the obtained governing differential equations, the responses satisfying the aforementioned boundary conditions are considered [32]:

𝑒0(π‘₯, 𝑦, 𝑑) = βˆ‘ βˆ‘ π‘ˆπ‘›π‘š

∞

π‘š=1

∞

𝑛=1

Cos(𝛼π‘₯)Sin(𝛽𝑦)π‘’π‘–πœ”π‘‘

𝑣0(π‘₯, 𝑦, 𝑑) = βˆ‘ βˆ‘ π‘‰π‘›π‘š

∞

π‘š=1

∞

𝑛=1

Sin(𝛼π‘₯)Cos(𝛽𝑦)π‘’π‘–πœ”π‘‘

𝑀0(π‘₯, 𝑦, 𝑑) = βˆ‘ βˆ‘ π‘Šπ‘›π‘š

∞

π‘š=1

∞

𝑛=1

Sin(𝛼π‘₯)Sin(𝛽𝑦)π‘’π‘–πœ”π‘‘

πœƒπ‘₯(π‘₯, 𝑦, 𝑑) = βˆ‘ βˆ‘ π‘‹π‘›π‘š

∞

π‘š=1

∞

𝑛=1

Cos(𝛼π‘₯)Sin(𝛽𝑦)π‘’π‘–πœ”π‘‘

πœƒπ‘¦(π‘₯, 𝑦, 𝑑) = βˆ‘ βˆ‘ π‘Œπ‘›π‘š

∞

π‘š=1

∞

𝑛=1

Sin(𝛼π‘₯)Cos(𝛽𝑦)π‘’π‘–πœ”π‘‘

πœ™(π‘₯, 𝑦, 𝑑) = βˆ‘ βˆ‘ πœ™π‘›π‘š

∞

π‘š=1

∞

𝑛=1

Sin(𝛼π‘₯)Sin(𝛽𝑦)π‘’π‘–πœ”π‘‘

πœ“(π‘₯, 𝑦, 𝑑) = βˆ‘ βˆ‘ πœ“π‘›π‘š

∞

π‘š=1

∞

𝑛=1

Sin(𝛼π‘₯)Sin(𝛽𝑦)π‘’π‘–πœ”π‘‘ 𝛼 =π‘šπœ‹

π‘Ž 𝛽 =π‘›πœ‹ 𝑏

(23)

The natural frequencies of the system can be obtained in an Eigen-value form by substitution of Eqs. (23) into Eqs.

(17 and 21):

{[𝐾] βˆ’ [𝑀]πœ”2}[π‘ž] = 0 (24)

where M and K are mass and stiffness matrices, respectively, and q denotes the displacement vector defined as follows:

π‘ž = [π‘ˆ 𝑉 𝑋 π‘Œ π‘Š πœ‘ πœ“]𝑇 (25)

RESULTS AND DISCUSSION

In this section, the numerical results are calculated for the in-plane and out-of-plane vibrations of the plate.

In-plane Vibrations

To validate the obtained results for in-plane vibrations, the natural frequencies attained for in-plane vibrations of the isotropic plate were compared with the results of reference [5] and [15], based on the third-order shear deformation theory and 3-D elastic theory, respectively. As it is evident, good consistency was achieved confirming the validity of the obtained results.

Referensi

Dokumen terkait