• Tidak ada hasil yang ditemukan

Constitutive Parameters for a Nonlinear Cosserat Theory

N/A
N/A
Protected

Academic year: 2024

Membagikan "Constitutive Parameters for a Nonlinear Cosserat Theory"

Copied!
36
0
0

Teks penuh

(1)

Weierstrass Institut Berlin 7.November 2006

• Motivation

• Kinematic Relations

• Constitutive Model

• Numerical Treatment

Constitutive Parameters for a Nonlinear Cosserat Theory

• Simple Glide

• Torsion Test

• Imperfection Algorithm

• Compression Test

• Conclusions and Outlook I. Münch , W. Wagner

Karlsruhe University of Technology Institute of Structural Analysis P. Neff

Darmstadt University of Technology Department of Mathematics

(2)

Motivation

Applications for Cosserat continua:

• continua with periodical microstructure

• binary media (suspensions)

• plasticity

• …

• stress concentration

• foams

(3)

Motivation

homogeneous model without

orientation

homogeneous model with

orientation

Æ regularization Æ size effects

Æ foam-like behaviour

Boltzmann continua

Cosserat continua

effects of (strong) inner

structure additional

kinematic

(4)

Kinematic Relations

Relations for Cosserat theory (e.g. Ehlers, Bluhm [1]):

first Cosserat strain:

second Cosserat strain: (curvature)

macrorotation

additional kinematic

(5)

Kinematic Relations

1) linearization:

Euler-Rodrigues formula:

Relations and linearizations for Cosserat theory (e.g. Ehlers, Bluhm [2]):

first Cosserat strain:

2) linearization:

second Cosserat strain:

3) linearization:

(curvature) pull back, similar to

(6)

Constitutive Model

Quadratic ansatz in first Cosserat strain:

Æ Cosserat couple modulus penalizes

differences of microrotations to macrorotations:

Experiment

Deformation model uniaxial strain

?

(7)

Constitutive Model

phenomenological parameter of inner structure: Lc

Æ acts like torsional spring

Æ influences angular momentum

Nonlinear ansatz for curvature energy:

Æ Lc penalizes curvature Æ curvature increases for

small structures

Æ higher stiffness for smaller structures

(8)

Linear Cosserat Model

Free Helmholtz energy:

which turns for the linear Cosserat model into:

Æ linear isotropic theory decouples for

(9)

Numerical Treatment

• variational formulation and nonlinear 3-d finite element model

• Lagrangean description

• consistent linearization for stiffness matrix and Newtons strategy

• 8 / 27 node brick elements with trilinear / triquadratic shape functions for both fields

• system of algebraic equations:

• additive update of displacements and infinitesimal microrotations for linear theory

• multiplicative update of microrotations for nonlinear theory (Sansour,Wagner [2])

(10)

Simple glide

Motivation: from planar shear to simple glide

planar: no displacements in 2-direction

different zones of deformation indicate

simple glide zone

no displacements in 3-direction

+

no gradients in 1- direction

hexagonal or quadrilateral

(11)

Simple glide

no displacements in 2- and 3-direction Analytical investigations

in simple glide:

displacements in 1-direction linked in 1-2-plane Æ no

gradients in 1-direction maximal shear

(12)

Simple glide

Internal energy expression:

(13)

Simple glide

(14)

Simple glide

(15)

Simple glide

Numerical investigations:

always γ = 0.2

measure 1. P.K. shear stress = reaction force

(16)

Simple glide

(17)

Simple glide

(18)

Simple glide

(19)

Simple glide

(20)

Conclusions in Simple Glide

Æ Æ

Æ

Æ

(21)

Torsion test

deformed mesh boundaries

no displacements in all directions no displacements

in 3-direction

Constant sample values:

all results concern this point

microrotations fixed to zero

upper border rotates

torque

From now on: Nonlinear Cosserat theory

(22)

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

0 0,1 0,2 0,3 0,4 0,5 0,6

lateral macro-twist (boundary condition is true rotation in the twist) torque

St.V.-Kirchhoff L = 10

L = 1 L = 0.1 L = 0.01 L = 0.001 L = 0.0001 L = 0

Torsion test

results concern this point

c c c c c c c

microrotations fixed to zero

Æ

(23)

Torsion test

results concern this point

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

0 0,1 0,2 0,3 0,4 0,5 0,6

lateral macro-twist (boundary condition is true rotation in the twist) torque

St.V.-Kirchhoff μ = 10 μ μ = 1 μ μ = 0.1 μ μ = 0.01 μ μ = 0.003 μ μ = 0.001 μ μ = 0.0001 μ μ = 0.00001 μ

Æ

c c c c c c c

microrotations c

fixed to zero

(24)

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

lateral macro-twist (boundary condition is true rotation in the twist) torque

St.V.-Kirchhoff L = 100

L = 10 L = 1 L = 0.1 L = 0.01

Torsion test

results concern this point

Æ Æ

c c c c c

microrotations fixed to zero

(25)

Conclusions in Torsion Test

curvature energy

should be responsible for length scale

effects!

Æ Æ

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

0 0,1 0,2 0,3 0,4 0,5 0,6

lateral macro-twist (boundary condition is true rotation in the twist) torque

St.V.-Kirchhoff μ = 10 μ μ = 1 μ μ = 0.1 μ μ = 0.01 μ μ = 0.003 μ μ = 0.001 μ μ = 0.0001 μ μ = 0.00001 μ

c c

c c

c c c c

variation of looks like length scale effect

Æ Æ

(26)

Imperfection Algorithm

homogeneous model without

orientation

homogeneous model with

orientation

stochastic rotational imperfections

Boltzmann continua

Cosserat continua

For perfect samples and perfect boundary conditions the full spectrum of possible solutions

can often not be reached numerically Æ disturb perfect

situations

(27)

Compression test

d=0.2 stochastic rotational

imperfections microrotations

fixed to zero

no displacements in all directions

displacement only in 3-direction Constant sample values:

deformed mesh boundaries

R

twist function

of LC

(28)

-4,0E-01 -2,0E-01 0,0E+00 2,0E-01 4,0E-01

0,0001 0,001 0,01 0,1 1 10

internal length scale Lc twist [rad]

macro-rot micro-rot

Compression test

Rotations measured at

half height

Macrorotation arround vertical axis for various internal length scale factors

Boltzmann continua

(29)

Compression test

Simple model to motivate shortening through twist

(30)

Compression test

1,0E-03 1,0E-01 1,0E+01 1,0E+03 1,0E+05

0,0001 0,001 0,01 0,1 1 10

internal length scale Lc energy

strain curv 1,2E+03

1,3E+03 1,4E+03 1,5E+03 1,6E+03

0,0001 0,001 0,01 0,1 1 10

internal length scale Lc energy

total strain

• curvature energy only of second order (maximal 4% of strain energy)

logarithmic scale

• total energy increases for increasing internal length scale factor – but not arbitrary

• pronounced length scale effects for

(31)

0 2 4 6 8 10 12 14 16 18 20

0 0,05 0,1 0,15 0,2

displacement d reaction force R

St.Venant-K.

S.V.K. linear Neo-Hooke L = 10 L = 1 L = 0.1 L = 0.03 L = 0.01 L = 0.001 L = 0.0001

Compression test

Æ Size effects not as significant as in torsion test Æ as expected !!!

c c c c c c c

(32)

-6.661E-03 min -5.709E-03 -4.758E-03 -3.806E-03 -2.854E-03 -1.902E-03 -9.501E-04 1.731E-06 9.536E-04 1.905E-03 2.857E-03 3.809E-03 4.761E-03 5.713E-03 6.665E-03 max

1 2

3

Compression test

Compression test with various slenderness ratios (different aspect ratio), constant internal length scale factor and constant maximal strain d / h = 10 %

h=1.0: symmetric deformation

-5.078E-02 min -4.354E-02 -3.629E-02 -2.904E-02 -2.179E-02 -1.454E-02 -7.291E-03 -4.232E-05 7.207E-03 1.446E-02 2.170E-02 2.895E-02 3.620E-02 4.345E-02 5.070E-02 max

1 2

3

-4.181E-01 min -3.880E-01 -3.578E-01 -3.277E-01 -2.976E-01 -2.674E-01 -2.373E-01 -2.072E-01 -1.770E-01 -1.469E-01 -1.167E-01 -8.661E-02 -5.647E-02 -2.633E-02 3.804E-03 max

1 2

3

h=2.0: deformation with twist

h=4: deformation with twist and buckling

deformed mesh and coloured displacement in 1-direction

(33)

Compression test

Determinant of global stiffness matrix; various heights of structure

1,0E-02 1,0E-01 1,0E+00 1,0E+01 1,0E+02 1,0E+03 1,0E+04 1,0E+05 1,0E+06 1,0E+07 1,0E+08

0,00 0,02 0,04 0,06 0,08 0,10

d / h

detK / detK_0

h=0.4 h=1 h=1.5 h=2 h=4 h=8

h=8

h=4

h=2

h=1.5 h= h=1

0.4

buckling

twist

(34)

0 2 4 6 8 10 12 14 16 18 20

0,00 0,02 0,04 0,06 0,08 0,10

d / h

reaction force R

h=0.4 h=1 h=1.5 h=2 h=4 h=8

size effect

Compression test

Reaction force for various heights of structure

buckling

Æ

size effect (caused by twist) is much less significant than buckling

Æ

size effect hardly measureable in practical tests

(35)

Conclusions and Outlook

Æ

Æ

Æ Æ

Outlook: Extension to micromorphic theory (simulation of foams)

Open question: Right choice of boundary condition for microrotations (is there a physical interpretation of consistent coupling?)

(36)

Weierstrass Institut Berlin 7.November 2006

END

References:

[1] W. Ehlers, J. Bluhm: Porous Media – Theory, Experiments and Numerical Applications, Springer 2002

[2] C. Sansour, W. Wagner: Multiplicative updating of the rotation tensor in the finite element analysis – a path independent approach, Comp. Mech. 31, Springer 2003

Referensi

Dokumen terkait