DESIGN OF STABILIZING FOUNDATION FOR ONE-STOREY OFFICE BUILDING ON PEAT SOIL
DASILAH BT IBRAHIM
This project is submitted in partial of fulfillment of the requirements for the degree of Bachelor of Engineering with Honours
(Civil Engineering)
Faculty of Engineering
UNIVERSITI MALAYSIA SARAWAK 2008
UNIVERSITI MALAYSIA SARAWAK
R13a BORANG PENGESAHAN STATUS TESIS
Judul:
DESIGN OF STABILIZING FOUNDATION FOR ONE-STOREY OFFICE BUILDING ON PEAT SOIL
SESI PENGAJIAN: 2008/2009
Saya DASILAH BT IBRAHIM
(HURUF BESAR)
Mengaku membenarkan tesis * ini disimpan di Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dengan syarat-syarat kegunaan seperti berikut:
1. Tesis adalah hakmilik Universiti Malaysia Sarawak.
2. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Membuat pendigitan untuk membangunkan Pangkalan Data Kandungan Tempatan.
4. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
5. ** Sila tandakan ( ) di kotak yang berkenaan
SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972).
TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/
badan di mana penyelidikan dijalankan).
TIDAK TERHAD
Disahkan oleh
(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)
Alamat tetap: KAMPUNG BUKIT KULIM,
21600 MARANG, TERENGGANU DR.SITI NOOR LINDA TAIB Nama Penyelia
Tarikh: 6 MAY 2009 Tarikh:
CATATAN * Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
This Final Year Project attached here:
Title : Design of Stabilizing Foundation for One-Storey Office Building on Peat Soil
Student Name : Dasilah Bt Ibarahim
Matric No : 13931
has been read and approved by:
__________________ _________________
Dr Siti Noor Linda Taib Date
(Supervisor)
Dedicated in memory of my father and to my beloved mom, sister and brothers and wonderful friends
ACKNOWLEDGEMENT
First and foremost, I would like to express my gratitude to my supervisor, Dr. Siti Noor Linda Taib, for her continuous encouragement, guidance, critics and friendship.
Without her cooperation and dedicated work on keeping me on track, I would not able to complete this project on time.
I would like to convey my appreciation to the FYP coordinator, Madam Rosmina, for her moral support, encouragement and also her time leniency for me to complete my FYP.
I would express my appreciation to Assoc. Prof. Dr. Kolay, lecturer of Geotechnical Department, UNIMAS and Aminur Postgraduate UNIMAS from geotechnical department for providing information for this thesis.
I am also grateful for all those who have given me their guidance that I am unable to mention in this limited space. Without their continuous assistance and interest, this thesis would not have been the same as presented here. And most importantly, I am indebted to my parents who deserve my utmost appreciations. Finally, I express my gratefulness to individuals who involved direct or indirectly during the progress of this project.
Thank you.
ABSTRAK
Tapak bagi sebuah bangunan adalah tidak sesuai jika dibina di atas tanah gambut disebabkan oleh kekuatannya yang rendah berbanding dengan tanah jenis lain. Di Sarawak, boleh dikatakan mempunyai tanah gambut yang luas seperti di kawasan Matang dan Sibu. Walau bagaimanapun, pelbagai kajian telah dilaksanakan dan inovasi seperti tiang batu, cerucuk mikro, mampatan dynamik, pakuan tanah, tetulang tanah dan sebagainya telah dicipta supaya tanah jenis ini tidak dibiarkan begitu sahaja. Kajian ini mempersembahkan rekabentuk sistem tapak bagi bangunan satu tingkat untuk tanah gambut di Sarawak secara khusus.
Konsep ini digunakan untuk mengurang kos bagi pembinaan sebuah bangunan di atas tanah gambut. Rekabentuk yang digunakan dalam projek ini adalah penstabilan simen, tiang batu, cerucuk mikro, dan saliran tanah pasang siap (PVD). Analisis tentang factor keselamatan akan dijalankan untuk memastikan rekaan baru ini berada dalam keadaan selamt untuk digunakan. Ciptaan ini adalah berdasarkan konsep teori dalam rekabentuk cerrucuk tapak dan mengikuti peraturan BS 6399: 1196. Rekaan ini sangat berguna dan ekonomik bagi kejuruteraan awam khususnya dan kontraktor.
ABSTRACT
Peat soil is not suitable to be used as foundation for the construction of building because of its low strength compared to other types of soil. Sarawak has a very wide area of peat soil such as in Matang and Sibu. However, many researches have been done and innovation like stone column, micro pile, dynamic compaction, soil nailing, earth reinforcement and others have been made so that this land not be wasted. This project presents a foundation design system for one storey building of peat soil for especially in Sarawak.
The concept is used to decrease the cost for building construction in peat soil areas. The designs used in this project are cement stabilizing, stone column, micro pile, and prefabricated vertical drain. Further analysis on its safety is done to ensure the design is safe to be used. This new design is based on the theory of foundation design and abides to the guidelines provided by BS 6399:1196. These designs conceptual are found to be useful and economic for the geotechnical engineer and contractor.
TABLE OF CONTENT
Page number
Dedication ii
Acknowledgement iii
Abstrak iv
Abstract v
Table of Content vi
List of Tables x
List of Figures xii
List of Abbreviations and Notations xv
List of Appendices xvi
Chapter 1 Introduction 1.0 Definition And Background 1
1.1 Aim And Objective 2
1.2 Scope Of Study 2
1.3 Significance Of Study 4 1.4 Structure Of Thesis 4
Chapter 2 Literature Review 2.0 Introduction 6
2.1 Soil Improvement Method 7 2.1.1 Compaction 7
2.1.1.1 Static Compaction 7
2.1.1.2 Dynamic Compaction 8
2.1.1.3 Heavy Tamping By Falling Weight 16 2.1.1.4 Compaction by Explosives 18
2.1.2 Consolidation 2.1.2.1 Preloading 19 2.1.2.2 Drainage 21
2.1.2.3 Electro-Osmosis 27 2.1.3 Grouting and Injection 28
2.1.4 Soil Stabilization 31
2.1.4.1 Mechanical Stabilization 31
2.1.4.2 Admixture Stabilization 32
2.1.5 Soil Reinforcement 2.1.5.1 Granular Piles (Stone Columns) 36
2.1.5.2 Sand Compaction Piles (Sand Column) 38 2.1.5.3 Soil Nailing 39
2.1.5.4 Root Piles and Micro piles 41
2.1.5.5 Reinforcement Earth 44
2.1.5.6 Geosynthetics 2.1.5.6.1 Geotextiles 46
2.1.5.6.2 Geogrids 50
2.1.5.6.3 Geomembranes 51
2.1.5.6.4 Geocomposites 52
Chapter 3 Methodology
3.0 Introduction 54
3.1 Pre-construction stage 55
3.2 Design Phase – Identification 56
3.3 Application and Feasibility Evaluations 56
3.4 Site Investigation, Laboratory Testing, Constrains and Recommendations 57
3.5 Analysis 58
3.6 Design 58 Chapter 4 RESULTS, ANALYSIS AND DISCUSSIONS 4.0 Introduction 59
4.1 Designing of Office Building 60
4.2 Loading of the Building 61
4.3 The Calculation of Loading 63
4.3.1 Panel A-B 64
4.3.2 Panel B-I 66
4.3.3 Panel D-E 67
4.3.4 Panel D-G 69
4.3.5 Panel G-F 72
4.3.6 Panel E-F 74
4.3.7 Panel 1-2 75
4.3.8 Panel 3-4 76
4.3 The Options on Foundation of the Office Building 80 4.3.1 Foundation Option 1:
Use Cement Stabilization with Micro Pile
4.3.1.1 Without Stabilized Soil 81 4.3.1.2 With Stabilized Soil 85 4.3.2 Foundation Option 2:
Use Prefabricated Vertical Drain with Geotextile as
Separator 93
4.3.3 Foundation Option 3:
Use Stone Column and Shallow Foundation
4.3.3.1 Stone column design 95
4.3.3.2 Shallow Foundation 98
4.4 Result and Discussion 102
Chapter 5 Conclusion and Recommendation
5.1 Conclusion 105
5.2 Recommendation 106
References 107
Appendix 111
LIST OF TABLES
No. of table Title Page
2.1 Comment Type Of Vertical Drains (After Rixener et. Al. 1986) 21 2.2 Specific property of soils stabilized with cement (According to Ingles &
Metcalf )
33
2.3 Proposed combinations of filling material and reinforcement strips (Van Impe, 1989)
45
4.1 The Factored Loading and Shear Force for Each Panel. 78 4.2 The Axial Force and Bending Moment for Each Point. 79 4.3 The Result for Ultimate Capacity Load for Each Point for
Unstabilized Peat Soil with the Bigger Size Micro Pile.
82
4.4 The Result for Ultimate Capacity Load for Each Point for Unstabilized Peat Soil with normal size of Pile.
84
4.5 The Result for Ultimate Capacity Load for Each Point for Unstabilized Peat Soil with Using Micro Pile Group.
86
4.6 The Result for Block Capacity Load for Each Point for Unstabilized Peat Soil with Using Micro Pile Group.
87
4.7 The Result for UCS Strength with Cement Stabilizing. 88 4.8 The Result for Bearing Capacity Load for Each Point for
Stabilized Peat Soil Using Cement Stabilizing with Single
89
4.9 (a) The Result for Ultimate Capacity Load for Each Point for Stabilized Peat Soil Using Cement Stabilization with
90
4.9 (b) The Result for Block Capacity Load for Each Point for Stabilized Peat Soil Using Cement Stabilization with
91
4.10 The Result for Bearing Capacity Load for Each Point for Stabilized Peat Soil Using Single Stone Column
96
4.11 The Result for Bearing Capacity Load for Each Point for Stabilized Peat Soil Using Single Stone Column
97
4.12 The Result for Bearing Capacity Load for Each Point for Stabilized Peat Soil Using Stone Column pile group
99 4.13 The Result for Bearing Capacity Load for Each Point for
Stabilized Peat Soil Using Stone Column pile group
100
4.14 The Allowable Bearing Capacity for Each Pile Using Shallow Foundation with Suitable Material
101
4.16 Properties for Suitable Material for Filling. 103 4.17 Summary of Design in Without Stabilized / Stabilized, Type of
Pile, Materials, Soil Condition, Advantages of Type Method and the Result.
104
LIST OF FIGURES
No. of figures
Title Page
2.1 Vibro Replacement; (A) Void Formed by Air Jetting From Poker Vibrator; (B) Stone is Placed and Compacted Column at Close Centers.
9
2.2 Vibro- Flotation in Wet Method (A) Void Formed by Water Jetting; (B) Stone iIs Placed and Compacted Up.
10
2.3 Different Types of Deep Compaction Systems. 11
2.4 Vibro Wing. 12
2.5 Result of Soil Improvement with Vibratory Compaction. 13 2.6 Result of Soil Improvement with Vibratory Compaction at
Zeebrugge (Belgium).
13
2.7 The Zone for Efficient Vibro-Compaction vs. Accumulated Through the Mesh % (Van Impe, 1989).
14
2.8 Vibro- Flotation with Wet or Dry Method; (A), (B) Improving Natural Loose Sands and Gravel by Vibration (Additional Stone can be Added if Required).
15
2.9 Results of Dynamic Compaction Singapore 17
2.10 Zone of Applicability for Heavy Tamping (Van Impe, 1989). 18
2.11 Scheme of Dewatering at Berendrecht. 20
2.13 Non-Displacement Sand Drains Using Water Jets. 24
2.14 Example Prefabricated Vertical Drain 25
2.15 Geometrical Shape of Various Drain Cores. 26
2.16 Joosten Procedure. 30
2.17 Technique Of Grouting With Sleeve. 31 2.19 Influence on The Uniaxial Resistance for Different Type Soils
Treated of Unslaked Lime
34
2.20 Shear Resistance of Soil Treated with Unslaked Lime or Cement as a Function of Lime.
34
2.21 Uniaxial Resistance of Soil Mixed with Cement, Unslaked Lime, and Gypsum as Function of Time.
35
2.22 Torpedo-Shaped Vibratory. 37
2.23 Soil nailing technique 39
2.24 Soil nailing with geotextile 40
2.25 The Application of Combining the Soil Nailing with
Reinforcement Before (Left) and After (Right) Construction.
41
2.26 Stabilization of Slopes Using Root Piles. 42
2.27 Protection of Underground Excavation with Roof Piles 42
2.28 The Principle of Terre Armee Technique. 44
2.29 The Type of Geotextile; (A) Woven Type; (B) Non-Woven Type 47 2.30 Use of Geotextile as Separator Under Pavement. 48 2.31 Use of Geotextile as Separator for Railway Track. 48 2.32 Use of Geotextile for Drainage; (A), (B) Functioning as Filter
Layer Under Cross Flow, (C) Functioning as Drain by In-Plane Flow (Courtesy: Mcgraw-Hill, New York).
49
2.33 The Application Using Geotextile; (A) Reinforcement Earth Using Geotextile;
(B) Reinforcing Foundation Soil Using Geotextile
50
2.34 TENSAR Geogrid; (a) Geogrid,
(b) Geonet (Courtesy: The Tensar Corporation, Goergia, USA).
51
2.35 Example of Geomembrane. 52
4.1 The Figure Shows the Notation for Each Panel on the Floor. 61 4.2 The Distribution Load on Each Slab for in Ground Floor. 62 4.3 The Figure Shows the Design of Foundation Using Prefabricated
Vertical Drain with Geotextile as Separator.
94
LIST OF ABBREVIATIONS AND NOTATIONS
Qall = allowable load-carrying for each pile Qp = point bearing of pile
Qs = frictional resistance Fs = factor of safety Ap = area of pile tip qp = unit point resistance
cu = undrained cohesion of soil supporting the pile tip Nc = the bearing capacity factor
α = α value
p = perimeter of pile section L = length of pile
d = spacing between pile to pile D = diameter of pile
cu = undrained cohesion of soil L = Lentgh of Pile
π = 3.142
ø’ = effective stress friction angle of the stone column material σr = effective radial stress as measured by a pressumeter ( ≈ 2 cu) qu = allowable load-carrying for each pile
γ = unit weight
Df = depth of foundation
LIST OF APPENDIX
Appendix 1 - The calculation of using α method on designing foundation using cement stabilization with micro pile as pile itself of the structure
Appendix 2 - Table 2: Terzaghi’ Bearing Capacity Factors N’c, N’q, N’γ
Appendix 3 - Stone column calculation with stabilized soil for single pile
Appendix 4 - Shallow foundation calculation
Appendix 5 - Table 3: Ultimate Friction Factors and Adhesion for Dissimilar Materials
Appendix 6 – Front view
Appendix 7 – Side view
Appendix 8 – Top view
Appendix 9 – Plan view
Appendix 10 – Footing plan
Appendix 11 – Example of group pile plan (2 x 2)
Appendix 12 - Design Phase of Ground Treatment for this Project
REFERENCES
Aboshi, H., Ichimoto, E., and Harada, K. (1979). “The Composer – A Method To Improve Characteristics Of Soft Clay By Inclusion Of Large Diameter Sand Column,” Proceedings, International Conference On Soil Reinforcement, Reinforced Earth And Other Techniques, Vol. 1, Paris, pp. 211 – 216.
Akagi, T. 1977. Effect of mandrel-driven sand drains on strength. Proc. 8th Intl. Conf.
Soil Mech. Found. Eng’g., Tokyo 1:3-6
Akagi, T. 1979. Consolidation caused by mandrel-driven sand drains. Proc. 6th Asian Regional Conf. Soil Mech. Found. Eng’g., Singapore 1: 125-128.
Aminur, M.R. Kolay, P.K. Taib, S.N.L AND Mohd Zain, M.I.S.(2009), “ Stabilization of tropical peat soils from Sarawak with different stabilizing agents”, submitted to Geotechnical and Geological Engineering (under review).
ASTM D4427-92 (1997). “Standard classification of peat samples by laboratory testing”.
Annual Book of ASTM Standards, Vol 04.08, pp. 596-597.
Atkinson, M.F.(1993). Structural Foundations Manual, For Low-Rise Buildings. 1st ed.
London: E & FN Spon.
Barendsen, D.A. & L. Kok 1983. Prevention and repair of flow-slides by exposion densification. In H.G.Rathmayer & K.H.O.Saari (eds), Improvement of ground;
Proc. 8th European conference on soil mechanics and foundation engineering, Helsinki, 23-26 May 1983 1:205-208. Balkema, Rotterdam.
Bachus, R.C., and Barksdale, R.D. (1989). “Design Methodology for Foundation on Stone Columns,” Proceedings, Foundation Engineering: Current Principles And Practices American Society Of Civil Engineers, Volpp. . 1. 718-754.
Belloni, L., S. Bondioli & P. Sembenelli 1979. Building permanent structures on swampy soils for Kalayan Pumped Storage Plant, Philippines. Proc. Asian Ref. Conf. Soil Mech. Found. Eng’g., Singapore 2; 215-225.
Bergado,D.T., & H. Asakami, M.C. Alfaro & A.S. Balasubramaniam 1991. smear effects of vertical drains on Bangkok clay. J. Geotech. Eng’g. Div. ASCE 117, 10: 1509- 1530. et al. 1988,
Bergado,D.T., N. Miura, N. Singh & B. Panichayatum 1988. improvement of soft clay using vertical drains based on full-scale test. Proc. Int. Conf. Eng’g. Problems of Regional Soils, Beijing, China 397-384.
Bergado,D.T, N. Singh, S.H. Sim, B. Panichayatum, C.L. Sampaco & A.S.
Balasubramaniam 1990ª. Improvement of soft Bangkok clay using vertical geotextile band drains compared with granular piles. Geotextiles &
Geomembranes J. 9,3: 203-231.
Bergado D.T, Chai J.C., Alfado M.C. and Balasubramanium A.S. (1994), ‘ Improvement Techniques Of Soft Ground In Subsiding And Lowland Environment’. 1st ed.
Netherlands. Tailors & Francis.
Casagrande, L. & S. Poulos 1969. On effectiveness of sand drains. Canadian Geotechnical, 6, 3: 236-287.
Choa, V.,G.P. Karunantne, S.D. Ramaswamy, A. Vijiaratnam & S.L. Lee 1981. Drain Performance In Change Marine Clay. Proc. 10th Intl. Conf. Soil Mech. Found.
Eng’g., Stockholm 3: 623-626.
Das, B.R. (2004), Principles of Foundation Engineering. 3rd and 5th ed. Australia:
Thomson Brooks / Cole.
De beer, E.E. & W.F. Van Impe 1978-1979. Curcus Funderingstechniek, Sectie E:
Methoden om ingravingen te verwezenlijken in onsamenhangende lagen onder het freatisch oppervlak: 1 – 52. Rigksuniversiteit- Gent.
Dept. of aviation 1984. SBIA Site Study, 1984.
Goetinck, R. et al. 1983. Controlled dewatering techniques for the construction of the Brendrecht sealock at Antwerp. 8e international havebcongres, Antwerpen, Juni 1983: 1.163-170.
Hughes, J.M O., and Withers, N.J. (1974). “Reinforcing Of Soft Cohesive Soil with Stone Column,” Ground Engineering, Vol. 7, Pp. 42-49.
Hughes, J.M O., Withers, N.J. and Greenwood, D.A.(1975). “A Field Trial Of
Reinforcing Effects Of Stone Columns In Soil.” Geotechnique , vol. 25, no. 1, pp.
31- 34.
Ingles, O.G. & J.B. Metcalf 1972. Soil stabilization. Principles and practice.
Butterworths, Sydney.
Kurian, N.P. (2005). Design of foundation system. 3rd ed. Harrow, U.K.: Alpha Science International Ltd.
Koerner, R.M.,1994. Designing with geosynthethics. 3rd edition. Englewood, New Jersey:
Prentice Hall.
Lee, S.L., G.P. Karunarate, K.Y.Yong & S.D. Ramaswamy 1989. erformance of fibredrain in consolation of softsoils. Proc. 12th Int. Conf. Soil Mech. Found.
Eng’g., Brazil.
Lizzi, F. 1978. Reticulated Root Piles to Correct Land Slides. Paper for the ASCE Convention, Chicago, October 16-20, 1978.
Massarch, K.R. 1985. Deep Compaction of Sand Using Vibratory probes. Proc. 3rd international geotechnical seminar: soil improvement methods, Singapore, 27-29 november 1985:9-17.
Raman, J.,A.Suppiah, K.W. Yong & Z. Shahrizaila 1990. Performance of stage
constructed embankment on soft clay with vertical drains. Proc. Sem. Geotech.
Aspects of N-S Expressway, Kuala Lumpur 245-253.
Rixner, J.J., S.R. Kramer & A.D. Smith 1986. Prefabricated vertical drains, Vol. 1 (Eng’g.
Guidelines). FHWA, Report No. FHWA-RD-86/168.
S. Deboucha, R. Hashim, A. Alwi (2008). Engineering Properties of Stabilized Tropical Peat Soils. University of Malaya, Malaysia. EJGE (2008).
Vidal, H. 1966. La terre armee. Annales 223-4 :888-938.
Volders, R. 1984. Soil improvement by preloading and vertical drains at Port Klang Power Station Storage Facilities, Malaysia.
W.F. Vam Impe (1989). Soil Improvement Technique And Their Evolution. 1st ed.
Rotterdam: Taylor & Francis.
Appendix 1
The calculation of using α method on designing foundation using cement stabilization with micro pile as pile itself of the structure. The formula:
Qall= (Qp + Qs) / Fs
Qp= Ap x qp
qp = cu x Nc
Qs = α x cu x p x L
where; Qall = allowable load-carrying for each pile Qp = point bearing of pile
Qs = frictional resistance Fs = factor of safety
Ap = area of pile tip qp = unit point resistance
cu = undrained cohesion of soil supporting the pile tip
Nc = the bearing capacity factor (Appendix 2) α = α value from Table 1
p = perimeter of pile section L = length of pile