i ACKNOWLEDGEMENT
First of all, I would like to say my gratitude to the Almighty Allah for this rarely and wonderful chance. My most thanks to my supervisor Prof Dr. Ismail bin Daut, for his unremitting support in my final year project. I also would like to express my appreciation for the contributions of numerous people for their spontaneous support, which really helped me to complete my project.
This project gave me a chance to learn about the inverter. My supervisor also provides me with general knowledge and sources that helps me during doing this project. He always gives advice and showed me the different ways to come up to a problem and the need to be persistent to achieve the target. Not forgetting my co- supervisor, Miss Saidatul Shema binti Saad and Miss Noor Syafawati binti Ahmad who provides me the information and guideline about the inverter. I want to thank to our School of Electrical System Engineering (UniMAP) for giving me permission to commence this project in the first instance, to do the necessary research and work and to use departmental equipment.
Last but not least, thank to my family, lecturers and friends for their moral support and for those who are always there for me weather indirect or directly.
Thank You.
© T hi s i te m is p ro te ct ed b y or ig in al c op yr ig ht
iv REKAAN 12 VDC KEPADA 240 VAC PENYONGSANG UNTUK
MENJALANKAN LAMPU NEON
ABSTRAK
Laporan ini, bertajuk “Rekaan 12 VDC kepada 240 VAC penyongsang untuk menjalankan lampu neon” meringkaskan sebahagian daripada tugas akhir untuk kursus program Pengajian Sistem Elektrik di Universiti Malaysia Perlis. Penyongsang digunakan untuk penukaran voltan arus terus ke arus ulang alik. Penyongsang biasanya digunakan untuk bekalan kuasa arus ulang alik dari sumber arus terus seperti panel suria atau bateri. Penyongsang adalah nadi dalam sistem suria. Ini adalah pilihan yang baik bagi pengguna yang ingin mengurangkan bil elektrik mereka. Arus ulang alik ditukar daripada 12 VDC dari bateri atau power supply dan frekuensi 50 Hz dengan penggunaan transformer “center tap” . Penyongsang yang digunakan akan menghasilkan gelombang keluaran persegi. Melalui rekaan penyongsang ini, lampu neon dapat beroperasi dengan baik. Panel solar akan digunakan untuk mengecas bateri agar litar penukar ini beroperasi secara berterusan.
© T hi s i te m is p ro te ct ed b y or ig in al c op yr ig ht
v DESIGN OF 12 VDC TO 240 VAC INVERTER FOR RUNNING
FLUORESCENT LAMP
ABSTRACT
This report entitled “Design of 12 VDC to 240 VAC Inverter for running fluorescent lamp” summarizes apart of final year project for the Electrical System Engineering courses done in University Malaysia Perlis. Inverters are used for Direct Current (DC) voltage to Alternating Current (AC) voltage conversion. Inverters are commonly used to supply AC power from DC sources such as solar panels or batteries.
The inverter is the heart of a solar system. This is a good choice for people who want to reduce their electricity bills. The converted AC is from 12 VDC of batteries or power supply and 50 Hz frequency with the use of center tap transformers. The inverter in used will produce a square wave output waveform. The fluorescent lamp able to operate very well uses this inverter design. For a continuously operation of the inverter circuit, a solar panel will be used to recharge the battery.
© T hi s i te m is p ro te ct ed b y or ig in al c op yr ig ht
vi TABLE OF CONTENTS
Page ACKNOWLEDGEMENT i DECLARATION SHEET ii
APPROVAL AND DECLARATION SHEET iii
ABSTRAK iv
ABSTRACT v
TABLE OF CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
LIST OF ABBREVIATION xii
CHAPTER 1 INTRODUCTION
1.0 Overview 1
1.1 Problem Statement 2
1.2 Project Objectives 2
1.3 Project Scope 2
1.4 Project Overview 3
1.5 Project Outline 4
CHAPTER 2 LITERATURE REVIEW
2.0 Introduction 5
2.1 Basic Design of Inverter 5
2.2 Inverter Topologies and Design 6
2.2.1 Types of Inverters 6
© T hi s i te m is p ro te ct ed b y or ig in al c op yr ig ht
vii
2.2.2 Inverter Topologies 7
2.2.3 Push-Pull Topology Design 8
2.2.3.1Push-Pull topology with a square wave output 8 2.2.3.2 Push-Pull topology with shorting winding 10
2.3 Multivibrator 12
2.4 Waveform 13
2.4.1 Square Wave 14
2.4.2 Sine Wave 14
2.4.3 Modified Square Wave 14
2.5 Inverter and Application 15
2.5.1 DC power source utilization 15
2.5.2 Uninterruptible power supply 16
2.5.3 Induction heating 16
2.5.4 HVDC power transmission 16
2.5.5 Variable-frequency drive 16
2.5.6 Electric vehicles drive 17
2.5.7 Application for fluorescent lamp 17
2.6 Solar Panel 18
2.7 Batteries 20
CHAPTER 3 METHODOLOGY
3.0 Introduction 22
3.1 Circuit Design 22
3.1.1 Circuit Operation 23
3.2 Theoretical 24
3.3 Simulation 27
3.3.1 Multisim Simulation Software 27
3.3.2 Drawing the circuit 28
3.4 Component Selection 31
3.5 Hardware Building and Test 32
© T hi s i te m is p ro te ct ed b y or ig in al c op yr ig ht
viii
3.5.1 Introduction 32
3.5.2 Circuit Test 33
3.5.3 Hardware Test 34
CHAPTER 4 RESULTS AND DISCUSSION
4.0 Introduction 35
4.1 Simulation Results 35
4.1.1 Theoretical Calculation 36
4.2 Hardware Test and Results 37
4.2.1 Output Waveform of IC CD4047 38
4.2.2 Output Waveform at the Primary Side of Transformer 39
4.2.3 Output of Inverter 40
4.2.4 Harmonic 42
CHAPTER 5 CONCLUSION
5.0 Summary 44
5.1 Recommendation for Future Project 45
5.2 Commercialization Potential of Project 45
REFERENCES 46
APPENDICES
APPENDIX A 48
APPENDIX B 58
APPENDIX C 64
APPENDIX D 68
© T hi s i te m is p ro te ct ed b y or ig in al c op yr ig ht
ix LIST OF FIGURES
Figures No.
1.0 Flow chart of designing inverter circuit 3
2.0 Square wave output [6] 7
2.1 Modified square wave output [6] 7
2.2 General flow of a low frequency transformer based inverter [6] 8
2.3 Push-Pull topology with a square wave output [6] 8
2.4 Top transistor switch closed [6] 9
2.5 Bottom transistors switch close [6] 9
2.6 Push-Pull topology with shorting winding [6] 10
2.7 RMS voltage regulation using PWM [6] 11
2.8 Fundamental of inverter waveform [9] 15
2.9 Fluorescent lamp types [10] 18
2.10 Type of solar system [11] 19
2.11 Lead-acid battery [12] 21
3.0 Complete Design of Inverter Circuit 23
3.1 Inverter Circuit Operation 24
3.2 Generating frequency signal from CD 4047 25
3.3 Square waveform Output 25
3.4 The initial window for Multisim 28
3.5 The select component layout 29
© T hi s i te m is p ro te ct ed b y or ig in al c op yr ig ht
x
3.6 Placing the components 29
3.7 Attached wires at the components 30
3.8 Display properties dialog box 30
3.9 Complete design of inverter circuit for simulation 31
3.10 Circuit testing point 33
3.11 Inverter circuit construction 34
4.0 Square Wave Output Waveform of simulation 36
4.1 Design circuit of Inverter 37
4.2 Hardware Test Point 37
4.3 Output waveform at pin 13 of IC CD4047 38
4.4 Output Waveform from pins 10 and 11 of IC CD4047 38
4.5 Output waveform at position 3 and 4 39
4.6 Output Waveform of Inverter 41
4.7 Complete Hardware of Inverter Project 41
4.8 Square wave output waveform 42
4.9 Voltage harmonic with load 43
© T hi s i te m is p ro te ct ed b y or ig in al c op yr ig ht
xi LIST OF TABLES
Table No. Page
3.0 Component selection table 32
4.0 Hardware and simulation results comparison 40
© T hi s i te m is p ro te ct ed b y or ig in al c op yr ig ht
xii LIST OF ABBREVIATIONS
AC Alternating Current
DC Direct Current
THD Total Harmonic Distortion
RMS Roots Means Square
I Current
V Voltage
W Watt
PWM Pulse Width Modulation
UPS Uninterruptible Power Supply
HVDC High Voltage Direct Current
PV Photovoltaic
EMF Electromotive force
Vs Secondary voltage
Vp Primary voltage
Ns Secondary winding
Np Primary winding
Is Secondary current
© T hi s i te m is p ro te ct ed b y or ig in al c op yr ig ht
xiii
Ip Primary current
Zp Primary impedance
Zs Secondary impedance
Hz Hertz
R Resistance
C Capacitance
NI National Instrument