• Tidak ada hasil yang ditemukan

Estimate on the second hankel functional for a subclass of close-to-convex functions with respect to symmetric points - UMS INSTITUTIONAL REPOSITORY

N/A
N/A
Protected

Academic year: 2024

Membagikan "Estimate on the second hankel functional for a subclass of close-to-convex functions with respect to symmetric points - UMS INSTITUTIONAL REPOSITORY"

Copied!
8
0
0

Teks penuh

(1)

Estimate on the Second Hankel Functional for a Subclass of Close-to-Convex Functions

with Respect to Symmetric Points

Chuah Puoi Choo and Aini Janteng

School of Science and Technology, Universiti Malaysia Sabah Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

[email protected], aini[email protected] Abstract

Let S be the class of functions which are analytic, normalised and univalent in the open unit disc D = {z:|z|<1}. In [4], Janteng in- troduced a subclass of close-to-convex functions with respect to (w.r.t) symmetric points denoted by Ks(α), 0≤α <1. In this paper, we give the upper bound for the second Hankel determinant for this particular class of functions.

Mathematics Subject Classification: Primary 30C45

Keywords: close-to-convex w.r.t symmetric points, Hankel determinant, upper bound

1 Introduction

Let S be the class of functionsf which are analytic and univalent in the open unit disc D={z:|z|<1}given by

f(z) =z+ n=2

anzn (1)

where an is a complex number. In 1976, Noonan and Thomas in [7] defined the qthHankel determinant of f for q≥1 and n≥1 by

Hq(n) =

an an+1 . . . an+q−1 an+1 an+2 . . . an+q

... ... ... ... an+q−1 an+q . . . an+2q−2

(2)

This determinant has been considered by several authors. For example, Noor in [8] studied the rate of growth of Hq(n) as n → ∞ for functions f given by (1) with bounded boundary. Later, Ehrenborg in [1] considered the Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence and some its properties were discussed thoroughly by Layman in [6].

Observe that the well-known Fekete and Szeg¨o functional isH2(1). Fekete and Szeg¨o in [2] studied the estimates |a3 −μa22| for μ real for f S. For our discussion in this paper, the Hankel determinant for the case q = 2 and n= 2 are being considered i.e. H2(2).

In [5], Janteng at. el. determined the functional |a2a4−μa23| for the functions f R. In this paper, we seek upper bound for the functional |a2a4 −μa23| where the μ is real for functions f Ks(α). The class Ks(α) is defined as follows:

Definition 1.1 ([4]) Let f be given by (1). Then f Ks(α),0 α < 1, if there exists a g ∈Cs such that for z ∈D,

Re

2αzf(z)

(g(z)−g(−z)) + 2f(z) (g(z)−g(−z))

>0.

Note: The definition above is also equivalent to the following:

f ∈Ks(α), if there exists ah=zg ∈Ss such that Re

2αz2f(z)

h(z)−h(−z) + 2zf(z) h(z)−h(−z)

>0. (2)

2 Preliminary Results

LetP be the family of all functionspanalytic inD for whichRe p(z)>0 and p(z) = 1 +c1z+c2z2+. . . (3) for z ∈D.

Lemma 2.1 ([9]) If p∈P then |ck| ≤2 for each k.

Lemma 2.2 ([3]) The power series for p(z) given by (3) converges in D to a function in P if and only if the Toeplitz determinants

Dn=

2 c1 c2 . . . cn c1 2 c1 . . . cn−1

... ... ... ... ... cn c−n+1 c−n+2 . . . 2

, n = 1,2,3, . . . (4)

(3)

and c−k = ¯ck, are all negative. They are strictly positive except for p(z) = m

k=1ρkp0(eitkz), ρk>0, tk real andtk=tj fork =j; in this case Dn >0 for n < m−1 and Dn= 0 for n≥m.

This necessary and sufficient condition is due to Carath´eodory and Toeplitz and can be found in [3].

3 Main Result

Theorem 3.1 Let f ∈Ks(α), and 0≤α <1. Then,

|a2a4−μa23| ≤

⎧⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎩

((2α+1)2−μ(α+1)(3α+1))3

((2α+1)22μ(α+1)(3α+1))2(α+1)(2α+1)2(3α+1)

μ((2α+1)2−μ(α+1)(3α+1))2

((2α+1)22μ(α+1)(3α+1))2(2α+1)2 (2α+1)μ 2, if μ≤0;

(2α+1)2−μ(α+1)(3α+1)

(α+1)(2α+1)2(3α+1) , if 0≤μ≤ 2(α+1)(3α+1)(2α+1)2 ;

(2α+1)μ 2 if 2(α+1)(3α+1)(2α+1)2 ≤μ≤ (α+1)(3α+1)(2α+1)2 ;

((2α+1)2−μ(α+1)(3α+1))3

((2α+1)22μ(α+1)(3α+1))2(α+1)(2α+1)2(3α+1)

+ μ((2α+1)2−μ(α+1)(3α+1))2

((2α+1)22μ(α+1)(3α+1))2(2α+1)2 +(2α+1)μ 2, if μ≥ (α+1)(3α+1)(2α+1)2 . Proof.

Since h∈Ss, it follows from (2) that ∃p∈P such that

2zh(z) = (h(z)−h(−z))p(z) (5) for some z ∈D. Equating coefficients in (5) yields

b2 = c1

2, b3 = c2

2, b4 = c3

4 + c1c2

8 (6)

It also follows from (2) that

2αz2f(z) + 2zf(z) = (h(z)−h(−z))p(z) (7) Equating coefficients in (7) yields

2(α+ 1)a2 =c1, 3(2α+ 1)a3 =c2+b3, 4(3α+ 1)a4 =c3+b3c1 (8) From (6) and (8),

|a2a4−μa23|=

c1c3

8(α+ 1)(3α+ 1) + c21c2

16(α+ 1)(3α+ 1) μc22 4(2α+ 1)2

(9)

(4)

We make use of Lemma 2.2 to obtain the proper bound on (9). We begin by rewriting (4) for the cases n = 2 and n= 3,

D2 =

2 c1 c2 c1 2 c1

¯c2 2 c1

= 8 + 2Rec21 2|c2|24c21 0, which is equivalent to

2c2 =c21+x(4−c21) (10) for some x,|x| ≤1.

Further, D3 0 is equivalent to

|(4c34c1c2+c31)(4−c21) +c1(2c2−c21)2| ≤2(4−c21)22|2c2−c21|2 (11) and from (11) and (10), we have

4c3 =c31+ 2(4−c21)c1x−c1(4−c21)x2 + 2(4−c21)(1− |x|2)z, (12) for some value of z,|z| ≤1.

Suppose c1 =cand c∈[0,2]. Using (10) and (12), we obtain c1c3

8(α+ 1)(3α+ 1) + c21c2

16(α+ 1)(3α+ 1) μc22 4(2α+ 1)2

=

((2α+ 1)2−μ(α+ 1)(3α+ 1))c4

16(α+ 1)(2α+ 1)2(3α+ 1) + (3(2α+ 1)2 4μ(α+ 1)(3α+ 1))c2(4−c2)x 32(α+ 1)(2α+ 1)2(3α+ 1)

((2α+ 1)2c2+ 2μ(α+ 1)(3α+ 1)(4−c2))(4−c2)x2

32(α+ 1)(2α+ 1)2(3α+ 1) + c(4−c2)(1− |x|2)z 16(α+ 1)(3α+ 1)

|(2α+ 1)2−μ(α+ 1)(3α+ 1)|c4

16(α+ 1)(2α+ 1)2(3α+ 1) + c(4−c2) 16(α+ 1)(3α+ 1)

+|3(2α+ 1)24μ(α+ 1)(3α+ 1)|c2(4−c2)ρ 32(α+ 1)(2α+ 1)2(3α+ 1)

(5)

+(|(2α+ 1)22μ(α+ 1)(3α+ 1)|c22(2α+ 1)2c+ 8|μ|(α+ 1)(3α+ 1))(4−c2)ρ2 32(α+ 1)(2α+ 1)2(3α+ 1)

≡F(ρ)

(13)

with ρ=|x| ≤1 and α >0. This gives rise to

F(ρ) =

(3(2α+1)24μ(α+1)(3α+1))2c2(4−c2) 32(α+1)(2α+1)2(3α+1)

+{[(2α+1)22μ(α+1)(3α+1)]c22(2α+1)2c−8μ(α+1)(3α+1)}(4−c2)ρ

16(α+1)(2α+1)2(3α+1) ifμ0;

[3(2α+1)24μ(α+1)(3α+1)]c2(4−c2) 32(α+1)(2α+1)2(3α+1)

+{[(2α+1)22μ(α+1)(3α+1)]c22(2α+1)2c+8μ(α+1)(3α+1)}(4−c2)ρ

16(α+1)(2α+1)2(3α+1) if 0μ2(α+1)(3α+1)(2α+1)2 ;

[3(2α+1)24μ(α+1)(3α+1)]c2(4−c2) 32(α+1)(2α+1)2(3α+1)

+{[2μ(α+1)(3α+1)(2α+1)2]c22(2α+1)2c+8μ(α+1)(3α+1)}(4−c2)ρ

16(α+1)(2α+1)2(3α+1) if 2(α+1)(3α+1)(2α+1)2 μ 4(α+1)(3α+1)3(2α+1)2 ;

[4μ(α+1)(3α+1)3(2α+1)2]c2(4−c2) 32(α+1)(2α+1)2(3α+1)

+{[2μ(α+1)(3α+1)(2α+1)2]c22(2α+1)2c+8μ(α+1)(3α+1)}(4−c2)ρ

16(α+1)(2α+1)2(3α+1) ifμ 4(α+1)(3α+1)3(2α+1)2 .

and again for all the cases above, F(ρ)> 0 for ρ >0 and consequently F is an increasing function and MaxρF(ρ) =F(1).

Now, let G(c) =F(1)

= |(2α+ 1)2−μ(α+ 1)(3α+ 1)|c4

16(α+ 1)(2α+ 1)2(3α+ 1) + c(4−c2) 16(α+ 1)(3α+ 1) +|3(2α+ 1)24μ(α+ 1)(3α+ 1)|c2(4−c2)

32(α+ 1)(2α+ 1)2(3α+ 1)

+{|(2α+ 1)22μ(α+ 1)(3α+ 1)|c22(2α+ 1)2c+ 8|μ|(α+ 1)(3α+ 1)}(4−c2) 32(α+ 1)(2α+ 1)2(3α+ 1)

(14) (i) First, let us consider the case μ≤0.

(6)

Eq. (14) gives

G(c) = −c{[(2α+ 1)22μ(α+ 1)(3α+ 1)]c24[(2α+ 1)2−μ(α+ 1)(3α+ 1)]} 4(α+ 1)(2α+ 1)2(3α+ 1)

Elementary calculation reveals that G attains its maximum value at c = 4[(2α+1)2−μ(α+1)(3α+1)]

(2α+1)22μ(α+1)(3α+1) .

The upper bound for (13) corresponds toρ= 1 andc=

4[(2α+1)2−μ(α+1)(3α+1)]

(2α+1)22μ(α+1)(3α+1) , in which case

c1c3

8(α+ 1)(3α+ 1) + c21c2

16(α+ 1)(3α+ 1) μc22 4(2α+ 1)2

((2α+ 1)2−μ(α+ 1)(3α+ 1))3

((2α+ 1)2μ(α+ 1)(3α+ 1))2(α+ 1)(2α+ 1)2(3α+ 1)

μ((2α+ 1)2−μ(α+ 1)(3α+ 1))2

((2α+ 1)22μ(α+ 1)(3α+ 1))2(2α+ 1)2 μ (2α+ 1)2

(15)

(ii) Secondly, we consider the case 0≤μ≤ 2(α+1)(3α+1)(2α+1)2 . This gives

G(c) = −c[(2α+ 1)22μ(α+ 1)(3α+ 1)](c24) 4(α+ 1)(2α+ 1)2(3α+ 1)

where G attains its maximum value at c= 2. Hence, we obtain c1c3

8(α+ 1)(3α+ 1) + c21c2

16(α+ 1)(3α+ 1) μc22 4(2α+ 1)2

(2α+ 1)2−μ(α+ 1)(3α+ 1) (α+ 1)(2α+ 1)2(3α+ 1)

(iii) To prove the third result, we consider two cases.

(7)

First, consider that 2(α+1)(3α+1)(2α+1) ≤μ≤ 4(α+1)(3α+1)3(2α+1) . From eq.(14), we have

G(c) = c[(2α+ 1)22μ(α+ 1)(3α+ 1)]

2(α+ 1)(2α+ 1)2(3α+ 1) In this case, Gattains its maximum value at c= 0.

Next, consider the case 4(α+1)(3α+1)3(2α+1)2 μ (α+1)(3α+1)(2α+1)2 . For this case, Eq.(14) gives rise to

G(c) = c{[3(2α+ 1)2 4μ(α+ 1)(3α+ 1)]c24[(2α+ 1)2−μ(α+ 1)(3α+ 1)]} 4(α+ 1)(2α+ 1)2(3α+ 1)

where G attains its maximum value at c= 0.

In both cases, the upper bound is attained as c1c3

8(α+ 1)(3α+ 1) + c21c2

16(α+ 1)(3α+ 1) μc22 4(2α+ 1)2

μ (2α+ 1)2

(iv) Finally, consider μ≥ (α+1)(3α+1)(2α+1)2 . Here, G attains its maximum value atc=

4[(2α+1)2−μ(α+1)(3α+1)]

(2α+1)22μ(α+1)(3α+1) . Hence, c1c3

8(α+ 1)(3α+ 1) + c21c2

16(α+ 1)(3α+ 1) μc22 4(2α+ 1)2

≤ − ((2α+ 1)2−μ(α+ 1)(3α+ 1))3

((2α+ 1)22μ(α+ 1)(3α+ 1))2(α+ 1)(2α+ 1)2(3α+ 1) + μ((2α+ 1)2−μ(α+ 1)(3α+ 1))2

((2α+ 1)22μ(α+ 1)(3α+ 1))2(2α+ 1)2+ μ (2α+ 1)2

(16) This completes the proof of theorem.

Acknowledgement

This work was supported by FRG0268-ST-2/2010 Grant, Malaysia. The au- thors express their gratitude to the referee for his valuable comments.

(8)

References

[1] Ehrenborg, R.: The Hankel determinant of exponential polynomials, American Mathematical Monthly, 107 (2000): 557-560.

[2] Fekete, M. and Szeg¨o, G.: Eine bemerkung ¨uber ungerade schlichte funk- tionen,J. London. Math. Soc., 8(1933): 85-89.

[3] Grenander, U. and Szeg¨o, G.: Toeplitz forms and their application,Berke- ley and Los Angeles: Univ. of California Press, (1958).

[4] Janteng, A.: Assortment of problems for certain classes of analytic func- tions,PhD Thesis, University of Malaya, Kuala Lumpur, Malaysia, (2006) [5] Janteng, A., Halim, S.A. and Darus, M.: Estimate on the second hankel functional for functions whose derivative has positive real part, Journal of Quality Measurement and Analysis, 4(1)(2008): 189-195.

[6] Layman, J.W.: The Hankel transform and some of its properties, J. of Integer Sequences, 4(2001): 1-11.

[7] Noonan, J.W. and Thomas, D.K.: On the second Hankel determinant of a really meanp-valent functions,Transaction of the American Mathematical Society, 223(1976): 337-346.

[8] Noor, K.I.: Hankel determinant problem for the class of function with bounded boundary rotation, Rev. Roum. Math. Pures et Appl., 28(8)(1983): 731-739.

[9] Pommerenke, Ch.: Univalent functions, Vandenhoeck and Ruprecht, G¨ottingen, (1975)

Received: October, 2012

Referensi

Dokumen terkait