IDENTIFICATION OF ORAL BACTERIA FROM SUBGINGIVAL PLAQUE AND THE EFFECT OF Salvadora
persica EXTRACTS ON THE GROWTH
Nur Fatimah Zaharah binti Salehuddin
Thesis submitted in partial fulfilment for the degree of MASTER OF SCIENCE
UNIVERSITI SAINS ISLAM MALAYSIA
April 2023
ii
AUTHOR DECLARATION
I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.
Date: 13th April 2023 Signature:
Name: Nur Fatimah Zaharah Binti Salehuddin
Matric No: 3201478
Address: No 10B, Lot 3085, Kampung Padang Balang, Sentul, 51100 Kuala Lumpur
iii
ACKNOWLEDGEMENTS
Upon completion of this research, I would like to express my gratitude to many parties.
My heartfelt thanks go to my supervisor, Dr. Rohazila Mohamad Hanafiah for giving me chance to get invaluable guidance, comments, and suggestions throughout this study.
I also would like to thank my co-supervisors, Prof. Madya Dr. Haslinda Ramli, Prof.
Madya Dr. Siti Aisyah Abd Ghafar and Prof. Madya Dr. Shahida Mohd Said for constantly motivating me to work harder and never give up. Without their guidance and persistent help, this project would not complete. This study is a collaboration with Universiti Kebangsaan Malaysia (UKM) and Universiti Sains Islam Malaysia (USIM) under MRUN-RAKAN RU-2019-002/2.
I also would like to thank Ms Wan Nor Asma Wan Razab, and Mr. Nik Muhammad Asyraf Mohd Azmi, as Science officers for their assistance when I am working on my research in the laboratory until it is done. Thank you to Mr. Muhammad Kamarulzaman Daud and Mrs. Nur Hana Mohd Rapiai, as laboratory staff for permitting me to borrow and use all the equipment and chemical required from starting until the end of the project.
I am taking the opportunity to sincerely thank Dr. Nor Zaihana Abd Rahman and Dr.
Nor Haliza Mat Baharin for becoming my panel and giving constructive comments during my proposal defence presentations. Those comments were very useful to be discussed. Thanks to Dr. Zulfahmi Said Student Coordinator for Postgraduate Students at the Faculty of Dentistry Universiti Sains Islam Malaysia, Pandan Indah Campus for guidance throughout my journey.
A great thanks to all my colleagues who are willing to share valuable information related to my project. They give me a lot of critical ideas for improving my methods to get good results, especially when I was performing the antibacterial activity technique of Salvadora persica extracts against selected oral bacteria. This thesis is dedicated to my family and friends who try their best to give me endless support by encouraging me to finish this master’s journey and supporting me financially to pay all the costs required during this project.
iv ABSTRAK
Penyakit mulut biasanya ditemui pada populasi manusia disebabkan oleh pengumpulan plak bakteria. Kajian mengenai jenis bakteria mulut dalam populasi Malaysia masih berkurangan. Streptococcus mutans (S. mutans) adalah salah satu daripada streptokokus mulut yang memulakan penyakit periodontal sebagai penjajah awal. Lama-kelamaan, anaerob Gram-negatif menjadi lebih mantap, terutamanya Porphyromonas gingivalis (P. gingivalis). Walau bagaimanapun, bakteria boleh membina rintangan antibiotik terhadap ubat-ubatan dari semasa ke semasa. Jadi, Salvadora persica (S. Persica) atau dikenali sebagai miswak diakui kerana kehadiran sebatian bioaktif yang mengandungi aktiviti perencatan terhadap bakteria mulut. Objektif utama dalam kajian ini adalah untuk mengenal pasti bakteria mulut daripada plak subgingiva dan menentukan aktiviti antibakteria SPSE (ekstrak batang S. persica) terhadap bakteria mulut terpilih. Objektif khusus dalam kajian ini adalah untuk mengenalpasti jenis bakteria mulut dalam plak subgingiva menggunakan jujukan 16S rRNA, untuk menentukan aktiviti antibakteria SPSE terhadap bakteria mulut terpilih dan untuk menyiasat komposisi fitokimia SPSE menggunakan Spektrometri Jisim Kromatografi Gas (GCMS). Kajian ini telah berjaya menjumpai 176 bakteria mulut daripada 10 sampel plak subgingiva. Sebanyak 17 bakteria mulut telah dikenalpasti daripada semua sampel. 97 jenis bakteria Gram- negatif berjaya diasingkan daripada semua sampel. Majoriti adalah Gram-positif iaitu spesis Streptococcus dan lain-lain adalah bakteria Gram-negatif, termasuk P. gingivalis, A. actinomycetemcomitans dan K. penumoniae S. persica ekstrak telah dihasilkan dengan menggunakan pelarut n-heksana, diklorometana, aseton, etanol dan metanol.
Aktiviti antibakteria SPSE-n-heksana, SPSE-DCM, SPSE-aseton, SPSE-etanol, dan SPSE-metanol ditentukan dengan melakukan tiga teknik berbeza, seperti ujian resapan cakera (DDA), kepekatan perencatan minimum (MIC) dan minimum kepekatan bakteria mati (MBC) terhadap S. mutans dan P. gingivalis. Spektrometri jisim kromatografi gas (GCMS) telah dianalisis untuk menyiasat komposisi fitokimia dalam SPSE yang boleh menghalang pertumbuhan S. mutans dan P. gingivalis. Daripada dapatan, terdapat perbezaan yang signifikan antara jenis pelarut yang digunakan dalam SPSE dan diameter zon perencatan bagi S. mutans dan P. gingivalis (p < 0.001). Untuk keputusan MIC, S. mutans telah dihalang dengan SPSE-n-hexane pada 3.125 mg/mL.
Sementara itu, S. mutans dibunuh dengan 6.25 mg/mL SPSE-n-heksana Dalam analisis GCMS, fitokimia utama bagi semua ekstrak ialah asid benzoik, asid heksadeseniok dan asid oktadekanoik. Kesimpulannya, S. persica amat disyorkan sebagai salah satu alat kebersihan mulut untuk merawat penyakit mulut kerana keberkesanannya menghalang pertumbuhan bakteria mulut.
v ABSTRACT
Oral diseases are commonly found in the human population caused by the accumulation of bacterial plaque. There is still lacking of study regarding types of oral bacteria in the Malaysian population. Streptococcus mutans (S. mutans) is one of oral streptococci which initiate periodontal disease as an early colonizer. Over time, Gram-negative anaerobes become more established, especially Porphyromonas gingivalis (P.
gingivalis). Nevertheless, bacteria can develop antibiotic resistance to medicinal drugs over time. However, Salvadora persica (S. persica) or known as miswak is acknowledged significantly due to the presence of bioactive compounds that contain inhibitory activity against oral bacteria. The main objective in this study is to identify oral bacteria from subgingival plaque and determine the antibacterial activities of Salvadora persica Stem Extracts (SPSE) against selected oral bacteria. The specific objective of this study is to identify the type of oral bacteria in subgingival plaque using 16S rRNA sequencing, to determine the antibacterial activities of SPSE against selected oral bacteria and to investigate the phytochemistry compositions of SPSE using Gas Chromatography Mass Spectrometry (GCMS). This study successfully isolated 176 oral bacteria from 10 subgingival plaque samples. A total of 17 oral bacteria had been identified from all samples. About 97 Gram-negative bacteria were successfully isolated from all samples. The majority of the bacteria are Gram-positive which is Streptococcus species and others are Gram-negative bacteria, including P. gingivalis, A. actinomycetemcomitans and K. pneumoniae. SPSE were produced using n-hexane, DCM, acetone, ethanol, and methanol. Antibacterial activities of SPSE-n-hexane, SPSE-DCM, SPSE-acetone, SPSE-ethanol, and SPSE-methanol were determined by performing three different techniques, such as disc diffusion assay (DDA), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against S. mutans and P. gingivalis. Gas chromatography mass spectrometry (GCMS) was analysed to investigate the phytochemistry composition in SPSE that can inhibit the growth of S. mutans and P. gingivalis. From the results, there is a significant difference between the type of solvents used in SPSE and the diameter of the inhibition zone for S. mutans and P. gingivalis (p < 0.001). For MIC results, S. mutans were inhibited with SPSE-n-hexane at 3.125 mg/mL. Meanwhile, S. mutans were killed with 6.25 mg/mL of SPSE-n-hexane. In GCMS analysis, the major phytochemical of all extracts was benzoic acid, hexadecanoic acid and octadecanoic acid. In conclusion, S. persica is highly recommended as one of the oral hygiene tools to treat oral diseases due to its effectiveness in inhibiting the growth of oral bacteria.
vi
صخلم
Streptococcus mutans (S.mutans)
ةثللا ضارمأ ببست تيلا ةيومفلا ةيدقعلا تاروكلما نم ةدحاو يه ًةصاخ ، اًخوسر رثكأ مارلجا ةبلاس تايئاوهلالا حبصت ،تقولا رورم عمو .ركبم تقو في رمعتسمك
ةيوثللا سناومويرفروبلا
( P. gingivalis(
اكيسيرب ارودافلس نإف ، كلذ عمو
)S. persicaمسبا ةفورعلما وأ
)م كاوسلما دض طبثم طاشن ىلع يوتتح تيلا ايجولويب ةطشنلا تابكرلما دوجو ببسب يربك لكشب ةفورع
.مفلا قيرط نع يايرتكبلا تتح تابسرت نم مفلا يايرتكب ىلع فرعتلا وه ةساردلا هذه نم يسيئرلا فدلها تاصلختسلم يايرتكبلل ةداضلما ةطشنلأا ديدتحو ةثللا
S. persicaةساردلا هذه .ة اقتنلما مفلا يايرتكب دض
لزع في تحنج
176نم ةيومف يايرتكب
10ةبجوم تناك يايرتكبلا ةيبلاغ .ةثللا تتح كلابلا نم تانيع
تاديحو كلذ في ابم ، مارلجا ةبلاس يايرتكبلا نم اهيرغو ةيدقعلا تاروكلما عاونأ نم يهو مارلجا ةيوثللا سناومويرفروبلا
( P. gingivalis
و
)A.
actinomycetemcomitans(ةيوئرلا ةليسبلكلا و
K.pneumoniae
تابيذلما في اكيسيرب ارودافلس تاصلختسلم يايرتكبلل ةداضلما ةطشنلأا ديدتح تم .)
(لوناثيم ،لوناثيإ ،نوتيسلأا ،ينليثيلما ديرولك ،يداعلا ناسكلها ، ةفلتمخ تاينقت ثلاث ذيفنت للاخ نم
)ميثارلجا ديبم زيكترل نىدلأا دلحا و طبثلما زيكترلل نىدلأا دلحا ديدتح و ، صرقلا راشتنا صحف لثم
(MBC\MIC
ةيومفلا ةيدقعلا تاروكلما دض ةيويلحا ةيشغلأا صحفو )
S. mutansسناومويرفروبلا و ةيوثللا
( (P. gingivalis(
زاغلل نيوللا يلتكلا فيطلا سايقم ليلتح تم .
GC-MSةبيكرت نم ققحتلل
)تاصلختسم في ةيتابنلا ءايميكلا
( (S. persica(
ةيومفلا ةيدقعلا تاروكلما ونم عنتم نأ نكيم تيلا
(S.mutans
يوثللا سناومويرفروبلا و s( ة
(P. gingivalis ينب يربك قرف كانه نأ ينبت ، جئاتنلا للاخ نم . تاصلختسم في ةمدختسلما تابيذلما عون
( (S. persica
ةيدقعلا تاروكلما نم لكل طيبثت ةقطنم رطقو ةيومفلا
( (S. mutans(
ةيوثللا سناومويرفروبلا و (P. gingivalis( p <
0.001 دحلل ةجيتنل ةبسنلبا .
)
طيبثتلل نىدلأا
( MIC (
ةيومفلا ةيدقعلا تاروكلما طيبث ت تم ، )
S. mutansيداعلا ناسكلها تاصلختسبم
)نم
( S. persica
( ميثارجلل ديبم نىدلأا دلحا ،هسفن تقولا فيو .لم / ممج
3.125دنع
)MBC)تم يأ ةيومفلا ةيدقعلا تاروكلما لتق
( S. mutans
.يداعلا ناسكلها تاصلختسم نم لم / غلم
6.25دنع
)ةبسنلباو
زاغلل نيوللا يلتكلا فيطلا سايقم ليلتح جئاتنل
GCMSةيسيئرلا ةيتابنلا ةيئايميكلا ةدالما تناك ،
، ماتلخا في .كيوناكيداتكولأا ضحمو كيونيسيداسكيه ضحمو كيوزنبلا ضحم يه تاصلختسلما عيملج
مادختسبا ةدشب ىصوي
S. persicaطيبثت في اهتيلاعفل اًرظن مفلا ضارمأ جلاعل مفلا ةفاظن تاودأ دحأك
مفلا يايرتكب ونم
vii
TABLE OF CONTENTS
CONTENT PAGE
AUTHOR DECLARATION ii
ACKNOWLEDGEMENTS iii
ABSTRAK iv
ABSTRACT v
AL-MULAKHKHAS vi
TABLE OF CONTENTS vii
LIST OF TABLES ix
LIST OF FIGURES x
LIST OF APPENDICES xiv
LIST OF UNITS OF MEASUREMENTS xv
LIST OF SYMBOLS xvi
LIST OF ABBREVIATION xvii
CHAPTER 1: INTRODUCTION 1
1.1 Introduction 1
1.2 Background of the Study 2
1.3 Statement of the Problem 3
1.4 Objectives of the Study 3
1.4.1 Specific Objectives 4
CHAPTER 2: LITERATURE REVIEW 5
2.1 Oral Health Disease 5
2.1.1 Dental Caries 6
2.1.2 Periodontitis 6
2.2 Oral Pathogens 9
2.2.1 Streptococcus mutans 10
2.2.2 Porphyromonas gingivalis 11
2.3 Salvadora persica as a Therapeutic Agent 13 2.3.1 Composition in Salvadora persica Extracts 15 2.3.2 Antibacterial Actions of Salvadora persica Extracts
Against Oral Pathogens
16
CHAPTER 3: RESEARCH METHODOLOGY 18
3.1 Sample Processing 18
3.2 Colony Forming Unit for Each Sample 19
3.3 Isolation and Identification of Oral Bacteria from Subgingival Plaque
20
3.3.1 Morphology of Oral Bacteria 20
3.3.1.1 Gram-staining 20
3.4 Polymerase Chain Reaction (PCR) Analysis 20
3.4.1 DNA Extraction 20
3.4.2 Polymerase Chain Reaction (PCR) 21
3.4.3 DNA Purification 22
3.4.4 Gel Electrophoresis 23
3.5 Sequencing Analysis 24
viii
3.5.1 16S rRNA Sequencing 24
3.5.2 Basic Local Alignment Search Tool (BLAST) Program
24
3.6 Salvadora persica Stem Extraction 24
3.7 Antibacterial Activities Against Streptococcus mutans and Porphyromonas gingivalis from Subgingival Plaque
25 3.7.1 Bacterial Cultures for Selected Oral Bacteria
(Porphyromonas gingivalis and Streptococcus mutans) 25
3.7.2 Disc Diffusion Assay (DDA) 26
3.7.3 Minimum Inhibitory Concentration (MIC) and
Minimum Bactericidal Concentration (MBC) 27 3.8 Phytochemistry of Salvadora persica Extracts (SPSE) 28 3.8.1 Gas Chromatography Mass Spectrometry (GCMS) 28
3.9 Statistical Analysis 28
CHAPTER 4: RESULTS 30
4.1 Population of Samples 30
4.2 Colony Forming Unit 30
4.3 Morphology of Oral Bacteria 34
4.4 Isolation and Identification Type of Oral Bacteria from
Subgingival Plaque Samples 39
4.5 Antibacterial Activities of Salvadora persica Stem Extracts (SPSE) Against Selected Oral Bacteria from Subgingival Plaque
58 4.5.1 Extraction of Salvadora persica 58
4.5.2 Selected Oral Bacteria 59
4.5.2.1 Disc Diffusion Assay (DDA) 59 4.5.2.2 Minimum Inhibitory Concentration (MIC)
and Minimum Bactericidal Concentration (MBC)
61 4.6 Gas Chromatography Mass Spectrometry (GCMS) 63 CHAPTER 5: DISCUSSION, RECOMMENDATIONS AND
CONCLUSION
71
5.1 Introduction 71
5.2 Summary and Discussion of Results 71
5.2.1 Microbial Composition in Subgingival Plaques 71 5.2.2 Antibacterial Activity of Salvadora persica Stem
Extracts (SPSE) Against Streptococcus mutans and Porphyromonas gingivalis
74 5.2.3 Chemical Compositions in Salvadora persica Stem
Extracts (SPSE)
75
5.3 Recommendations of the Study 76
5.4 Conclusions 77
REFERENCES 78
APPENDICES 87
ix
LIST OF TABLES
Tables Page
Table 2.1 : Important Bioactive Constituents Found in S. persica
Extracts 16
Table 3.1 Selection Criteria of The Sample 19
Table 3.2 : Details of Primer Used in PCR 21
Table 3.3 : PCR Components Used in the Amplification of Specific
DNA Target with a Total of 25 µL for One Reaction 22
Table 3.4 : Details of PCR Amplification Cycles by Using a Positive,
Negative, and Universal Primer in T100 Thermal Cycler 22
Table 4.1 : Number of Viable Colonies for Each Subgingival Plaque
Sample 34
Table 4.2 : The Total Number of Gram-positive and Gram-negative
Oral Bacteria Isolated from Subgingival Plaque Samples 39
Table 4.3 : Morphology of 176 Isolated Oral Bacteria on Media and
Under Microscope 41
Table 4.4 : Oral Bacteria Species Which Are Mostly Found in the
Subgingival Plaque Samples 56
Table 4.5 : Total Yield of Five Types of Different Types of SPSE 58
Table 4.6 : Inhibition Zone of DDA for SPSE Against S. mutans 59
Table 4.7 : Inhibition Zone of DDA for SPSE Against P. gingivalis 60
Table 4.8 : MIC and MBC of SPSE Against S. mutans and P. gingivalis 61
Table 4.9 : Phytochemical Compounds Found in SPSE Using GCMS
Analysis 67
x
LIST OF FIGURES
Figures Page
Figure 2.1 : The Stages of Periodontal Disease from Healthy Gums
Until Chronic Periodontitis 8
Figure 2.2 : The Morphology of P. gingivalis on Blood Agar Was
Black-Pigmented 12
Figure 2.3 : Chewing Stick of S. persica 17
Figure 3.1 : Flowchart of Research Methodology 29
Figure 4.1 : Bacteria Colonies on Blood Sheep Agar and Microscopic Analysis (Rod-Shaped) from Subgingival Plaque Sample 1
31
Figure 4.2 : Bacteria Colonies on Blood Sheep Agar and Microscopic Analysis (Cocci Shaped and Aggregates in
Chains) from Subgingival Plaque Sample 2 31
Figure 4.3 : Bacteria Colonies on Blood Sheep Agar and Microscopic Analysis (Cocci Shaped) from Subgingival Plaque Sample 3
31
Figure 4.4 : Bacteria Colonies on Blood Sheep Agar and Microscopic Analysis (Cocci Shaped and Aggregates in Chains) from Subgingival Plaque Sample 4
32
Figure 4.5 : Bacteria Colonies on Blood Sheep Agar and Microscopic Analysis (Rod-Shaped) from Subgingival Plaque Sample 5
32
Figure 4.6 : Bacteria Colonies on Blood Sheep Agar and Microscopic Analysis (Rod-Shaped and Aggregates in Chains) from Subgingival Plaque Sample 6
32
Figure 4.7 : Bacteria Colonies on Blood Sheep Agar and Microscopic Analysis (Cocci Shaped) from
Subgingival Plaque Sample 7 33
Figure 4.8 : Bacteria Colonies on Blood Sheep Agar and Microscopic Analysis (Cocci Shaped) from
Subgingival Plaque Sample 8 33
xi
Figure 4.9 : Bacteria Colonies on Blood Sheep Agar and Microscopic Analysis (Cocci Shaped) from Subgingival Plaque Sample 9
33
Figure 4.10 : Bacteria Colonies on Blood Sheep Agar and Microscopic Analysis (Rod-Shaped) from Subgingival Plaque Sample 10
34
Figure 4.11 : Bacteria Colonies on WCA Agar and Microscopic Analysis (Rod-Shaped) from Subgingival Plaque
Sample 1 35
Figure 4.12 : Bacteria Colonies on BHI Agar and Microscopic Analysis (Cocci Shaped) from Subgingival Plaque Sample 2
36
Figure 4.13 : Bacteria Colonies on WCA Agar and Microscopic Analysis (Rod-Shaped) from Subgingival Plaque Sample 3
36
Figure 4.14 : Bacteria Colonies on BHI Agar and Microscopic Analysis (Cocci Shaped) from Subgingival Plaque Sample 4
36
Figure 4.15 : Bacteria Colonies on WCA Agar and Microscopic Analysis (Cocci Shaped) from Subgingival Plaque
Sample 5 37
Figure 4.16 : Bacteria Colonies on WCA Agar and Microscopic Analysis (Rod Shaped) From Subgingival Plaque
Sample 6 37
Figure 4.17 : Bacteria Colonies on BHI Agar and Microscopic Analysis (Cocci Shaped) from Subgingival Plaque Sample 7
37
Figure 4.18 : Bacteria Colonies on WCA Agar and Microscopic Analysis (Cocci Shaped) from Subgingival Plaque Sample 8
38 Figure 4.19 : Bacteria Colonies on BHI Agar and Microscopic
Analysis (Cocci Shaped) from Subgingival Plaque Sample 9
38
Figure 4.20 : Bacteria Colonies on BHI Agar and Microscopic Analysis (Rod-Shaped) from Subgingival Plaque Sample 10
38
xii
Figure 4.21 : 1.5% Agarose Gel electrophoresis of PCR Using PCR Products After DNA Purification Obtained from Sample 1, 2, 3 and 4 in 100 V For 60 Minutes
54
Figure 4.22 1.5% Agarose Gel electrophoresis of PCR Using PCR Products After DNA Purification Obtained from Sample 4,6, and 7 in 100 V For 60 Minutes
54
Figure 4.23 : 1.5% Agarose Gel electrophoresis of PCR Using PCR Products After DNA Purification Obtained from
Sample 5 in 100 V For 60 Minutes 55
Figure 4.24 : 1.5% Agarose Gel electrophoresis of PCR Using PCR Products After DNA Purification Obtained from Sample 8 in 100 V For 60 Minutes
55
Figure 4.25 : 1.5% Agarose Gel electrophoresis of PCR Using PCR Products After DNA Purification Obtained from Sample 10 in 100 V For 60 Minutes
56
Figure 4.26 : Alignments of The Nucleotide Sequence for Sample 4
After The BLAST Program in NCBI Data for S. mutans 57
Figure 4.27 : Alignments of The Nucleotide Sequence for Sample 5 after The BLAST Program in NCBI Data for P.
gingivalis
57
Figure 4.28 : Phylogenetic Tree of Oral Bacteria Species from
Subgingival Plaque 58
Figure 4.29 : Inhibition Zone of S. mutans When Exposed to Different Concentrations of SPSE-Methanol After 24 Hours
60
Figure 4.30 : Inhibition Zone of P. gingivalis When Exposed to Different Concentrations of SPSE-Methanol After 24
Hours 60
Figure 4.31 : The Colour of MTT Was Change After S. Mutans
Treated with SPSE (MIC) 62
Figure 4.32 : The growth colonies of S. mutans treated with SPSE at (1) 25.00 mg/mL; (2) 12.50 mg/mL; (3) 6.25 mg/mL;
(4) 3.13 mg/mL; (5) 1.56 mg/mL; (6) 0.78 mg/mL; (7) 0.39 mg/mL; (8) 0.20 mg/mL on BHIA agar (MBC)
62
Figure 4.33 : The growth colonies of P. gingivalis treated with SPSE
at (1) 25.00 mg/mL; (2) 12.50 mg/mL; (3) 6.25 mg/mL; 63
xiii
(4) 3.13 mg/mL; (5) 1.56 mg/mL; (6) 0.78 mg/mL; (7) 0.39 mg/mL; (8) 0.20 mg/mL on WCA agar (MBC)
Figure 4.34 : Chromatograms for SPSE-n-hexane from GCMS
Analysis 64
Figure 4.35 : Chromatograms for SPSE-DCM from GCMS Analysis 65
Figure 4.36 : Chromatograms for SPSE-Acetone from GCMS
Analysis 65
Figure 4.37 : Chromatograms for SPSE-Ethanol from GCMS
Analysis 66
Figure 4.38 : Chromatograms for SPSE-Methanol from GCMS
Analysis 66
xiv
LIST OF APPENDICES
Appendices Page
Appendix 1 : Alignment of Nucleotide Sequence from All Samples
After BLAST Program in NCBI Data 87
Appendix 2 : Inhibition Zone of SPSE Against S. mutans and P.
gingivalis 111
Appendix 3 : Colour Changes for MIC After Added MTT Solution
Into 96-Well Plate 112
Appendix 4 : Growth Colonies of S. mutans and P. gingivalis on
BHI and WCA Agar for MBC 114
Appendix 5 : Conference 121
Appendix 6 : Publication 121
xv
LIST OF UNITS OF MEASUREMENTS
Colony forming unit per millilitre CFU/mL
Gram G
Mass-to-charge ratio m/z
Micro litre µL
Milli gram Mg
Milli gram per millilitre mg/mL
Millilitre mL
Milli molar mM
Nanometre Nm
Svedberg S
Volt V
xvi
LIST OF SYMBOLS
°C Celsius
= Equal
< Less than X Multiply
% Percentage
: Ratio
xvii
LIST OF ABBREVIATIONS
A. actinomycetemcomitans Aggregatibacter actinomycetemcomitans
ADA american diabetes association
ANOVA analysis of variance
BHI brain heart infusion
BLAST basic local alignment search tool
Bp base pair
CHX Chlorohexidine
C. rectus Camphylobacter rectus
CXCL8 c-x-c motif chemokine ligand 8
DCM dichloromethane
DDA disc diffusion assay
DMSO dimethyl sulfoxide
DNA deoxyribonucleic acid
E. clocae Enterobacter clocae
E. corrodens Eikenella corrodens
E. ludwigii Enterobacter ludwigii
E. mori Enterobacter mori
E. nodatum Eubacterium nodatum
E. roggen kampii Enterobacter roggen kampii
E. tabacii Enterobacter tabacii
F F-value
F. nucleatum Fusobacterium nucleatum
Gbp glucan binding protein
GCMS gas chromatography mass spectrometry
Gtf glycosyltransferase
IL interleukin
Kgp lyseine-specific
K. pneumoniae Klebsiella pneumoniae
MBC minimum bactericidal concentration
MIC minimum inhibitory concentration
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide
NA not available
NCBI national centre for biotechnology
information
OD absorbance
P p-value
PBS phosphate-buffered saline
PCR polymerase chain reaction
P. gingivalis P. gingivalis
pH potential of hydrogen
P. intermedia Prevotella intermedia
P. micros Peptostreptococcus micros
QS quorum sensing
Rgp arginine-specific
Rpm revolutions per minute
xviii
rRNA ribosomal ribonucleic acid
S. agalactiae Streptococcus agalactiae
S. anginosus Streptococcus anginosus
SD standard deviation
S. downei Streptococcus downei
S. gordonii Streptococcus gordonii
S. lutetiensis Streptococcus lutetiensis
S. mutans Streptococcus mutans
S. oralis Streptococcus oralis
S. persica Salvadora persica
spp. several species
SPSE Salvadora persica stem extract
SPSS statistical package for the social sciences
S. salivarius Streptococcus salivarius
S. sanguinis Streptococcus sanguinis
TAE tris-acetate-EDTA
T. denticola Treponema denticola
T. forsythia Tannerella forsythia
TGF-β transforming growth factor beta
Tm temperature
TNF-α tumour necrosis factor alpha
TNTC too-numerous-to-count
USIM university sains islam malaysia
WCA wilkins chalgren anerobic
WHO world health organization