• Tidak ada hasil yang ditemukan

Information Sciences

N/A
N/A
Protected

Academic year: 2023

Membagikan "Information Sciences"

Copied!
1
0
0

Teks penuh

(1)

Information Sciences 346–347 (2016) 302–317

ContentslistsavailableatScienceDirect

Information Sciences

journalhomepage:www.elsevier.com/locate/ins

A new method to rank fuzzy numbers using Dempster–Shafer theory with fuzzy targets

Kok Chin Chai

a,

, Kai Meng Tay

a

, Chee Peng Lim

b

aUniversiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia

bCentre for Intelligent Systems Research, Deakin University, Australia

a rt i c l e i n f o

Article history:

Received 17 December 2014 Revised 1 October 2015 Accepted 2 January 2016 Available online 2 February 2016 Keywords:

Dempster–Shafer theory Fuzzy ranking Fuzzy targets

Murphy’s combination rule Transferable Belief Model

a b s t ra c t

In thispaper, an extendedranking methodfor fuzzynumbers,which isasynthesis of fuzzytargetsand theDempster–ShaferTheory(DST)ofevidence,isdevised.Theuseof fuzzytargetstoreflecthumanviewpointsinfuzzyrankingisnotnew.However,different fuzzytargetscanleadtocontradictoryfuzzyrankingresults;makingitdifficulttoreacha finaldecision.Inthispaper,theresultsfromdifferentviewpointsaretreatedasdifferent sourcesofevidence,andMurphy’scombinationruleisusedtoaggregatethefuzzyrank- ingresults.DSTallowsfuzzynumberstobecomparedandrankedwhilepreservingtheir uncertainandimprecisecharacteristics.Inaddition,ahybridmethodconsistingoffuzzy targetsandDSTwiththeTransferableBeliefModelisformulated,whichfulfilsanumber ofimportantorderingproperties.Aseriesofempiricalexperimentswithbenchmarkex- ampleshasbeenconductedandtheexperimentalresultsclearlyindicatetheusefulnessof theproposedmethod.

© 2016ElsevierInc.Allrightsreserved.

1. Introduction

Fuzzyrankingisaprocedureusedtocompareandorderasequenceoffuzzynumbers.Ithasbeenemployedinavariety ofapplicationdomains,such asdecisionmaking[4,6,7,12,15,39,40],riskassessment [29,30],andartificialintelligence[17]. Whilemanyfuzzyrankingmethodsareavailableintheliterature[1–9,12–16,21,23,37,39],agenericmethodthatcanprovide a satisfactory solution acrossa variety ofsituations has yetbeen developed[12]. Indeed,fuzzyranking is challengingas fuzzy numbers are represented by possibility distributions which can overlap with one another [15]. It is important to consider the overall possibility distribution of a fuzzy number, instead of converting a fuzzy number into a singlereal number (e.g., centroid-based method [9], minimizing andmaximizing set-based method [5], distance-based method [1], area-basedmethod[4,8]),asreducing theentireanalysisintoonenumbercan resultinthelossofinformationwhichcan affecttheaccuracyofcertaincalculations[11].

Anumberoffuzzyrankingmethodspertainingtotheprincipleofapossibilitydistribution[3,6,12,14,15,23,39]havebeen proposedintheliterature.Thesemethodscanbecategorisedaspossibilitydistribution-basedmethodswith:(i)noreference set[23];(ii)asinglereferenceset[14];(iii)multiplereferencesets[3,6,12,15,39].Thefocusofthispaperisonasynthesis ofpossibilitydistributionsandmultiplereferencesets(alsoknownasfuzzytargets[3,6,12,15,39]),whichallowsmorethan twofuzzynumberstoberankedsimultaneously.Fuzzytargets(i.e.,optimistic,neutral,andpessimistic)areadoptedtore- flecthumanviewpointsonfuzzyranking[3,6,12,15,39].As anexample,aranking methodbasedonasatisfactionfunction

Corresponding author. Tel.: + 60 146884403.

E-mail addresses: [email protected] (K.C. Chai), [email protected] (K.M. Tay), [email protected] (C.P. Lim).

http://dx.doi.org/10.1016/j.ins.2016.01.066 0020-0255/© 2016 Elsevier Inc. All rights reserved.

Referensi

Dokumen terkait

In the future, the obstacles faced are not only related to the limited Human Resources (employees) in the establishment of the Land Bank Agency but also the land administration