• Tidak ada hasil yang ditemukan

lnstructions - EPrints USM

N/A
N/A
Protected

Academic year: 2024

Membagikan "lnstructions - EPrints USM"

Copied!
5
0
0

Teks penuh

(1)

April/May 2006

MAA

102E

- Galculus for Science Students ll [Kalkulus untuk Pelajar Sains ll]

Duration

:

3 hours [Masa

: 3

jam]

Please check that this examination paper consists of FIVE pages of

printed

material before you begin the examination.

[Sila

pastikan

bahawa kertas

peperiksaan

ini mengandungi LIMA muka surat yang bercetak

sebelum

anda memulakan

peperiksaan

inil.

lnstructions: Answer all ten

[10]

questions.

Aranan: Jawab semua sepuluh [10] soalanl.

I

...12-
(2)

1.

Determine whether

{an}

converges or diverges.

If it

converges,

find

its

limit.

(a) o,=# (b) q=*-- (-t\^ n'

n- +L

[8 marks]

l.

Tentukan sama ada

{an\

menumpu atau mencapah. Jika menumpu,

cari

hadnya.

(a) o,=W

9n+r

2.

Test the convergence of the series:

(a) it

un=r2n

+n

2.

Uji penumpuan

siri:

h) it

f,12'+n

(-rY n'

(b) q=#

n- +L

I (n+t)(n'-r)

*",

4n3

-2n+l

t (n+r)(n'-r)

H

4n3

-2n+l

[8

markahJ

[10 marks]

(b)

(b)

ftO

markahJ

3.

Find the interval of convergence of the power series

D

n=0

#

t

[13 marks]

3.

Cari selang penumpuan

siri

kuasa

2 #

[13

markahJ

'l

4.

Find the power series representation

of

=.

Hence, find the power

series I +_r

representation

of f (r)

= x ln

(l

+

x)

which holds

for

l"l

.

t .

[6 marks]

110

...13-

(3)

4.

Cari perwakilan

siri lansa +. S"t"*snya,

cari perwahilan

siri

kuasa

l+x

"f

(*)

= x ln

(l

+

x) yanr

memenuhi

lrl . t.

[6

markah]

5.

Determine whether the

integral 'l , *

,r,

is convergent or divergent.

!,(2x+t)A

[9 marks]

5.

Tentulrnn sama ada

kamiran 'l , *

,r,

menumpu atau mencapah.

!,(zx+t)/'

[9

markahJ

6. If f = 1* I *1,frnd $

when

x=30,!=45andz=90.

wxyzoy

[5 marks]

6. Jika 1=1*

1

* I

,

rori fu bila x=30,y=45dan z=90.

wxyzoy

[5

markahJ

7. Let z=f (*,y)where x=rcos?andy-rsin?

. Suppose

f,(0,21=-1and fr(0,21=3. Find *^O 9* ^nhepointwhere r=2

and

e=%.

[7 marks]

7. Biar z= f (*,y), x=rcos? dany=rsinl

. Andaiknn

f,(0,21=-ldan

-fr(0,21=3' Cari ?o^ ! poaofifikdimana r=2 dan e=%.

Ar Ae'

[7

markahJ

...14-

!ll

(4)

3

| |

9-x2

xe'

4

(a) | l=dyd*.

6 6 v-y

O) II(*t * r'') dA,whereD

is the region in the

first

quadrant bounded by the

D

lines

y

=

0,1

=

Ji x

and the

circle x'

+

y' =9

-

[13 marks]

8.

Nilaikan Kamiran.

3

9-x2

+

(a) | | ?dvdx.

6 6 v-y

(b) I IV * y')'

dA,

D

merupakan rantau dalam sukuan pertama yang dibatasi

D

olehgaris !=0,!=Ji * danbulatan x'+y'-9.

p3

markahJ

g. (a)

Solve the differential equation

(r-r+x'y')d*+(xty-x')dy =O

Ay suitable substitution.

(b)

Find the integrating factor for the equation

(l * ,t

+3x2

-Zx)ax -

x dy = g . Hence,

find

its particular solution when

f

(1) = 1.

[16 marks]

g. (a)

Selesaikan persamaan pembezaan

(r-,

+

*'y')a* +(rt

y

-

xz)dy = g

dengan penggantian yang sesuai.

@ Carifa&or

pengamir bagi persamoon

(l+

x3

+3x2 -Zx)dx-

x dy

=0.

Seterusnya, cari penyelesaian khususnya

bila y(t) =t.

fl6

markahJ

.../s-

\ 12

(5)

present.

(a) If

the number doubles in 4 hours, how many

will

be after 12 hours?

(b) If

the numbers are 104 after 3 hours and 4.104 after 5 hours, frnd the

initial

population.

[13 marks]

10. Dalam pembiakan baHeria tertentu, kadar pertambahan berkadaran dengan bilangan yang ada.

(a)

Jika bilangannya menjadi dua kali ganda dalam masa 4

jam,

berapakah

bilangan yang ada selepas I2

jam?

@

Jika bilangannya

l}a

selepas 3

jam

dan

4.I0a

selepas 5

jam,

cari populasi awal.

fl3

markahJ

-oooOooo-

'13

Referensi

Dokumen terkait

UNIVERSITI SAINS MALAYSIA Peperiksaan Kursus Semasa Cuti Panjang Sidang Akademik 2009/2010 Jun 2010 MAA 102 – Calculus for Science Students II [Kalkulus untuk Pelajar Sains II]

UNIVERSITI SAINS MALAYSIA Peperiksaan Kursus Semasa Cuti Panjang Sidang Akademik 2007 12008 Jun 2008 MAT 101 - Calculus IKalkulus] Duration : 3 hours [Masa : 3 jam] Please check

UNIVERSITI SAINS MALAYSIA First Semester Examination 2012/2013 Academic Session January 2013 MAA111 Algebra for Science Students [Aljabar Untuk Pelajar Sains] Duration : 3 hours

First Semester Examination Academic Session 2007 12008 October/November 2007 MGM 511 - Linear Algebra [Aljabar Linear] Duration : 3 hours [Masa: 3 jam] Please check that this

UNIVERSITI SAINS MALAYSIA Peperiksaan Kursus Semasa Cuti Panjang Sidang Akademik 2011/2012 Ogos 2012 MAT 102 – Advanced Calculus [Kalkulus Lanjutan] Duration : 3 hours [Masa : 3

UNIVERSITI SAINS MALAYSIA First Semester Examination 2011/2012 Academic Session January 2012 MAT 282 – Engineering Computation I [Pengiraan Kejuruteraan I] Duration : 3 hours

UNIVERSITI SAINS MALAYSIA Second Semester Examination 2010/2011 Academic Session April/May 2011 MST 565 – Linear Models [Model Linear] Duration : 3 hours [Masa : 3 jam] Please

UNIVERSITI SAINS MALAYSIA Second Semester Examination 2009/2010 Academic Session April/May 2010 MSS 211 – Modern Algebra [Aljabar Moden] Duration : 3 hours [Masa : 3 jam]