UNIVERSITI SAINS MALAYSIA Second Semester Examination
Academic Session
200812009April/May 2009
MAT 263 - Probability TheorY [Teo ri Kebaran
gkal
ianJ
Duration
:3 hours [Masa
: 3jam]
Please check that this examination paper consists of FOURTEEN pages of printed materials before you begin the examination.
[Sita pastikan bahawa keftas peperiksaan ini mengandungi EMPAT BELAS muka
suratyang bercetak sebelum anda memulakan peperiksaan ini.l
Instructions:
[Arahan:
Answer all four [4] questions.
Jawab semua empat [4] soalan.l
t
2 IMAT 263]
l. (a)
For each of thefollowing, identiff
whetherit
can be distribution functions.Justify your answer.
(i) F(x)
=e-',x20
(iD F(x) =1-f ,,
> 1x
(iii) F(x)
=x2,x)
0(iv) F(x)
=),, x- ,
t[20 marks]
(b)
The p.d.f.for
a random variableX
is givenby
lir** forx
=-2,-I,0
f(x)= j -*t+* forx=1,2 [o
otherwise.(i)
Obtain the distribution functionof X.
(ii)
Find the moment generating functionof X
.(iii)
Using(ii), find
the p.d.f.of I
=3X -2.
[30 marks]
(c)
The distribution functionfor
a randomvariable X
is givenby
0 ifx<O
&
v2ifo<x<2 F@)=] c
,
|
*-Ll if z<x<4
c
1 ifx>4
(i)
Find the valueof c.
(ii) Using F(*),
determineP(I
<X <3).
(iii)
Obtain the moment generating functionof X
.(iv)
Using(iii),
frnd the mean and varianceof X
.[35 marks]
(d) Let X and Y be two random variables with means, variances
and correlation coefficients denotedby lt*, py,o
y2,or'
and pyy,
respeetively.Show
that E(Y I x) =tt, * p* 4(x
oY- F)
.[15 marks]
3 IMAT 263]
I. (a)
Bagi setiap yang berikut, nyataknn sama ada ianya suatufungsi
taburan.Tentus ahkan
j
ow apan anda.(i) F(x)=e-',x20
(ii) F(x)
=1-f ,x
> 1x
(iii) F(x)
=x2,x)
0(iv) F(x)
=),"t x-
[20
markahJ(b) F.k.kbagi
suatu pembolehubahranak X diberi
olehf*r**
bagix=-2,-1,0
f(x)=1-I***
bagix=1,2
I
l0 di
sebaliknYa.(i)
Dapatknnfungsi taburan bagiX
.(iil Carifungsi
peniana momenbagi X
'(iii)
Menggunakan(ii), carif,k.k. bagi
Y=3X -2.
[30
markahJ@
Fungsitaburan
bagi suatu pembolehubahrawakX diberi
oleh0 jika
x<0
&
v2jikaofx<2 F(x)=] c
.,lr-I-r
cjikn 2f.x<4
I jika
x3 4(i) Cari nilai
c.(iil
MenggunakanF(x),
tentukanP(\< X <3).
(iii)
Dapatlmnfungsi penjana momen bagiX
.(iv)
Menggunakan(iii), cari
mindanvarians bagi X
'[35
markahJ(d) Katakan X dan
Y adalah dua pembolehubahrawak
denganmin,
variansdan pelcali korelasi yang ditandai py,py,oy2,or' dan pn ,
masing-masing.
Tunjukkan bahawa E(Y I x) = lty* en 4{* - H)'
tI5 markahJ
2. (a)
4 IMAT
2631A university
administerstwo
teststo
eachnew
studentto
better predict student successin a
certaincoufse. Let I" be the event that a
studentpasses the
first
test andlet L,
be the event that a student passes the second test.Let Q be
the event that a studentis qualified for that
course. Given thatq
=P(\lQ)
'
F,
=P(LJ lQ")
,a=P(Q).
(D
Show thatP(Q" lt,>= (t-.1)(l,r?) ' t' dia+(l-
p,)(1-reo)-(ii)
What must be trueof P(Q" lLr)
andP(Q"
ILr) if
the first test is considered betterfor
screening unqualified applicants?(iii)
Using your answerin (ii),
showthat (I- B)a, <(I- F)a,.
[30 marks]
The folowing
contingency tableis
thejoint p.d.f. of the two
independent random variablesX
and Y .a,
=P(LrlQ),
Fz =
P(Lr" lQ"),
o)
(D
Complete the table.(ii)
Obtain the distribution functionof X
and Y .(iii) Find E(r
I x) .(c) The random variables X and Y are
independent distributedwith
common densitv[30 marks]
and
identically(i) (ii)
.f"(,)=€-', x>o'
Determine the distribution function for the random variable
W=X+Y.
Obtain the p.d.f.
of Z
=Wt/2 .[40 marks]
Y
I 2 aJ 4
I
X
2
0.24 0.r2
0.40 0.30
(a)
2.
s [MAr 263]
Pihak universiti
menjalankan duaujian
ke atas setiappelajar
baru untukmeramal prestasi pelajar dalam suatu kursus. Katakan Lt
adalahperistiwa
bahawa seseorangpelajar lulus uiian pertama
danIt
adalahperistiwa
bahawa seseorangpelajar
lulusujian
kedua. KatakanQ
adalahperistiwa
bahawa seseorangpelajar
layak bagi kursus tersebut.Diberi
dr= P(\lQ),
f'
=P(Lf lQ")
,ot =
p(e).
(i)
Tunjukkan bahawaP(Q" lL)= di@+(I- (r- B,)Q- p,)(l-ro)
at)(iil
Apaknhyang mesti benar
tentangP(8"
IL,) dan
P(Q" I Lr)iika
ujian pertama adalah lebih baik bagi menyaring calun tidak layak?
(iiil Berdasarkan jawapan anda di (ii), tunjukkan
bahawa(r- F)a, <(r- fr)a,.
[30
marknhJJadual kontinjensi berikut ialah f,k k
tercantum pembolehubah rowakX dan
Y.(i)
Lengknpkanjadual.
(ii) Dapatkanfungsi
taburanbagi X and
Y .(iii) Cari
E(Ylx).
[30
markahJPembolehubah rawak X dan Y adalah tertabur secaman dan
tak bersandar dengan ketumpatan sepunyaar= P(LrlQ), F,
=P(Lr" lQ"),
(b)
(c)
(i)
(ii)
-f*(*)=e-', x>o'
Tentul<anfungsi taburan bagi pembolehubah
rawakW
=X +Y
.Dapatkanf,k.. bagi Z
=Wtlz .[40
markahJ Y1 2 J 4
I
X
2
0.24
0.120.40 0.30
a (a)
J.
IMAT 263I For
eachof the following
random variablesX, write out the
completep.d.f.
that best modelsX.
Give the values of the parameters involved.(D
(iD
There
are2000
studentsenrolled in a certain
course.The
exam papersin this
course aregaded by
a teamof
teaching assistants;however, a sample of the papers is examined by the
course professorfor
grading consistency. The professor selects 10 papers at randomfrom
the 2000 submitted and examines themfor
grading inconsistencies.Let X
be the numberof
papersin
the sample thatare improperly graded.
Calls to an
emergencycenter are placed
independentlyand
atrandom. During
evening hours, the center receives an averageof
100 calls an hour.
Let X
be the numberof
calls received between 7.00p.m.
and7.30 p.m tonight.Calls to an
emergency centerare placed
independentlyand
at random.It
is currently 2 a.m. and the center'sline
areall
open and ten calls are expected over the next half hour.Let X
be the timein
minutesuntil
the next call is received.A
researcheris
studying blood disorders exhibitedby
peoplewith
rare blood types.
It
is estimatedthat
10%of
the population has thetype of blood
being investigated. Volunteers whose bloodtype
isunknown
are testeduntil
100 peoplewith
desiredblood type
arefound. Let X be the
numberof
people testedwho do
have the desired rare blood type.[20 marks]
(iii)
(iv)
3.
IMAT 263I
(a) Bagi setiap pembolehubahrawakX
berikut,tuliskanf.k.k.
Iengkap yangterbaik untuk memodel
X
. Beri nilai parameter terlibat.(ii)
Terdapat 2000 pelajar mendaftar dalam suatu kursus.
Kertas peperilrsaan bagi kursusini
diperil<sa oleh satu pasukan pembantupengajar;
walaubagaimanapun, suatu
sampelrawak kertas di
semakoleh profesor kursus bagi tuiuan pemarkahan
konsisten.Profesor ini memilih l0 kertas secara rawak dari 2000
yangdihantar dan
memerilcsanyabagi tuiuan pemarknhan
konsisten.Katakan X ialah bilangan kertas dalam sampel yang
tidak diperilrs a dengan betul.Panggilan ke
suatupusat
kecemasantiba secara tak
bersandar dan secararawak.
Pada waktu petang,pusat ini
menerima 100panggilan
sejam. KataknnX ialah bilangan panggilan
diterimaantara 7.00
dan 7.30 malam ini.Panggilan ke
suatupusat
kecemasantiba secara tak
bersandar dan secararowak.
Waktu sekarangialah
2pagi
dan semua talian kepusat ini dibuka
dan sepuluhpanggilan diiangka
masuk bagi setengahjam berikut. Katakan X ialah masa dalam minit
sehingga panggilan b erikutnya diterima.Penyelidik membuat kajian tentang penyakit darah
yangditunjukkan oleh orang yang
mempunyaijenis darah
ganjil.Dianggarlran I0% dari populasi
mempunyaiienis darah
yangdikaji.
Sukarelawan denganjenis
darah yangtidak
diketahuidiuji sehingga 100 orang dengan jenis darah yang
dikehendakidiperolehi. Katakan X ialah bilangan orang diuji
yangmempunyai
jenis
darah ganjil yang dibehendaki.(iii)
[20
markahJ (i)(iv)
(b)
lMAr 263I
A Ministry of Environment is
concernedwith the problem of
setting criteriafor
the amountof
certaintoxic
chemical to be allowed inrivers. A
commom measureof toxicity for
anypollutant
is the concentrationof
thepollutant that will kill half of
the test speciesin a given
amountof
time (usually 96 hoursfor fish
species). This measureis
called the LC50 (lethal concentrationkilling 50% of the test species). In many
studies the ln (LC50) measurements are normally distributed and hence the analysis is basedon
ln(LC50) data.
Studieson the
effectsof
copperon a
certain speciesof fish
show the varianceof
In (LC50) measurements to be around 0.5with
concentration measurements inmilligrams
perliter.
(D If it is
desiredthat the
sample meandiffer from the
population meanby
no more than 0.5,with probability
0.90,how
many tests should be run?(ii)
Suppose that the effectsofcopper
on a second speciesoffish
showthe
varianceof ln(LC50)
measurementsto
be around0.8. If
the population meansof
ln(LC50) for
thetwo species
are equal, findthe probability that, with random
samplesof ten
measurementsfrom
each species,the
sample meanfor the first
species exceeds the sample mean for the second species by at least one unit.(iii) If n=20observations
areto
be takenon ln(LC50)
measurements,with
o2=I.4 , find the two numbers a and b
suchthatP(a<,S2 <b)=0.90,
whereSt is the
sample varianceof
the 20 measurements.The
study alsolook into the
effectsof
leadon the fish. Let
S,' denote the sample variancefor
a random sampleof ten
ln (LC50)values for copper and let
Sr2 denotethe
sample variancefor
arandom
sampleof eight
ln(LC50)
valuesfor
lead,both
samplesusing the same
speciesof fish. The population variance for
measurements on copperis
assumed to betwice
the corresponding population variancefor
measurementson
lead.Find two
numbersc
andd
suchthat P(c<\
=
o>= o.9o [40
marks]'s;
(c)
Suppose thatX
andI
are random variables withjoint
densityf(x,v)= {:(t -
x- Y) forx+ ! <l'x>
o''Y > ol0
otherwise.\ (iv)
(i)
(iD
(iii) (iv)
Determine the marginal distribution function
of X
andL
Compute
P(X
>+lY =+)
.Calculate the expected value
of X'r!'
X
.Determine the probability
that X
> Y .[40 marks]
(b)
e IMAT 263]
Kementerian
Alam
Sekitar sedangberfikir
masalah penyediaan lcriteriabagi
amaun suatu bahankimia
beracunyang
boleh dilepaskan ke dalamsungai. Suatu ukuran keracunan bagi sebarang pencemar
ialah kepekatan pencemaryang
akan membunuh setengah spesisujian
dalam amaun masayang diberi
(cebiasaannya 96jam bagi
setiap spesis ikan).Ularan ini dipanggil LC50
(kepekatan lethal pembunuh 50%dari
spesisujian). Dalam
banyakkajian ukuran ln(LC50) adalah tertabur
normaldan
denganitu analisis adalah
berdasarkandata
ln(LC50). Kajian
keatas
kesan tembagaterhadap suatu
spesistertentu ikan
menuniukkan bahawa varians bagi ukuranln(LC50)
adalahsekitar
0.5 dengan ukuran kepekatan dalam milligramsper
liter.(i) Jikn
dikehendaki bahawamin
sampel berbezadari
min populasitidak lebih dari 0.5, dengan kebarangknlian 0.90,
berapa banyakknh ujian yangperlu
dijalankan?(ii)
Katakan kesan tembagaterhadap
spesis kedua ikan menuniukkan bahawa varians bagi ukuran ln (LC50) adalahdi
sekitar0.8.
Jikamin populasi ln (LC50) bagi kedua spesis adalah sama, cari kebarangkalian
bahawa, dengan sampelrawak I0 ukuran
bagisetiap spesis, min sampel bagi spesis pertama melebihi min sampel bagi spesis kedua sekurang-h'trangnya satu unit.
(iii) Jika n=20 uluran ln(LC57) diambil,
denganoz =I.4, cari
duanombor a dan b supaya P(a <,S'
< b) =0.90 , yang
manaS2 adalah sampel varians bagi 20
ularan.
(iv)
Kajianjuga
melihat kesan plumbum ke atas ikan.Biar
Srz sebagaivarians sampel suatu sampel rawak I0 nilai ln (LC50)
bagitembaga and
Sr2sebagai varians sampel suatu sampel
rawaklapan nilai ln (LC50) bagi plumbum, kedua-dua
sampel menggunaknn spesisikan yang sama. Varians populasi
bagi ukuran tembaga diandailmn duakali
ganda varianspopulasi
bagi ulatran plumbum .Cari nombor c dan d
supayaP(c<t=A:0.90
Katalran X dan Y adalah
pembolehubahrawak dengan
ketumpatan tercantumf(x,y)= ' {:0 -
x- Y)
bagi x + Y<l'x
> o'Y > oL0 di
sebalilcrtya.(i)
Tentukanfungsi taburan sutbagi X dan
Y .(ii) Hitung P(X
>+lY
= +) .(iii) Kira
nilai iangkaanbasi {#
.[40
markahJ(c)
10 IMAT
26314. (a) Show that if (X lY) - Gamma(r,)') and
Y- Gamma(s,F) ,
then(Y I
X
=x) -
Gamma(r + s,x + B) .[30 marks]
(b) (i) Showthatif Z-N(0,1),then
22-Gamma(112,112)
'(ii) Show that if Z,'s
ate independentN(0,1), then Y=>2,2
isGamma(nl2,l/2).
[35 marks]
(c) If X
andlhave joint
density functionf(x,y)=4- x>l,y>1.
x-
y-
(i)
Compute thejoint
densityof U
= XY,
V =X lY
.(ii)
Obtain the marginal densitiesof U
and V .(iii)
AreU
andV
independent? Justify your answer.[35 marks]
11 [MAT 263]
4. (a)
Tunjukkan bahawa,jika(X lY) - Gamma(r,2) dan
Y-
Gamma(s, B) , makn(YlX =x)-Gamma(r+s,x+ p).
[30
marknhJ(b) (i) Tunjukknn bahawa, jika Z - N(0,1),
makaZz
- Gamma(ll2,ll2)
.(ii)
Tunjukknn bahowa,iil(nZt's
adalah tak bersandarN(0,1),
maknn
Y
=ZZ,z adalah Gamma(nl2,I/2).
'=r P5
marknhJ(c) Jika X dan
Y mempunyaifungsi ketumpatan tercantumf (x,y)=+- x2I,y2.l.
x-
y-
(i) Hitung
ketumpatan tercantumbagi U
= XY,
V =X /Y
'(iil
Dapatlmn ketumpatan sutbagi U
danV .(ii, Adakah U danV
takbersandar? Tentushakanjawapan
anda.[35
markahJ12 IMAT 263]
APPENDIX/LAMPIRAN
DIS CRETE D ISTRIB
ATIONS
Bernoulli
f (r)= p'(l-p)'-', x=0,1
M (t) =l- p
+ pe'F= p,
o'z =p(I- p)
Binomial f ^/ \ (*)=ft_af(t-
n!p)'-.
u (,)= (r- p+ pr') F= p, o'=np(l- p)
x =
0,1,2,..,,n
Geometric
f (*)=(t- p)' p, x=0,1,2,...
u (t) \ /
=----!-, 1-(1- p)pe'
r < In (r- p)
|-p -2 (t-p)
p=-, pp' O-
=lt =-
Negative
Binomial f (*)=*& p'(r- p)' , x =0,1,2,.
u(,)=rf*,r<-tn(t-p)
r(r- p)
,lt=-) v-- =
p p'
Poisson
f (*)=+,
M (t)-
rt(e'-r)F=2,
o2=)"
x
=0,I,2,..
Hipergeometric
(^\(
" )
IxJ[r-xl
f (*)=
p=-
ffrt nr,'l It)
, 02=
x3r,x1r4,r-xSnr,
CONTINAOUS
D IS TRIBUTION
Uniform f(,\:*,asxsb
M(t)=ftfi, t*0, M(o)=r
a+b
.)H=-.
O-,2 -(b - o)' t2
Exponential
f (*)
=ir-','
,u(t)=*,
F=0, oz =02
0(x(oo
t
<1.10Gamma
f (*):
ffi"''-xto ,o (
x < oou(t)=&, t<rfo
P= d0,
02 = d02Chi Square
f ^/
(xl \
I=
,42-r r-xlzr. r(rl2)2't'
M(t\:---]---^. \ / (l-2t)''"' ,.1 z
F=f , oz =2r
0Sx<oo
Normal
f (*)
=-
|
=
r-L"-u)zrzozf ,o!
z7TU (r)
= ,ttt+ozr2/2E(X)
=u, Var(X)=
orz-oo<x<@
Beta
I
J\r)=E@n
u= o . o' ' d+p'
*"u(l-*)ot,o<x<1
aB
(o*p+1)(a *f)'
13
IMAT
263114
IMAT 263I
FORMaI-/l
I @uh
I^ =et
"1n!
2.
l'1.
tior'= o
.?t l- r'
J.
=(a+b)'
z(.),.'
4.
x[;)(; -:)=(:)
5.
f_('.:-')-r =(r-w)-', lrl.t
6.
r(") = f, x"-te-'dx, r(")
=(a -1)!
7.
B(o,F) = .[r"-' (t-r)P-' a*
8.
r(a)r(p)
r(a+ B) B(o,f)=
-oooOooo-