• Tidak ada hasil yang ditemukan

A methodological approach to the air-sea energy fl uxes data collection and analysis at the tropical coastal ocean

N/A
N/A
Nguyễn Gia Hào

Academic year: 2023

Membagikan "A methodological approach to the air-sea energy fl uxes data collection and analysis at the tropical coastal ocean"

Copied!
6
0
0

Teks penuh

(1)

Method Article

A methodological approach to the air-sea energy fl uxes data collection and analysis at the tropical coastal ocean

Yusri Yusup

a,b,

*, John Stephen Kayode

a

, Abbas F.M. Alkarkhi

c

aEnvironmentalTechnology,SchoolofIndustrialTechnology,UniversitiSainsMalaysia,USM,11800,Pulau Pinang,Malaysia

bCentreforMarine&CoastalStudies(CEMACS),UniversitiSainsMalaysia,PulauPinang,Malaysia

cMalaysianInstituteofChemical&BioengineeringTechnology,UniversitiKualaLumpur,78000,Melaka, Malaysia

ABSTRACT

ThesouthernSouthChinacoastaloceanswithintheSouthEastAsianregionaremuchlackingintheperceptionofthe surfaceenergybudgetandevaporationovertheoceanwatersinresponsetoclimaticchanges.Theeddycovariance methodwasusedtomeasuretheenergyfluxes,microclimatevariables,andsurfacewatertemperaturefrom November2015toOctober 2017at the Straits of Malacca, South China Sea; Pulau Pinang,Malaysia, situatedat latitude 52800600N,andlongitude1001200100E.Thisworkfocusedonthemethodologicalapproachtotheair-seaenergy fluxesdatacollectionandanalysis.Inthisregard,themethodappliedforthedirectmeasurementsandanalysisof energyfluxesandothermeteorologicalparametersinthesiteisconsideredandreported.

Thepapersummarizestheanalysisofenergyfluxes,microclimatevariables,andsurfacewatertemperature datainatropicalcoastaloceanstationusingtheeddycovariancemethod.

Themethodologicalapproachillustratesthemethodofanalysisappliedinthisstudywhichcanbecompared andusedforsimilarstudiesinotherplaces.

ThereproducibledataanalysistechniquematchessimilarcomparativemethodssuchasMatlabandPython.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://

creativecommons.org/licenses/by/4.0/).

ARTICLE INFO

Methodname:Rstatisticalanalysisofeddycovariancedata

Keywords:Rstatisticalsoftware,Microclimatevariables,Tropicalcoastalocean,Energyfluxes,Eddycovariance Articlehistory:Received12April2018;Accepted11May2018;Availableonline17May2018

*Correspondingauthorat:EnvironmentalTechnology,SchoolofIndustrialTechnology,UniversitiSainsMalaysia,USM, 11800,PulauPinang,Malaysia.

E-mailaddresses:[email protected](Y.Yusup),[email protected](J.S.Kayode),[email protected](A.F.M. Alkarkhi).

https://doi.org/10.1016/j.mex.2018.05.003

2215-0161/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://

creativecommons.org/licenses/by/4.0/).

ContentslistsavailableatScienceDirect

MethodsX

journalhomepage: www.elsevier.com/locate/mex

(2)

Specificationstable

Subjectarea EarthandPlanetarySciences EnvironmentalScience Morespecificsubjectarea AtmosphericScience

Methodname Rstatisticalanalysisofeddycovariancedata Nameandreferenceof

originalmethod

Rprogramming,eddycovarianceprocessingusingEddyProversion6 Resourceavailability Dataandthedataanalysisprogrammingcodes

Methoddetails

UnderstandingoftheexchangeofenergyattheEarth’ssurfaceisnecessaryfortheimprovementof regionalweatherforecastandglobalclimatemodels.ThemainsourceofenergycomefromtheSunin theformoftheglobalradiationsymbolizedbyRG.Theamountofenergyabsorbedbytheoceanis denotedasthenetradiation(RN).Partoftheenergyisstoredinsidetheoceanastheresidual,G.The oceanemittedsomeenergiesintheformofevaporationaslatentheat(LE)andsensibleheat(H)fluxes, totheatmosphere[1].Assuminghorizontalhomogeneity,thesurfaceenergybalance,(Fig.1)ofocean couldbeexpressedas,

RN=LE+H+G (1)

whereRNRnandGarepositivewhentheoceanabsorbedtheenergy.However,LEandHarepositive whentheenergyisreleasedfromtheocean.TheunitofmeasurementofthefluxesisinWm2[2].

FromEq.(1),energybalanceclosurecanbeusedtogiveanoverviewonthevalidityofsurfacelayer measurementsusingtheEddyCovariance(EC)systemofmeasurements.Thoughthereisnoperfect energybalanceequation,itisunderstandablethatenergybalanceattheEarth’ssurfacecouldnotbe closedformanyexperimentaldatasetsfromvariedsurfaces,e.g.,oceanicandterrestrialsurfaces[1].

TheratiobetweenLEandHfluxescouldbecomputedtoevaluatetheenergybalanceclosure(or EBCintheformoffractionorpercentage).Theabsoluteenergyresidual(Res,Wm2)wascalculated usingEq.(2).Resisaddedto(1)togetacompletebalanceequationfortheenergyasshownin(3)[1,2].

Giscalculatedfromtheintegrationofthechangesintheunderwatertemperatureprofilewithtime.

Res=RNHLEG (2)

Fig.1.TheenergybudgetatthetropicalcoastaloceanstationnamedastheMukaHeadstation,PulauPinang,Malaysia,inthe southernSouthChinaSea(5280600N,100120100E).

(3)

RN=Res+H+LE+G (3) The fluxesweremeasuredusing aneddycovariancesystem,whichwasinstalled ona stable stainless-steelplatformextendingapre-existingpiersothatthesystemwouldbedirectlyoverthe tropicalcoastal ocean. The eddy covariance system included a 3-D sonic anemometer (model 81000V,RMYoung,USA)andanopen-pathCO2/H2Ogasanalyzer(modelLI-7500A,LI-COCOR, Inc., USA) installed 4.1m above the sea water surface, (Fig. 2). The gas analyzer and sonic anemometerwerefactory-calibratedbeforedeployment.A datalogger(model LI-7550Analyzer InterfaceUnit,LI-COR,Inc.,USA)wasusedtorecordtheeddycovariancedataatafrequencyof20Hz.

Thesonicanemometerwasalsousedtomeasurewindspeed(U)andwinddirection(WD).Theflux datawasaveragedin 30-minblocks.Thefluxmovementconventionusedis,negativefluxvalue indicatingdownward-movingfluxwhilepositivevalueindicatingupward-movingflux.

To complement the eddy covariance system, the “Biomet” system of slow-response sensors measuredthemicroclimatevariables,theatmospherictemperature(TA)andrelativehumidity(RH) sensor(modelHMP155,Vaisala,Finland; theaccuracyofTAis0.7Cand theaccuracyofRHis 1.7%),apyranometer(RG)(modelLI-200SL,LI-COR,Inc.,USA;errorwas<5%),andanetradiometer (RN)(model NR LITE 2, Kipp& Zonen, Inc., USA; sensitivity was 13.6

m

V W–1 m–2). Seawater

temperatures(TS)atdepthsof0.5m(TS1)and2.5m(TS2)weremeasuredusingtwothermistors(LI- COR,Inc.,USA)withtheaccuracyof1C. SinceTS1 waspositionednearthewatersurface, the temperaturemeasurementswereassumedtobetheseawatersurfacetemperature.Anadditional dataloggerrecordedtheBiometdata(model9210bXlite,SutronCorporation,USA)atasampling frequencyof1minandaveragedin30-minblocks.Allslow-responsesensorswerefactory-calibrated beforeinstallation.Cumulative15-minprecipitationdata(DavisVantagePro2Plus,Davis,USA)was retrievedfromanearbyweatherstationIPENANGP2(52840'N,100170250'E).

TheEddyProVersion6software(LI-COR,Inc.,USA)wasusedtoprocesstheraw20-Hzdata[3].The softwarewasusedtofiltertherawdatasetsusingmethodsdescribedby[4]specifically,thefollowing operationswerecarried,i.e.,amplituderesolution,spikeremoval,dropouts,absolutelimitsinaddition toskewnessandkurtosis.Thesonicanemometerwassubjectedtotwo-foldrotationstechniquefor thetiltcorrectiontoguaranteethatthemeanverticalwindspeediszero.Footprintestimationas describedby[5]wasalsoemployed.

Fig.2.Locationofthestudysitenamedasthe“MukaHead”Station(5280600N,100120100E)whiletherightpaneliszoomed-out viewofthesiteshowingtheInstrumentsPlatformtogetherwiththesensorsandtheeddycovariancesystem.

(4)

Methodvalidation

1.QualityControl:Thefluxesarequality-flaggedintheEddyProsoftwareinwhichthefinalflag outputswasbasedonacombinationoftwotests,eachprovidingapartialstandard.Thetwotestsare thesteady-statetestanddeveloped-turbulenceconditionstests.Thefinalstandardoutputswiththe value“0”indicatesthebestqualityflux data,“1”meansgoodqualityfluxeswhile“2” meansbad qualitywhichwassubsequentlyremovedfromthedata.Theclassificationofenergyfluxesflagging wasdevelopedaftertheseconddiscussionintheCarboEuropeworkshoponthequalityassuranceand qualitycontrolofECmeasurements[6,7].In addition,theratioof thestandarddeviationforthe verticalcomponentofthewindspeed,

s

w(ms1)andthefrictionvelocity,u*(ms1),i.e.,

s

w/u*was foundtoholdonlyforwinddirections0to90,whichwastypicallyfromthesurfaceoftheoceanwith ahomogeneouslyflatsurface.Thisratiodidnotholdforotherdirections,i.e.,typicallyforrough surfacesfrom90to360andthus,fluxdatafromthesequadrantswerediscarded.Thepercentageof dataretained,afterfollowingthequality-controlledprocedures,is21%forLEandH.Thedatawasnot filledusinganydata-gapmethod.

2.WindSpeed:OneofthephysicaldriversofenergyfluxesistheWindSpeed(WS)[8].Theaverage WSinthetropicalcoastaloceanlocationwasmostlylight,withanaverageof0.520ms1throughout thestudyperiod.AsshowninFig.3,mostofthehighWSvaluesofbetween2ms1and4ms1were north-easterly(0 to90), whichwas blowingfromtheseadirectionandfinally usedinfurther analysis.TheWSvalueobservedfromtheinlandalongthesouththroughtothewestdirectionstothe station,i.e.,between90and360werediscardedduringtheanalysisduetopoor-qualityflagsand deviationsfromtheratio1.3,asmentionedabove.However,thewindroseshowthatwindswere evenly-distributedamongthefourquadrants,whichsuggeststhatfluxeswerewell-representedforall seasonsthroughoutthestudyperiod.

Fig.3.WindroseobtainedfortheperiodfromNovember2015toOctober2017 withthefrequencycountinpercentage.

(5)

3.Turbulentheatfluxes:Thelatentheat(LE)andsensibleheat(H)fluxesinthisstudylocationwere relatively low, which ranged from 36W m2 to 130W m2 and 12W m2 to 24W m2, respectively.Thelow valuesrecordedcouldbeperhapsdue totheweak windsvelocitiesof this location.Theaveragehalf-hourlyLEshowedaverticalpositivefluxofwatervaporwith11.67Wm-2 value.HwasmuchlowerthanLE,whichrecordedatthehalf-hourlymeanof1.56Wm2.TheBowen ratio(theratioofH/LE=0.13)isequivalenttotheglobaloceanestimate.

4.Underwatertemperature:Inthisstudy,underwatertemperature(C)trendsattwolevelswere measured.TS1isthetemperaturenearthesurfacewhileTS2isthetemperaturenearertotheseabed.

Thesetwounderwaterthermistorsshowedthatthetemperaturesvariedgreatlybetween27Cand 33C.TS1wasalwayshigherthanTS2,withmeantemperaturesat30.85Cand30.27C,respectively.

ThisisbecausethethermistorthatmeasuredthetemperatureatTS1issometimesexposedtothe atmosphere,duetolowtides,andthusrecordedahighertemperatureincomparisontoTS2locatedin theoceanwater.ThereweresomedatagapsforTS1betweenthemonthofAugustandmid-September.

Thiswascausedbythebreakdownofthermistornearthewatersurface,givingsuperextremevalues andsothedatawasdiscarded.Generally,TS1andTS2didnotvarysignificantlybuttheyshowedlarge changesinthetemperaturesdiurnally.However,therewasnodifferenceinthewatertemperaturesat thetwodepths.

5.Globalandnetradiations:Thehalf-hourlyrangesofRGandRNwere0Wm2to1020Wm2and -130Wm2 to990Wm2,respectively.TherecordedglobalRGandnetRNradiationsduringthe reportingperiodsrecordedpeakvaluesduringthemiddleofMarch,forbothRGandRN,averagedat 217Wm2and 163Wm2,respectively.Thissituationisan indicationthat thetropicalcoastof southernSouth ChinaSeareceivedthemaximumamountof solarradiation,possiblydue tothe extremeheatwavefromthesunalongthetropicalequatorialbeltinthismonth.

6.Airtemperatureandrelativehumidity:Fluctuationsintheairtemperaturerecordedbetween22C to32Cthroughoutthestudyperiod.Thedaytimetemperature,obtainedwasconsiderablehigher thanthenighttimetemperature.Differencesinthetemperatureswasapparentparticularlyduring precipitationintheearlyhoursofthedayandatnighttime.Thelastmicroclimatevariablemeasured atthestationistherelativehumidity(RH)expressedinpercentage,%,whichrangedfrom50%to100%.

Thisrangeistypicaloftropicallocations.

Acknowledgements

WeacknowledgeUniversitiSainsMalaysia(USM)forawardingustheUSMResearchUniversity Grant(1001/PTEKIND/811316)thatmadethisresearchpossible.WealsothankLooiMeiThung,Chong YiHuan,andKulwantSinghforassistingustocollectdataandmaintaintheeddycovariancestation.

AppendixA.Supplementarydata

Supplementarymaterialrelatedtothisarticlecanbefound,intheonlineversion,atdoi:https://doi.

org/10.1016/j.mex.2018.05.003.

References

[1]Y.Yusup,J.S.Kayode,A.F.M.Alkarkhi,Energyfluxesinthesurfacelayerofatropicalcoastalocean,InternationalConference onAtmosphericChemistryandClimateChangeinAsia2018,UniversitiKebangsaanMalaysia:ICACCC,2018.

[2]A.Nordbo,S.Launiainen,I.Mammarella,M.Leppäranta,J.Huotari,A.Ojala,T.Vesala,Long-termenergyfluxmeasurements andenergybalanceoverasmallboreallakeusingeddycovariancetechnique,J.Geophys.Res.116(2011)D02119,doi:http://

dx.doi.org/10.1029/2010JD014542.

[3]I.Begashaw,J.Kathilankal,J.Li,K.Beaty,K.Ediger,A.Forgione,G.Fratini,D.Johnson,M.Velgersdyk,J.Hupp,ANewtoolfor automateddatacollectionandcompleteon-sitefluxdataprocessingforEddycovariancemeasurements,AGUFallMeeting Abstracts,(2014).

[4]D.Vickers,L.Mahrt,Qualitycontrolandfluxsamplingproblemsfortowerandaircraftdata,J.Atmos.Ocean.Technol.14 (1997)512–526,doi:http://dx.doi.org/10.1175/15200426(1997)014<0512:QCAFSP>2.0.CO;2.

[5]N.Kljun,P.Calanca,M.W.Rotach,H.P.A.Schmid,Simpleparameterisationforfluxfootprintpredictions,Bound-Lay Meteorol.112(2004)503–523.

(6)

[6]T.Foken,M.Göockede,M.Mauder,L.Mahrt,B.Amiro,W.Munger,Post-fielddataqualitycontrol,in:X.Lee,W.Massman,B.

Law(Eds.),HandbookofMicrometeorology:AGuideforSurfaceFluxMeasurementandAnalysis.,SpringerNetherlands, Dordrecht,2005.

[7]M.Mauder,T.Foken,Qualitycontrolofeddycovariancemeasurements(c:0,1,2),CarboEurope-IPTask1(2)(2004).

[8]R.Wanninkhof,W.R.McGillis,Acubicrelationshipbetweenair-seaCO2exchangeandwindspeed,Geophys.Res.Lett.26 (1999)1889–1892,doi:http://dx.doi.org/10.1029/1999GL900363.

Referensi

Dokumen terkait

Those are (1) planning various program for the school; (2) developing the school organization as necessary; (3) leading the school in empowering the resources;