AIP Conference Proceedings 2016, 020120 (2018); https://doi.org/10.1063/1.5055522 2016, 020120
© 2018 Author(s).
A numerical solution for Duffing-Van Der Pol oscillators using a backward difference formulation
Cite as: AIP Conference Proceedings 2016, 020120 (2018); https://doi.org/10.1063/1.5055522 Published Online: 27 September 2018
Ahmad Fadly Nurullah Rasedee, Mohammad Hasan Abdul Sathar, Hazizah Mohd Ijam, Khairil Ikandar Othman, Norizarina Ishak, and Siti Raihana Hamzah
ARTICLES YOU MAY BE INTERESTED IN
Solution for nonlinear Riccati equation by block method
AIP Conference Proceedings 1974, 020071 (2018); https://doi.org/10.1063/1.5041602 Non-convergence partitioning strategy for solving van der Pol’s equations
AIP Conference Proceedings 1982, 020001 (2018); https://doi.org/10.1063/1.5045407 An application of the Wilkie model in analysing share price index in Malaysia
AIP Conference Proceedings 2016, 020095 (2018); https://doi.org/10.1063/1.5055497
$QXPHULFDOVROXWLRQIRU'XIILQJ9DQ'HU3RORVFLOODWRUV XVLQJDEDFNZDUGGLIIHUHQFHIRUPXODWLRQ
$KPDG)DGO\1XUXOODK5DVHGHH
D0RKDPPDG+DVDQ$EGXO6DWKDU
+D]L]DK 0RKG,MDP
.KDLULO,NDQGDU2WKPDQ
1RUL]DULQD,VKDN
6LWL5DLKDQD+DP]DK
Faculty of Economics and Muamalat, Universiti Sains Islam Malaysia, 71800 Nilai, Malaysia.
Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
Faculty of Computer and Mathematical Sciencecs, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia.
Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Nilai, Malaysia.
D&RUUHVSRQGLQJDXWKRUIDGO\QXUXOODK#XVLPHGXP\
$EVWUDFW 7KH VWXG\ RI FKDRWLF PRWLRQ LQ SHULRGLF VHOIH[FLWHG RVFLOODWRUV DUH DQ DUHD RI LQWHUHVW LQ VFLHQFH DQG HQJLQHHULQJ ,Q WKH FXUUHQW UHVHDUFK D QXPHULFDO VROXWLRQ LQ EDFNZDUG GLIIHUHQFH IRUP LV SURSRVHG IRU VROYLQJ WKHVH FKDRWLF PRWLRQV LQ SHULRGLF VHOI H[FLWHG RVFLOODWRUV 6WXG\ FRQGXFWHG LQ WKLV DUWLFOH IRFXVHV RQ FKDRWLF PRWLRQV LQ WKH IRUP RI 'XIILQJ9DQ 'HU 3RO 2VFLOODWRUV $ EDFNZDUG GLIIHUHQFH IRUPXODWLRQ LQ SUHGLFWRUFRUUHFWRU 3H&H PRGH LV LQWURGXFHGIRUVROYLQJWKHVH'XIILQJ9DQ'HU3ROGLUHFWO\1XPHULFDOVLPXODWLRQVSURYLGHGZLOOVKRZWKHDFFXUDF\RIWKH 3H&HEDFNZDUGGLIIHUHQFHIRUPXODWLRQ
Keywords%DFNZDUGGLIIHUHQFH2'(V'XIILQJ9DQ'HU3RORVFLOODWRUV
,1752'8&7,21
3UHYLRXVVWXGLHVVHH>@VKRZVWKDWWKHVWXG\RIFKDRWLFSKHQRPHQDLQWKHDUHDRIQRQOLQHDUSHULRGLFVHOIH[FLWHG RVFLOODWRUVKDVEHHQDQDUHDRIDWWUDFWLRQE\UHVHDUFKHUVHVSHFLDOO\WKH'XIILQJ9DQ'HU3RORVFLOODWRU7KHJHQHUDO 'XIILQJ9DQ'HU3RORVFLOODWRULVJRYHUQHGE\WKHIROORZLQJVHFRQGRUGHURUGLQDU\HTXDWLRQ2'(
yP
tyZtEt f tZKHUHP!
ZDQGEDUHFRQVWDQWVDQGf ( t )LVDIXQFWLRQRIWLPH7KH'XIILQJ9DQ'HU3RORVFLOODWRULV FRPPRQO\XVHGWRGHVFULEHHOHFWULFDOFLUFXLWVZLWKPDQ\DSSOLFDWLRQVLQVFLHQFHDQGHQJLQHHULQJ
$SRSXODUDSSURDFKIRUREWDLQLQJQXPHULFDOVROXWLRQRIVHFRQGRUGHU2'(VZHUHFRQGXFWHGE\DXWKRUVLQ>@>@
DQG >@ %DVHG RQ IXQGDPHQWDO LGHDV DGRSWHG IURP >@ UHVHDUFK IRU GLUHFW VROXWLRQ RI VHFRQG RUGHU 2'(V ZDV FRQWLQXHGE\>@>@>@>@>@DQGPDQ\PRUH6XOHLPDQ>@GHVLJQHGDGLYLGHGGLIIHUHQFHFRGHIRUVROYLQJVWLII DQGQRQVWLIIKLJKHURUGHU2'(VGLUHFWO\7KLVGLYLGHGGLIIHUHQFHFRGHZDVUHIHUUHGDVWKH'LUHFW,QWHJUDWLRQ', PHWKRG 7KH GRZQVLGH RI WKH ', PHWKRG LV WKH GHPDQGLQJ FDOFXODWLRQV UHTXLUHG E\ WKH GLYLGHG GLIIHUHQFHV IRUPXODWLRQ ZKLFK UHTXLUHV UHFRPSXWLQJ WKH LQWHJUDWLRQ FRHIILFLHQWV DW HYHU\ VWHS FKDQJH ,PSOHPHQWLQJ D EDFNZDUGGLIIHUHQFHIRUPXODWLRQSURGXFHVDPRUHHOHJDQWHUURUIRUPXODHFRPSDUHGWRWKHGLYLGHGGLIIHUHQFHZKLFK DOORZVIRUDQDGGHGDGYDQWDJHZKHQIRUPXODWLQJDQGFRGLQJWKHPHWKRG,QWKHQH[WVHFWLRQWKHIRUPXODWLRQRIWKH EDFNZDUGGLIIHUHQFHFRHIILFLHQWLVSURYLGHG
'HULYDWLRQ RI WKH ([SOLFLW DQG ,PSOLFLW %DFNZDUG 'LIIHUHQFHV 0HWKRG IRU 6HFRQG 2UGHU 2'(V
)RUWKHVSHFLILFSXUSRVHRIWKLVVWXG\ZHFRQVLGHUDQLQLWLDOYDOXHSUREOHP,93LQWKHIRUPRIDVHFRQGRUGHU 2'(
y'' f t,Y , 2
ZLWKY D KLQWKHLQWHUYDODd dt EZKHUH
Y t y, y' DQGK
t K K, '
,QWHJUDWLQJWKHVHFRQGRUGHU2'(RQFHJLYHV
c c n
³
n t
n n
t
y t y t f y, y dt.
1HZWRQ*UHJRU\EDFNZDUGGLIIHUHQFHLQWHUSRODWLRQSRO\QRPLDOP tn DV
§¨ ·¸
© ¹
¦
k i i nn n
i
s t t
P t f , s .
i h
ZKLFKLQWHUSRODWHV f y, y'
DWkEDFNYDOXHV
1H[Wf y, y'
LVDSSUR[LPDWHGE\P tn DQGE\FKDQJLQJWKHOLPLWRILQWHJUDWLRQJLYHV
J J
§ ·
¨ ¸
© ¹
¦
k i i³
n n ,i n ,i
i
y' t y' t h f ds, s ds.
i
/HWG t EHWKHJHQHUDWLQJIXQFWLRQIRUWKHFRHIILFLHQWVJ,iDQGGHILQHGDVIROORZV
¦
f J ,i ii
G t t
%\VXEVWLWXWLQJJ,iIURPLQG t DQGWKURXJKPDWKHPDWLFDOLQGXFWLRQWKHJHQHUDWLQJIXQFWLRQFDQEHGHQRWHGDV
ª º
« »
« »
¬ ¼
t .
log t log t
G t
7KLVWKLVJLYHVWKHEDFNZDUGGLIIHUHQFHFRHIILFLHQWVIRUPXODWLRQJ,k
J J §¨ J ·¸ }
© ¹
¦
k ,i, ,k
i
, , k , , .
k i
7KHQLQWHJUDWLQJWZLFHDQGUHSHDWLQJWKHVDPHPDWKHPDWLFDOSURFHVVDVDERYHZHREWDLQ
J
¦
k in n n ,i n
i
y t y t hy' t h f ds.
7KXVLWFDQEHSHUFHLYHGWKDWWKHVHFRQGRUGHUJHQHUDWLQJIXQFWLRQVG t DQGG t* FDQEHZULWWHQVLPLODUWR G t DV
ª º
ª º
« »
« »
« » « »
¬ ¼ ¬ ¼
*
G t * t G t
G t , G t .
log t log t log t log t
5HSOLFDWLQJFDOFXODWLRQVREWDLQHGLQ>@WKHUHODWLRQVKLSEHWZHHQWKHVHFRQGRUGHUH[SOLFLWDQGLPSOLFLWFRHIILFLHQWV DUHJLYHQE\
J J
¦
k *d ,i d ,ki
, d , .
7KHIROORZLQJDUHH[DPSOHVDIHZH[SOLFLWDQGLPSOLFLW
LQWHJUDWLRQFRHIILFLHQWVDQGWKHLUFRGLQJDOJRULWKP7$%/(([SOLFLWDQG,PSOLFLWFRHIILFLHQWVIRUkIURPWR
k
J,k
J,k
J*,k
J*,k
$OJRULWKP,QWHJUDWLRQFRHIILFLHQWV
IRU, , ,
^
*>@>,@ SRZ,
`
IRU0 0 '>@0
^
IRU, , 0, ^
LI0
^
7(03
`
HOVH
^
7(03 *>0@>,@
`
IRU7 7 ,7
^
7(03 7(03*>0@>7@,7
`
*>0@>,@ 7(03
LI, *>0@>@ *>0@>@
HOVH*>0@>,@ *>0@>,@*>0@>,@
`
`
180(5,&$/5(68/76
7KHYDVWDSSOLFDWLRQRI'XIILQJ9DQ'HU3ROHTXDWLRQVLQVFLHQFHDQGHQJLQHHULQJHVSHFLDOO\LQSUREOHPVUHODWLQJWR HOHFWULFDOFLUFXLWVDUHDPRQJWKHUHDVRQLWKDVEHHQVWXGLHGE\DXWKRUVVXFKDV>@>@>@>@DQG>@,QWKH FXUUHQWUHVHDUFKWKHSURSRVHGEDFNZDUGGLIIHUHQFHPHWKRG%')LVXVHGWRQXPHULFDOO\DSSUR[LPDWHDIHZSRSXODU 'XIILQJ9DQ'HU3ROW\SHHTXDWLRQV7KHDFFXUDF\RIWKH%')PHWKRGLVWHVWHGDJDLQVWNQRZQPHWKRGVWKDWKDYH EHHQVKRZQWREHHIILFLHQW
+VWHSVL]H '70'LIIHUHQWLDO7UDQVIRUPPHWKRG
/0/LQGVWHGVPHWKRG 5.)RXUWK2UGHU5XQJH.XWWDPHWKRG $'0$GRPLDQV'HFRPSRVLWLRQPHWKRG ','LUHFW,QWHJUDWLRQPHWKRG
+30+RPRWRS\3HUWXUEDWLRQ0HWKRG 3%')3RLQW%DFNZDUG'LIIHUHQFHPHWKRG
'XIILQJ9DQ'HU3RO3UREOHP>@
§ ·
cc ¨© ¸¹ c
y t y t y t y t y t ,
ZLWKLQWLDOFRQGLWLRQV
y . , yc . .
'XIILQJ9DQ'HU3RO3UREOHP>@
y tcc .
y t y t cy t . y t ,
ZLWKLQWLDOFRQGLWLRQV
y , yc .
'XIILQJ9DQ'HU3RO3UREOHP>@
y tcc cos( . t )
y t y t cy t y t ,
ZLWKLQWLDOFRQGLWLRQV
c
y . , y . .
7$%/(1XPHULFDO5HVXOWVIRU'XIILQJ9DQ'HU3RO3UREOHP
t 5. +30 '70 3%')
7$%/(1XPHULFDO5HVXOWVIRU'XIILQJ9DQ'HU3RO3UREOHP
t /0 $'0 3%')
7$%/(1XPHULFDO5HVXOWVIRU'XIILQJ9DQ'HU3RO3UREOHP
t ', 3%')
H . H . H . H .
',6&866,21$1'&21&/86,21
7KH'XIIQJ9DQ'HU3RORVFLOODWRULVDVHFRQGRUGHU2'(ZLWKKLJKIUHTXHQF\RVFLOODWLRQV3UREOHPFRQVLVWRI NQRZQDQGDSSOLFDWLRQSUREOHPVLQWKHIRUPRI'XIIQJ9DQ'HU3ROHTXDWLRQV7$%/(VKRZVWKHQXPHULFDO UHVXOWVIRU3UREOHPZKHUHWKH3%')PHWKRGLVFRPSDUHGDJDLQVW/LQGVWHG¶VPHWKRG/0DQGDPRGLILHG
$GRPLDQV'HFRPSRVLWLRQPHWKRG$'07KHUHVXOWVVKRZWKDWWKH3%')PHWKRGKDVEHWWHUDFFXUDF\WKDQWKH
$'0DQGDVLVFRPSHWLWLYHDVWKH/0,Q7$%/(WKHDFFXUDF\RIWKH3%')PHWKRGLVWHVWHGDJDLQVWWKHIRXUWK RUGHU5XQJH.XWWDPHWKRG5.+RPRWRS\3HUWXUEDWLRQ0HWKRG+30DQGGLIIHUHQWLDO7UDQVIRUPPHWKRG '70DQGVKRZQWRDVDFFXUDWH)LQDOO\7$%/(,OOXVWUDWHVWKHQXPHULFDOUHVXOWVRIWKH3%')PHWKRGZLWK DQRWKHUPXOWLVWHSPHWKRGWKH'LUHFW,QWHJUDWLRQ',PHWKRG7KH3%')PHWKRGZDVWHVWHGZLWK3UREOHPXVLQJ GLIIHUHQWVWHSVL]HVWRVKRZWKHFRQVLVWHQF\RIWKHPHWKRG8QIRUWXQDWHO\ZHZHUHRQO\DEOHWRSURYLGHQXPHULFDO UHVXOWVIRUWKH',PHWKRGXVLQJRQO\VWHSVL]H7KLVLVEHFDXVHZKHQXVLQJVPDOOHUVWHSVL]HVWKH',ZDVXQDEOHWR FRPSXWHWKHDSSUR[LPDWHGVROXWLRQ7KLVVHWEDFNLVPRVWOLNHO\GXHWRWKHGLYLVLRQFRPSRQHQWRIWKH',PHWKRG 7KLVLVVXHKDGSUHYLRXVO\EHHQDGGUHVVHGLQ>@ZKHQDWWHPSWLQJWRVROYHDW\SH9DQ'HU3ROHTXDWLRQ%\
MXVWLILFDWLRQRIWKHQXPHULFDOUHVXOWVWKH3%')KDVVKRZQWREHDYLDEOHPHWKRGIRUVROYLQJ'XIIQJ9DQ'HU3RO W\SHRVFLOODWRU\SUREOHPV
$&.12:/('*0(176
7KLV UHVHDUFKFRQGXFWHGE\ WKLV DUWLFOH KDVEHHQ VXSSRUWHGE\ 8QLYHUVLWL 3XWUD 0DOD\VLD XQGHU *UDQW 3XWUD *3 SURMHFW QXPEHU *3,36 0LQLVWU\ RI +LJKHU (GXFDWLRQ 0R+( XQGHU WKH )XQGDPHQWDO 5HVHDUFK
*UDQW 6FKHPH )5*6 SURMHFW QXPEHU 86,0)5*6)(0 DQG 8QLYHUVLWL 6DLQV ,VODP 0DOD\VLD 86,0XQGHUWKH6KRUW7HUP*UDQW6FKHPHSURMHFWQXPEHU333)67
5()(5(1&(6
/=KRXDQG)&KHQ6KRFNDQG9LEUDWLRQ
*+DOODQG-0:DWWModern numerical methods for ordinary differential equations&ODUHQGRQ3UHVV 2[IRUG
*+DOODQG0%6XOHLPDQ,0$-RXUQDORI1XPHULFDO$QDO\VLV±
0%6XOHLPDQ$SSOLHG0DWKHPDWLFVDQG&RPSXWDWLRQ±
=%,EUDKLP06XOHLPDQDQG.,2WKPDQ:RUOG$FDGHP\RI6FLHQFH(QJLQHHULQJDQG7HFKQRORJ\
±
0 % 6XOHLPDQ = % ,EUDKLP DQG $ ) 1 5DVHGHH 0DWKHPDWLFDO 3UREOHPV LQ (QJLQHHULQJ $UWLFOH ,'SSDJHV
+ 0RKG ,MDP 0 6XOHLPDQ $ ) 1 5DVHGHH 1 6HQX $ $KPDGLDQ DQG 6 6DODKVKRXU $EVWUDFW DQG
$SSOLHG$QDO\VLV9RO$UWLFOH,'SSDJHV
$)15DVHGHH1,VKDN65+DP]DK+0,MDP06XOHLPDQ=%,EUDKLP0+$6DWKDU1$
5DPOL DQG 1 6 .DPDUXGGLQ ³9DULDEOH RUGHU YDULDEOH VWHSVL]H DOJRULWKP IRU VROYLQJ QRQOLQHDU 'XIIQJ RVFLOODWRU´LQ-RXUQDORI3K\VLFV&RQIHUHQFH6HULHV9RO,233XEOLVKLQJS
$)15DVHGHH0$7(0$7,.$±
60XNKHUMHH%5R\DQG6'XWWD3K\VLFD6FULSWDS
1$.KDQ0-DPLO6$$OLDQG1$.KDQ,QWHUQDWLRQDO-RXUQDORI'LIIHUHQWLDO(TXDWLRQV *$&RUGVKRROLDQG$9DKLGL-RXUQDORI3K\VLFV±
&=KDQJDQG<=HQJ650S