2326-9865
Vol. 71 No. 3s2 (2022) 739 http://philstat.org.ph
Dense Elements in B-Almost Distributive Fuzzy Lattices
K. Rekhalakshmi1, b), V. Maheswari2, a) and V. Balaji3
1Research Scholar, Department of Mathematics
Vels Institute of Science, Technology & Advanced Studies (VISTAS), Tamil Nadu, India.
2Assistant Professor, Department of Mathematics
Vels Institute of Science, Technology & Advanced Studies (VISTAS), Tamil Nadu, India.
3Assistant Professor, PG &Research Department of Mathematics Sacred Heart College, Tamil Nadu, India
a) Corresponding author: [email protected]
Article Info
Page Number: 739 - 745 Publication Issue:
Vol 71 No. 3s2 (2022)
Article History
Article Received: 28 April 2022 Revised: 15 May 2022
Accepted: 20 June 2022 Publication: 21 July 2022
Abstract
In this paper we define the concept of a dense element in a B-Almost Distributive Fuzzy Lattice BADFL (π΅, π΄) and prove that the set π·π΄(π΅) of all dense elements of π΅ is an implicative filter of π΅. Also, we establish a fuzzy epimorphism of (π΅, π΄) into (π΅β, π΄) the set of all closed elements of(π΅, π΄) and prove the existence of an fuzzy epimorphism of π·π΄(π΅) into π·π΄(π΅βΓπ΅
π ). We prove that(π΅β, π΄) and([π΅βΓπ΅
π ]β, π΄) are fuzzy isomorphic.
1. Introduction
U. M. Swamy and G. C. Rao [8] proposed the notion of an Almost Distributive Lattice (ADL) as a generalisation of most current ring and lattice theoretic extensions of a Boolean algebra. As an extension of Heyting algebra [1] presented the notion of a Heyting Almost Distributive Lattice (HADL) in [6]. If (π»,β¨,β§, β ,0, π) is a HADL, the set H* containing all closed elements of H is both a bounded pseudo complemented semilattice and a bounded implicative subsemilattice of H, as shown in [4]. Zadeh developed the notion of fuzzy set in [10], which was extended by Goguen in [13] and Sanchez in [11] to define and explore fuzzy relations. We also defined a binary operation β¨ on (π΅β, π΄) and established that (π΅β,β¨,β§,β ,0, π) is a fuzzy Boolean Algebra. In this study, we expand certain essential features of Dense elements in BADFL using the fuzzy partial order relation given in [12].
In this paper, we explore the concept of dense elements in an BADFL (π΅, π΄) and prove that the set π·π΄(π΅)of all dense elements of π΅ is an implicative filter of π΅. Also we establish an fuzzy epimorphism of (π΅, π΄) into (π΅β, π΄) and prove the existence of an fuzzy epimorphism of π·π΄(π΅) into π·π΄(π΅βΓπ΅
π ). Finally, we prove that (π΅β, π΄) and ([π΅βΓπ΅
π ]β, π΄) are fuzzy isomorphic.
Following are some significant results and definitions required for the study of dense element characteristics on B-ADFLs.
2326-9865
Vol. 71 No. 3s2 (2022) 740 http://philstat.org.ph 2. Preliminaries Definition 2.1. [7]
Let (πΏ, π΄) be a BADFL with a maximal element π. Suppose β is a binary operation on πΏ if and only if it satisfies the following conditions:
(1) π΄(π β π, π) = 1 (2) π΄((π β π) β§ π, π) = 1
(3) π΄(π β§ (π β π), π β§ π β§ π) = 1
(4) π΄(π β (π β§ π), (π β π) β§ (π β π)) = 1
(5) π΄((π β§ π) β π, (π β π) β§ (π β π)) = 1 for every π, π, π β πΏ.
Definition 2.2. [5]
Let (πΏ,β¨,β§, β ,0, π) be a HADL. An implicative filter is a non-empty subset F of L if and only if
(1) π, π β πΉ β π β§ π β πΉ, (2) π β πΉ, π β πΏ β π β π β πΉ.
Lemma 2.1. [15]
Let (πΏ,β¨,β§, β ,0, π) be a HADFL. Then for every π, π, π β πΏ, the following hold:
(1) π΄(π β§ π, (π β π) β§ π) > 0
(2) π΄(π β§ π β§ π β€ π β§ π) > 0 β π΄(π β§ π, (π β π) β§ π) > 0 (3) π΄([π β (π β π)] β§ π, [(π β§ π) β π] β§ π) > 0
(4) π΄([(π β§ π) β π] β§ π, [(π β§ π) β π] β§ π) > 0 (5) π΄([π β (π β π)] β§ π, [π β (π β π)] β§ π) > 0
Lemma 2.3. [9]
Let (πΏ, π΄) be a BADFL. Then, for every π₯, π¦ β πΏ with π΄(π₯β, π₯ β 0) = 1, the following hold.
(1) π΄((π₯ β¨ π¦)β, π₯ββ§ π¦β) = 1
(2) π΄(π₯, π¦) > 0 β π΄(π¦β, π₯β) > 0, π΄(π₯ββ, π¦ββ) > 0 (3) π΄(π₯ β§ π₯ββ, π₯ β§ π) = 1 and π΄(π₯βββ§ π₯, π₯) = 1 (4) π΄((π₯ β§ π¦)β, (π₯ β π¦β) β§ π) = 1
(5) π΄((π₯ β§ π)β, π₯β) = 1
(6) π΄((π₯ β§ π¦)ββ, π₯βββ§ π¦ββ) = 1.
3. Dense Elements in B-Almost Distributive Fuzzy Lattices
In this section, we recall from that if (π΅, π΄) is a BADFL and π₯ β π΅ then π΅β = {π₯πΌβ: π₯πΌ β π΅} of the set of all closed elements of π΅ where π΄(π₯πΌβ, π₯πΌ β 0) = 1.
Definition 3.1
Let (π΅, π΄) be a B-ADFL with maximal element ππ. Define π·(π΅,π΄) = {π΄(π₯πΌβ, 0) = 1, π₯πΌ β π΅} Then an element of π·(π΅,π΄) is called a dense element of (π΅, π΄).
It can easily observed that if ππΌ β π΅ then π β π·(π΅,π΄) β π΄(ππΌββ, ππ. ) = 1. Now we prove that π·(π΅,π΄) is a implicative filter of (π΅, π΄).
2326-9865
Vol. 71 No. 3s2 (2022) 741 http://philstat.org.ph Theorem 3.1
Let (π΅, π΄) be a BADFL with maximal element ππ.Then π·(π΅,π΄) is an implicative filter of (π΅, π΄).
Proof. Let (π΅, π΄) be a BADFL with maximal ππ. Let π₯πΌ, π¦πΌ β π·(π΅,π΄). Then from lemma (2.3) we have
π΄((π₯πΌβ§ π¦πΌ)β, (π₯πΌ β π¦πΌβ) β§ ππ ) = π΄((π₯πΌβ§ π¦πΌ)β, (π₯πΌβ (π¦πΌβ 0) β§ ππ ) π΄((π₯πΌβ§ π¦πΌ)β, (π₯πΌβ§ π¦πΌ) β 0 β§ ππ ) = π΄((π₯πΌβ§ π¦πΌ)β, (π₯πΌ β 0) β§ ππ )
= π΄((π₯πΌβ§ π¦πΌ)β, π₯πΌββ§ ππ ) = π΄((π₯πΌβ§ π¦πΌ)β, 0)
= 1 β¦β¦β¦β¦.. (1)
Let ππΌβ π·(π΅,π΄), π₯ β π΅, then we get π΄(ππΌβ§ ππ , (π₯πΌ β ππΌ) β§ ππ ) > 0. This implies π΄((ππΌβ§ ππ. )ββ, [(π₯ β ππΌ) β§ ππ. ]ββ) > 0 and hence
π΄(ππΌβββ§ ππββ, [(π₯πΌ β ππΌ)βββ§ ππββ]) > 0 π΄(ππβ§ ππββ, (π₯πΌ β ππΌ)βββ§ ππββ) > 0
π΄(ππ, (π₯πΌ β ππΌ)ββ) > 0
Therefore π΄((π₯ β ππΌ)β, 0) = 1 β¦β¦β¦β¦ (2) From (1) and (2) π·(π΅,π΄) is implicative filter of (π΅, π΄).
Theorem 3.2
Let (π΅, π΄) be a BADFL with maximal element ππ and πΌπ: (π΅, π΄) β (π΅β, π΄) be defined by π΄(πΌπ(π₯πΌ), π₯πΌββ) = 1 for all π₯πΌ β π΅ and suppose π₯πΌ, π¦πΌ β π΅. Then
(1) πΌπ is fuzzy isotone
(2) π΄(πΌπ(π₯πΌβ§ π¦πΌ), πΌπ(π₯πΌ) β§ πΌπ(π¦πΌ)) = 1 (3) π΄(πΌπ(π₯πΌβ¨ π¦πΌ), πΌπ(π₯πΌ) β¨ πΌπ(π¦πΌ)) = 1 (4) π΄(πππ πππ(πΌπ), π·(π΅,π΄) ) = 1
Proof. Let π₯πΌ, π¦πΌβ π΅
(i) Assume π΄(π₯πΌ, π¦πΌ) > 0 then by [lemma 2.3]
π΄(π₯πΌββ, π¦πΌββ) = π΄(πΌπ(π₯πΌ) β§ πΌπ(π¦πΌ)) > 0 Therefore πΌπ is fuzzy isotone
(ii) π΄(πΌπ(π₯πΌβ§ π¦πΌ), (π₯πΌβ§ π¦πΌ)ββ) = π΄(πΌπ(π₯πΌβ§ π¦πΌ), π₯πΌβββ§ π¦πΌββ) = π΄ (πΌπ(π₯πΌβ§ π¦πΌ), (πΌπ(π₯πΌ) β§ πΌπ(π¦πΌ))) = 1
(iii) π΄(πΌπ(π₯πΌβ¨ π¦πΌ), (π₯πΌβ¨ π¦πΌ)ββ) = π΄(πΌπ(π₯πΌβ¨ π¦πΌ), (π₯πΌββ§ π¦πΌβ)β) = π΄(πΌπ(π₯πΌβ¨ π¦πΌ), π₯πΌβββ¨ π¦πΌββ)
= π΄ (πΌπ(π₯πΌβ¨ π¦πΌ), (πΌπ(π₯πΌ) β¨ πΌπ(π¦πΌ))) = 1
(iv) Let π₯πΌ β π·(π΅,π΄). Then
2326-9865
Vol. 71 No. 3s2 (2022) 742 http://philstat.org.ph
π΄(π₯πΌβ, 0) = π΄(π₯πΌββ, ππβ) = π΄(πΌπ(π₯πΌ), ππβ)
= 1
Thus π₯πΌ β πππ(πΌπ) = πΌπβ1(ππ)
Conversely suppose that π₯πΌ β πππ(πΌπ) = πΌπβ1(ππ). Then π΄ (ππ, πΌπ(π₯πΌ)) = π΄(ππ, π₯πΌββ)
= π΄(ππβ, π₯πΌβββ) = π΄(0, π₯πΌβ) = 1
and hence π₯πΌ β π·(π΅,π΄). Therefore πππ(πΌπ) = π·(π΅,π΄). .Theorem 3.3
Let (π΅, π΄) be a BADFL. Then for any element π₯πΌ of π΅ there exists π β π·(π΅,π΄) such that π΄(π₯πΌβ§ ππ, π₯πΌβββ§ π) = 1
Proof. Suppose that
π΄(π₯πΌβ§ ππ, π₯βββ§ π₯πΌβ§ ππ) = π΄(π₯πΌβ§ ππ, π₯πΌβββ§ (π₯πΌβββ π₯πΌ)) = 1 It is enough to prove that π₯πΌβββ π₯πΌ β π·(π΅,π΄).
π΄(π₯πΌββ, (π₯πΌβ§ ππ)ββ) = π΄(π₯ββ, [π₯πΌβββ§ (π₯πΌβββ π₯πΌ)]ββ) = π΄(π₯πΌββ, π₯πΌβββ§ (π₯πΌβββ π₯πΌ)ββ) = 1
so that π΄(π₯πΌββ, (π₯πΌββ β π₯πΌ)ββ) > 0 and hence π΄((π₯πΌβββ π₯πΌ)β, π₯πΌβ) > 0 β¦β¦β¦β¦
(1)
on the other hand, π΄(0, π₯πΌββ§ π₯πΌββ) = π΄(0, π₯πΌβ§ ππ) > 0
β π΄(π₯πΌβ, π₯πΌβββ (π₯πΌβ§ ππ)) = π΄(π₯β, (π₯πΌβββ π₯πΌ) β§ ππ)
so that π΄((π₯πΌβββ π₯πΌ)β, [(π₯πΌβββ π₯πΌ) β§ ππ]β) = π΄((π₯πΌβββ π₯πΌ)β, π₯πΌββ) > 0
β¦β¦β¦β¦... (2)
From equation (1) and (2) we get
π΄((π₯πΌβββ π₯πΌ)β, 0) = 1 Thus π₯πΌββ β π₯πΌ β π·(π΅,π΄).
Corollary 3.1
Let (π΅, π΄) be a BADFL and π₯πΌ, π¦πΌ β π΅ such that π΄(π₯πΌββ, π¦πΌββ) = 1. Then there exists ππΌβ π·(π΅,π΄) such that π΄(π₯πΌβ§ ππΌβ§ ππ. π¦πΌβ§ ππΌβ§ ππ) = 1.
Proof. Let π₯πΌ, π¦πΌβ π΅ by above theorem, there exist ππΌ1, ππΌ2 β π·(π΅,π΄) such that π΄(π₯πΌβ§ π, π₯πΌβββ§ ππΌ1) = 1 and π΄(π¦πΌβ§ π, π¦πΌβββ§ ππΌ2) = 1.
Let π΄(ππΌ, ππΌ1β§ ππΌ2) = 1.
Then π is dense element of π΅ and
π΄(π₯πΌβ§ ππΌβ§ ππ, π₯πΌβ§ ππβ§ ππΌ) = π΄(π₯πΌβ§ ππΌβ§ ππ, ππΌ1 β§ ππΌ1 β§ ππΌ2)
2326-9865
Vol. 71 No. 3s2 (2022) 743 http://philstat.org.ph
= π΄(π₯πΌβ§ ππΌβ§ ππ, π¦πΌβββ§ ππΌ1 β§ ππΌ2) = π΄(π₯πΌβ§ ππΌβ§ ππ, π¦πΌβββ§ ππΌ2β§ ππΌ1) = π΄(π₯πΌβ§ ππΌβ§ ππ, π¦πΌβββ§ ππΌ2β§ ππΌ2β§ ππΌ1) = π΄(π₯πΌβ§ ππΌβ§ ππ, π¦πΌβ§ ππβ§ ππΌ1 β§ ππΌ2) = π΄(π₯πΌβ§ ππΌβ§ ππ, π¦πΌβ§ ππβ§ ππΌ)
= π΄(π₯πΌβ§ ππΌβ§ ππ, π¦πΌβ§ ππΌβ§ ππ)
= 1 Theorem 3.4
Let (π΅, π΄) be a BADFL with maximal element π Define πΌπ: (π΅, π΄) β (π΅β, π΄) by (πΌπ(π₯πΌ), π₯πΌββ) = 1, π₯πΌ β π΅. Then πΌπ is an fuzzy epimorphism.
Proof. For anyπ₯πΌ, π¦πΌβ π΅, we have
π΄((π₯πΌ β π¦πΌ)ββ, [(π₯πΌβ π¦πΌ) β§ ππ]ββ) = π΄((π₯πΌ β π¦πΌ)ββ, [(π₯πΌ β π¦πΌ) β§ (π₯πΌβ ππ)]ββ ) = π΄((π₯πΌ β π¦πΌ)ββ, [π₯πΌβ (π¦πΌβ§ ππ)]ββ )
= π΄((π₯πΌ β π¦πΌ)ββ, [π₯πΌ β (π¦πΌβββ§ ππΌ)]ββ ) for some dense elements ππΌ in π΅.
= π΄((π₯πΌ β π¦πΌ)ββ, [(π₯πΌβ π¦πΌββ) β§ (π₯πΌ β ππΌ)]ββ ) = π΄((π₯πΌ β π¦πΌ)ββ, (π₯πΌ β π¦πΌββ)βββ§ (π₯πΌ β ππΌ)ββ ) = π΄((π₯πΌ β π¦πΌ)ββ, (π₯πΌ β π¦πΌββ)βββ§ ππ)
= π΄((π₯πΌ β π¦πΌ)ββ, (π₯πΌβββ π¦πΌββ) β§ ππ) = π΄((π₯πΌ β π¦πΌ)ββ, π₯πΌβββ π¦πΌββ)
β π΄ (πΌπ(π₯πΌ β π¦πΌ), πΌπ(π₯πΌ) β πΌπ(π¦πΌ)) = 1 Thus πΌπ is an epimorphism from theorem 3.2
Theorem 3.5
Let (π΅, π΄) be a BADFL and π₯πΌ be an element of π΅. Then π₯πΌ is dense if and only if there is an element π¦πΌ of π΅ such that π΄(π₯πΌβ§ ππ, π¦πΌβββ π¦πΌ) = 1.
Proof. Assume π₯πΌ is a dense element of π΅. Then
π΄(π₯πΌβββ π₯πΌ, ππ β π₯πΌ) = π΄(π₯πΌβββ π₯πΌ, ππβ§ (ππ β π₯πΌ)) = π΄(π₯πΌβββ π₯πΌ, ππβ§ ππβ§ π₯πΌ)
= π΄(π₯πΌβββ π₯πΌ, π₯πΌβ§ ππ) = 1.
Conversely assume that π΄(π₯πΌβ§ ππ, π¦πΌβββ π¦πΌ) for some π¦πΌ β π΅. Then from the proof of theorem 3.3. we have π΄(π₯πΌβ§ ππ, π¦πΌβββ§ π¦πΌ) = 1, (i.e.) π¦πΌβββ π¦πΌ is a dense element of π΅ so that π₯πΌβ§ ππ is a dense element of π΅ and hence π₯πΌ is a dense element of π΅. Since π΄(π₯πΌβ, (π₯πΌβ§ ππ)β) = 1.
Definition 3.2
Let (π΅, π΄) be a BADFL and π: (π΅β, π΄) Γ (π΅, π΄) β (π΅, π΄) be a map such that (i) ππ: (π΅, π΄) β (π΅, π΄) defined by π΄(ππ(ππΌ), π(ππΌ, ππΌ)) = 1 is an fuzzy endomorphism.
(ii) π΄ (π(ππΌβ§ ππΌ, ππΌ), π(ππΌ, π(ππΌ, ππΌ))) = 1
2326-9865
Vol. 71 No. 3s2 (2022) 744 http://philstat.org.ph
(iii) If π΄(ππΌ, ππΌ) > 0 then π΄(π(ππΌ, ππΌ), π(ππΌ, ππΌ)) > 0 (iv) π΄(π(0, ππΌ), ππ) = 1, π΄(π(ππ, ππΌ), ππΌ) = 1
for any ππΌ, ππΌ β π΅β and ππΌ β π΅. Then π is said to be an admissible map.
Definition 3.3
Let (π΅, π΄) be a BADFL and π: (π΅β, π΄) Γ (π΅β, π΄) β (π΅, π΄) be an admissible map.
Define the relation ππ on (π΅β, π΄) Γ (π΅, π΄) by (ππΌ, ππΌ)ππ(ππΌ, ππΌ) β π΄(ππΌ, ππΌ) = 1 and π΄(π(ππΌ, ππΌβ§ ππ), π(ππΌ, ππΌβ§ ππ)) = 1. Then ππ is an equivalence relation on (π΅β, π΄) Γ (π΅, π΄). We denote the equivalence class (π,π)
ππ by [ππΌ, ππΌ]π. Lemma 3.1
Let (π΅, π΄) be an BADFL. Then for any ππΌ, ππΌ β π΅βand ππΌ, ππΌβ π΅.
π΄(ππΌ, ππΌ) > 0 and π΄(π(ππΌ, ππΌβ§ ππ), π(ππΌ, ππΌβ§ ππ)) = 1.
Then π΄ (π(ππΌ, ππΌβ§ ππ, π(ππΌ, ππΌβ§ ππ))) = 1.
(i) π΄([(ππΌ, ππΌ), (ππΌ, ππΌ)]) > 0 β π΄(ππΌ, ππΌ) > 0 and (π(ππΌ, ππΌβ§ ππ), π(ππΌ, ππΌβ§ ππ)) > 0 Proof. Let π΄(ππΌ, ππΌ) > 0 and π΄(π(ππΌ, ππΌβ§ ππ), π(ππΌ, ππΌβ§ ππ)) = 1
Now
π΄(π(ππΌ, ππΌβ§ ππ), π(ππΌβ§ ππΌ, ππΌβ§ ππ)) = π΄ (π(ππΌ, ππΌβ§ ππ), π(ππΌ, π(ππΌ, ππΌβ§ ππ))) = π΄ (π(ππΌ, ππΌβ§ ππ), π(ππΌ, π(ππΌ, ππΌβ§ ππ)))
= π΄(π(ππΌ, ππΌβ§ ππ), π(ππΌβ§ ππΌ, ππΌβ§ ππ)) = π΄(π(ππΌ, ππΌβ§ ππ), π(ππΌβ§ ππΌ, ππΌβ§ ππ)) π΄(π(ππΌ, ππΌβ§ ππ), π(ππΌ, ππΌβ§ ππ)) = 1
References
[1] S. Burris and H. P. Sankappanavar. A course in Universal Algebra. Springer-Verlag, New York, Heidelberg, Berlin, 1981.
[2] W. C. Nemitz. Implicative semilattices. Jour. Transactions of American Math. Soc., 117:128β142, 1965.
[3] G. C. Rao. Almost Distributive Lattices. PhD thesis, Department of Mathematics, Andhra University, 1980.
[4] G. C. Rao and Berhanu Assaye. Closed elements of heyting almost distributive lattices.
International journal of Computational Cognition(http://www. IJCCUS), 9(2),2011.
[5] G. C. Rao and B. Assaye, Implicative filters on heyting almost distributive lattices, Inter. J.
Computational Cognition, 8, 55-59.
[6] A. Berhanu, G. Yohannes and T. Bekalu, Almost Distributive Fuzzy Lattice, International Journal of Mathematics and its Application, 5(1-C), 307- 316, 2017.
[7] A. Berhanu, A. Mihret and T. Gerima, B-Almost Distributive Fuzzy Lattice, Bulletin of the Section of Logic, 47(3), 171β185, 2018.
[8] U. M. Swamy and G. C. Rao. Almost distributive lattices. Jour. Aust. Math. Soc. (Series A), 31:77β91, 1981.
2326-9865
Vol. 71 No. 3s2 (2022) 745 http://philstat.org.ph
[9] K. Rekhalakshmi, V. Maheswari and V. Balaji, Closed elements of B-Almost distributive fuzzy lattices (Communicated).
[10] L. A. Zadeh, Fuzzy sets. Information and Control, 8(3), 338β353, 1965.
[11] E. Sanchez, Resolution of composite fuzzy relation equation. Information and Control, 30(1), 38β48, 1976.
[12] I. Chon, Fuzzy partial order relations and fuzzy lattices. Korean J. Math., 17(4), 361β374, 2009.
[13] J. A. Goguen, L-fuzzy set. J. Math. Anal. Appl., 18(1), 145β174, 1967.
[14] G. Rao, B. Assaye and M. Mani, Heyting almost distributive lattices, Inter. J.
Computational Cognition, 8(3), 85β89, 2010.
[15] B. A. Alaba and D. N. Derso, Heyting Almost Distributive Fuzzy Lattices. IJCSAM (International Journal of Computing Science and Applied Mathematics, 4(1), 23-26, 2018.
[16] G. C. Rao and Berhanu Assaye. Dense elements of heyting almost distributive lattices, International Journal Of Computational Cognition (Http://Www.Ijcc.Us), 9(2), 2011.