• Tidak ada hasil yang ditemukan

Dense Elements in B-Almost Distributive Fuzzy Lattices

N/A
N/A
Protected

Academic year: 2023

Membagikan "Dense Elements in B-Almost Distributive Fuzzy Lattices"

Copied!
7
0
0

Teks penuh

(1)

2326-9865

Vol. 71 No. 3s2 (2022) 739 http://philstat.org.ph

Dense Elements in B-Almost Distributive Fuzzy Lattices

K. Rekhalakshmi1, b), V. Maheswari2, a) and V. Balaji3

1Research Scholar, Department of Mathematics

Vels Institute of Science, Technology & Advanced Studies (VISTAS), Tamil Nadu, India.

2Assistant Professor, Department of Mathematics

Vels Institute of Science, Technology & Advanced Studies (VISTAS), Tamil Nadu, India.

3Assistant Professor, PG &Research Department of Mathematics Sacred Heart College, Tamil Nadu, India

a) Corresponding author: [email protected]

Article Info

Page Number: 739 - 745 Publication Issue:

Vol 71 No. 3s2 (2022)

Article History

Article Received: 28 April 2022 Revised: 15 May 2022

Accepted: 20 June 2022 Publication: 21 July 2022

Abstract

In this paper we define the concept of a dense element in a B-Almost Distributive Fuzzy Lattice BADFL (𝐡, 𝐴) and prove that the set 𝐷𝐴(𝐡) of all dense elements of 𝐡 is an implicative filter of 𝐡. Also, we establish a fuzzy epimorphism of (𝐡, 𝐴) into (π΅βˆ—, 𝐴) the set of all closed elements of(𝐡, 𝐴) and prove the existence of an fuzzy epimorphism of 𝐷𝐴(𝐡) into 𝐷𝐴(π΅βˆ—Γ—π΅

πœƒ ). We prove that(π΅βˆ—, 𝐴) and([π΅βˆ—Γ—π΅

πœƒ ]βˆ—, 𝐴) are fuzzy isomorphic.

1. Introduction

U. M. Swamy and G. C. Rao [8] proposed the notion of an Almost Distributive Lattice (ADL) as a generalisation of most current ring and lattice theoretic extensions of a Boolean algebra. As an extension of Heyting algebra [1] presented the notion of a Heyting Almost Distributive Lattice (HADL) in [6]. If (𝐻,∨,∧, β†’ ,0, π‘š) is a HADL, the set H* containing all closed elements of H is both a bounded pseudo complemented semilattice and a bounded implicative subsemilattice of H, as shown in [4]. Zadeh developed the notion of fuzzy set in [10], which was extended by Goguen in [13] and Sanchez in [11] to define and explore fuzzy relations. We also defined a binary operation ∨ on (π΅βˆ—, 𝐴) and established that (π΅βˆ—,∨,∧,βˆ— ,0, π‘š) is a fuzzy Boolean Algebra. In this study, we expand certain essential features of Dense elements in BADFL using the fuzzy partial order relation given in [12].

In this paper, we explore the concept of dense elements in an BADFL (𝐡, 𝐴) and prove that the set 𝐷𝐴(𝐡)of all dense elements of 𝐡 is an implicative filter of 𝐡. Also we establish an fuzzy epimorphism of (𝐡, 𝐴) into (π΅βˆ—, 𝐴) and prove the existence of an fuzzy epimorphism of 𝐷𝐴(𝐡) into 𝐷𝐴(π΅βˆ—Γ—π΅

πœƒ ). Finally, we prove that (π΅βˆ—, 𝐴) and ([π΅βˆ—Γ—π΅

πœƒ ]βˆ—, 𝐴) are fuzzy isomorphic.

Following are some significant results and definitions required for the study of dense element characteristics on B-ADFLs.

(2)

2326-9865

Vol. 71 No. 3s2 (2022) 740 http://philstat.org.ph 2. Preliminaries Definition 2.1. [7]

Let (𝐿, 𝐴) be a BADFL with a maximal element π‘š. Suppose β‡’ is a binary operation on 𝐿 if and only if it satisfies the following conditions:

(1) 𝐴(π‘Ž β‡’ π‘Ž, π‘š) = 1 (2) 𝐴((π‘Ž β‡’ 𝑏) ∧ 𝑏, 𝑏) = 1

(3) 𝐴(π‘Ž ∧ (π‘Ž β‡’ 𝑏), π‘Ž ∧ 𝑏 ∧ π‘š) = 1

(4) 𝐴(π‘Ž β‡’ (𝑏 ∧ 𝑐), (π‘Ž β‡’ 𝑏) ∧ (π‘Ž β‡’ 𝑐)) = 1

(5) 𝐴((π‘Ž ∧ 𝑏) β‡’ 𝑐, (π‘Ž β‡’ 𝑐) ∧ (𝑏 β‡’ 𝑐)) = 1 for every π‘Ž, 𝑏, 𝑐 ∈ 𝐿.

Definition 2.2. [5]

Let (𝐿,∨,∧, β†’ ,0, π‘š) be a HADL. An implicative filter is a non-empty subset F of L if and only if

(1) π‘Ž, 𝑏 ∈ 𝐹 β‡’ π‘Ž ∧ 𝑏 ∈ 𝐹, (2) π‘Ž ∈ 𝐹, 𝑏 ∈ 𝐿 β‡’ 𝑏 β†’ π‘Ž ∈ 𝐹.

Lemma 2.1. [15]

Let (𝐿,∨,∧, β†’ ,0, π‘š) be a HADFL. Then for every π‘Ž, 𝑏, 𝑐 ∈ 𝐿, the following hold:

(1) 𝐴(𝑏 ∧ π‘š, (π‘Ž β†’ 𝑏) ∧ π‘š) > 0

(2) 𝐴(π‘Ž ∧ 𝑐 ∧ π‘š ≀ 𝑏 ∧ π‘š) > 0 ⇔ 𝐴(𝑐 ∧ π‘š, (π‘Ž β†’ 𝑏) ∧ π‘š) > 0 (3) 𝐴([π‘Ž β†’ (𝑏 β†’ 𝑐)] ∧ π‘š, [(π‘Ž ∧ 𝑏) β†’ 𝑐] ∧ π‘š) > 0

(4) 𝐴([(π‘Ž ∧ 𝑏) β†’ 𝑐] ∧ π‘š, [(𝑏 ∧ π‘Ž) β†’ 𝑐] ∧ π‘š) > 0 (5) 𝐴([π‘Ž β†’ (𝑏 β†’ 𝑐)] ∧ π‘š, [𝑏 β†’ (π‘Ž β†’ 𝑐)] ∧ π‘š) > 0

Lemma 2.3. [9]

Let (𝐿, 𝐴) be a BADFL. Then, for every π‘₯, 𝑦 ∈ 𝐿 with 𝐴(π‘₯βˆ—, π‘₯ β‡’ 0) = 1, the following hold.

(1) 𝐴((π‘₯ ∨ 𝑦)βˆ—, π‘₯βˆ—βˆ§ π‘¦βˆ—) = 1

(2) 𝐴(π‘₯, 𝑦) > 0 β‡’ 𝐴(π‘¦βˆ—, π‘₯βˆ—) > 0, 𝐴(π‘₯βˆ—βˆ—, π‘¦βˆ—βˆ—) > 0 (3) 𝐴(π‘₯ ∧ π‘₯βˆ—βˆ—, π‘₯ ∧ π‘š) = 1 and 𝐴(π‘₯βˆ—βˆ—βˆ§ π‘₯, π‘₯) = 1 (4) 𝐴((π‘₯ ∧ 𝑦)βˆ—, (π‘₯ β‡’ π‘¦βˆ—) ∧ π‘š) = 1

(5) 𝐴((π‘₯ ∧ π‘š)βˆ—, π‘₯βˆ—) = 1

(6) 𝐴((π‘₯ ∧ 𝑦)βˆ—βˆ—, π‘₯βˆ—βˆ—βˆ§ π‘¦βˆ—βˆ—) = 1.

3. Dense Elements in B-Almost Distributive Fuzzy Lattices

In this section, we recall from that if (𝐡, 𝐴) is a BADFL and π‘₯ ∈ 𝐡 then π΅βˆ— = {π‘₯π›Όβˆ—: π‘₯𝛼 ∈ 𝐡} of the set of all closed elements of 𝐡 where 𝐴(π‘₯π›Όβˆ—, π‘₯𝛼 β‡’ 0) = 1.

Definition 3.1

Let (𝐡, 𝐴) be a B-ADFL with maximal element π‘šπ‘’. Define 𝐷(𝐡,𝐴) = {𝐴(π‘₯π›Όβˆ—, 0) = 1, π‘₯𝛼 ∈ 𝐡} Then an element of 𝐷(𝐡,𝐴) is called a dense element of (𝐡, 𝐴).

It can easily observed that if 𝑑𝛼 ∈ 𝐡 then 𝑑 ∈ 𝐷(𝐡,𝐴) ⇔ 𝐴(π‘‘π›Όβˆ—βˆ—, π‘šπ‘’. ) = 1. Now we prove that 𝐷(𝐡,𝐴) is a implicative filter of (𝐡, 𝐴).

(3)

2326-9865

Vol. 71 No. 3s2 (2022) 741 http://philstat.org.ph Theorem 3.1

Let (𝐡, 𝐴) be a BADFL with maximal element π‘šπ‘’.Then 𝐷(𝐡,𝐴) is an implicative filter of (𝐡, 𝐴).

Proof. Let (𝐡, 𝐴) be a BADFL with maximal π‘šπ‘’. Let π‘₯𝛼, 𝑦𝛼 ∈ 𝐷(𝐡,𝐴). Then from lemma (2.3) we have

𝐴((π‘₯π›Όβˆ§ 𝑦𝛼)βˆ—, (π‘₯𝛼 β‡’ π‘¦π›Όβˆ—) ∧ π‘šπ‘’ ) = 𝐴((π‘₯π›Όβˆ§ 𝑦𝛼)βˆ—, (π‘₯𝛼⇒ (𝑦𝛼⇒ 0) ∧ π‘šπ‘’ ) 𝐴((π‘₯π›Όβˆ§ 𝑦𝛼)βˆ—, (π‘₯π›Όβˆ§ 𝑦𝛼) β‡’ 0 ∧ π‘šπ‘’ ) = 𝐴((π‘₯π›Όβˆ§ 𝑦𝛼)βˆ—, (π‘₯𝛼 β‡’ 0) ∧ π‘šπ‘’ )

= 𝐴((π‘₯π›Όβˆ§ 𝑦𝛼)βˆ—, π‘₯π›Όβˆ—βˆ§ π‘šπ‘’ ) = 𝐴((π‘₯π›Όβˆ§ 𝑦𝛼)βˆ—, 0)

= 1 ………….. (1)

Let π‘‘π›Όβˆˆ 𝐷(𝐡,𝐴), π‘₯ ∈ 𝐡, then we get 𝐴(π‘‘π›Όβˆ§ π‘šπ‘’ , (π‘₯𝛼 β‡’ 𝑑𝛼) ∧ π‘šπ‘’ ) > 0. This implies 𝐴((π‘‘π›Όβˆ§ π‘šπ‘’. )βˆ—βˆ—, [(π‘₯ β‡’ 𝑑𝛼) ∧ π‘šπ‘’. ]βˆ—βˆ—) > 0 and hence

𝐴(π‘‘π›Όβˆ—βˆ—βˆ§ π‘šπ‘’βˆ—βˆ—, [(π‘₯𝛼 β‡’ 𝑑𝛼)βˆ—βˆ—βˆ§ π‘šπ‘’βˆ—βˆ—]) > 0 𝐴(π‘šπ‘’βˆ§ π‘šπ‘’βˆ—βˆ—, (π‘₯𝛼 β‡’ 𝑑𝛼)βˆ—βˆ—βˆ§ π‘šπ‘’βˆ—βˆ—) > 0

𝐴(π‘šπ‘’, (π‘₯𝛼 β‡’ 𝑑𝛼)βˆ—βˆ—) > 0

Therefore 𝐴((π‘₯ β‡’ 𝑑𝛼)βˆ—, 0) = 1 ………… (2) From (1) and (2) 𝐷(𝐡,𝐴) is implicative filter of (𝐡, 𝐴).

Theorem 3.2

Let (𝐡, 𝐴) be a BADFL with maximal element π‘šπ‘’ and 𝛼𝑓: (𝐡, 𝐴) β†’ (π΅βˆ—, 𝐴) be defined by 𝐴(𝛼𝑓(π‘₯𝛼), π‘₯π›Όβˆ—βˆ—) = 1 for all π‘₯𝛼 ∈ 𝐡 and suppose π‘₯𝛼, 𝑦𝛼 ∈ 𝐡. Then

(1) 𝛼𝑓 is fuzzy isotone

(2) 𝐴(𝛼𝑓(π‘₯π›Όβˆ§ 𝑦𝛼), 𝛼𝑓(π‘₯𝛼) ∧ 𝛼𝑓(𝑦𝛼)) = 1 (3) 𝐴(𝛼𝑓(π‘₯π›Όβˆ¨ 𝑦𝛼), 𝛼𝑓(π‘₯𝛼) ∨ 𝛼𝑓(𝑦𝛼)) = 1 (4) 𝐴(π‘˜π‘’π‘Ÿ π‘˜π‘’π‘Ÿ(𝛼𝑓), 𝐷(𝐡,𝐴) ) = 1

Proof. Let π‘₯𝛼, π‘¦π›Όβˆˆ 𝐡

(i) Assume 𝐴(π‘₯𝛼, 𝑦𝛼) > 0 then by [lemma 2.3]

𝐴(π‘₯π›Όβˆ—βˆ—, π‘¦π›Όβˆ—βˆ—) = 𝐴(𝛼𝑓(π‘₯𝛼) ∧ 𝛼𝑓(𝑦𝛼)) > 0 Therefore 𝛼𝑓 is fuzzy isotone

(ii) 𝐴(𝛼𝑓(π‘₯π›Όβˆ§ 𝑦𝛼), (π‘₯π›Όβˆ§ 𝑦𝛼)βˆ—βˆ—) = 𝐴(𝛼𝑓(π‘₯π›Όβˆ§ 𝑦𝛼), π‘₯π›Όβˆ—βˆ—βˆ§ π‘¦π›Όβˆ—βˆ—) = 𝐴 (𝛼𝑓(π‘₯π›Όβˆ§ 𝑦𝛼), (𝛼𝑓(π‘₯𝛼) ∧ 𝛼𝑓(𝑦𝛼))) = 1

(iii) 𝐴(𝛼𝑓(π‘₯π›Όβˆ¨ 𝑦𝛼), (π‘₯π›Όβˆ¨ 𝑦𝛼)βˆ—βˆ—) = 𝐴(𝛼𝑓(π‘₯π›Όβˆ¨ 𝑦𝛼), (π‘₯π›Όβˆ—βˆ§ π‘¦π›Όβˆ—)βˆ—) = 𝐴(𝛼𝑓(π‘₯π›Όβˆ¨ 𝑦𝛼), π‘₯π›Όβˆ—βˆ—βˆ¨ π‘¦π›Όβˆ—βˆ—)

= 𝐴 (𝛼𝑓(π‘₯π›Όβˆ¨ 𝑦𝛼), (𝛼𝑓(π‘₯𝛼) ∨ 𝛼𝑓(𝑦𝛼))) = 1

(iv) Let π‘₯𝛼 ∈ 𝐷(𝐡,𝐴). Then

(4)

2326-9865

Vol. 71 No. 3s2 (2022) 742 http://philstat.org.ph

𝐴(π‘₯π›Όβˆ—, 0) = 𝐴(π‘₯π›Όβˆ—βˆ—, π‘šπ‘’βˆ—) = 𝐴(𝛼𝑓(π‘₯𝛼), π‘šπ‘’βˆ—)

= 1

Thus π‘₯𝛼 ∈ π‘˜π‘’π‘Ÿ(𝛼𝑓) = π›Όπ‘“βˆ’1(π‘šπ‘’)

Conversely suppose that π‘₯𝛼 ∈ π‘˜π‘’π‘Ÿ(𝛼𝑓) = π›Όπ‘“βˆ’1(π‘šπ‘’). Then 𝐴 (π‘šπ‘’, 𝛼𝑓(π‘₯𝛼)) = 𝐴(π‘šπ‘’, π‘₯π›Όβˆ—βˆ—)

= 𝐴(π‘šπ‘’βˆ—, π‘₯π›Όβˆ—βˆ—βˆ—) = 𝐴(0, π‘₯π›Όβˆ—) = 1

and hence π‘₯𝛼 ∈ 𝐷(𝐡,𝐴). Therefore π‘˜π‘’π‘Ÿ(𝛼𝑓) = 𝐷(𝐡,𝐴). .Theorem 3.3

Let (𝐡, 𝐴) be a BADFL. Then for any element π‘₯𝛼 of 𝐡 there exists 𝑑 ∈ 𝐷(𝐡,𝐴) such that 𝐴(π‘₯π›Όβˆ§ π‘šπ‘’, π‘₯π›Όβˆ—βˆ—βˆ§ 𝑑) = 1

Proof. Suppose that

𝐴(π‘₯π›Όβˆ§ π‘šπ‘’, π‘₯βˆ—βˆ—βˆ§ π‘₯π›Όβˆ§ π‘šπ‘’) = 𝐴(π‘₯π›Όβˆ§ π‘šπ‘’, π‘₯π›Όβˆ—βˆ—βˆ§ (π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼)) = 1 It is enough to prove that π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼 ∈ 𝐷(𝐡,𝐴).

𝐴(π‘₯π›Όβˆ—βˆ—, (π‘₯π›Όβˆ§ π‘šπ‘’)βˆ—βˆ—) = 𝐴(π‘₯βˆ—βˆ—, [π‘₯π›Όβˆ—βˆ—βˆ§ (π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼)]βˆ—βˆ—) = 𝐴(π‘₯π›Όβˆ—βˆ—, π‘₯π›Όβˆ—βˆ—βˆ§ (π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼)βˆ—βˆ—) = 1

so that 𝐴(π‘₯π›Όβˆ—βˆ—, (π‘₯π›Όβˆ—βˆ— β‡’ π‘₯𝛼)βˆ—βˆ—) > 0 and hence 𝐴((π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼)βˆ—, π‘₯π›Όβˆ—) > 0 …………

(1)

on the other hand, 𝐴(0, π‘₯π›Όβˆ—βˆ§ π‘₯π›Όβˆ—βˆ—) = 𝐴(0, π‘₯π›Όβˆ§ π‘šπ‘’) > 0

β‡’ 𝐴(π‘₯π›Όβˆ—, π‘₯π›Όβˆ—βˆ—β‡’ (π‘₯π›Όβˆ§ π‘šπ‘’)) = 𝐴(π‘₯βˆ—, (π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼) ∧ π‘šπ‘’)

so that 𝐴((π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼)βˆ—, [(π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼) ∧ π‘šπ‘’]βˆ—) = 𝐴((π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼)βˆ—, π‘₯π›Όβˆ—βˆ—) > 0

…………... (2)

From equation (1) and (2) we get

𝐴((π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼)βˆ—, 0) = 1 Thus π‘₯π›Όβˆ—βˆ— β‡’ π‘₯𝛼 ∈ 𝐷(𝐡,𝐴).

Corollary 3.1

Let (𝐡, 𝐴) be a BADFL and π‘₯𝛼, 𝑦𝛼 ∈ 𝐡 such that 𝐴(π‘₯π›Όβˆ—βˆ—, π‘¦π›Όβˆ—βˆ—) = 1. Then there exists π‘‘π›Όβˆˆ 𝐷(𝐡,𝐴) such that 𝐴(π‘₯π›Όβˆ§ π‘‘π›Όβˆ§ π‘šπ‘’. π‘¦π›Όβˆ§ π‘‘π›Όβˆ§ π‘šπ‘’) = 1.

Proof. Let π‘₯𝛼, π‘¦π›Όβˆˆ 𝐡 by above theorem, there exist 𝑑𝛼1, 𝑑𝛼2 ∈ 𝐷(𝐡,𝐴) such that 𝐴(π‘₯π›Όβˆ§ π‘š, π‘₯π›Όβˆ—βˆ—βˆ§ 𝑑𝛼1) = 1 and 𝐴(π‘¦π›Όβˆ§ π‘š, π‘¦π›Όβˆ—βˆ—βˆ§ 𝑑𝛼2) = 1.

Let 𝐴(𝑑𝛼, 𝑑𝛼1∧ 𝑑𝛼2) = 1.

Then 𝑑 is dense element of 𝐡 and

𝐴(π‘₯π›Όβˆ§ π‘‘π›Όβˆ§ π‘šπ‘’, π‘₯π›Όβˆ§ π‘šπ‘’βˆ§ 𝑑𝛼) = 𝐴(π‘₯π›Όβˆ§ π‘‘π›Όβˆ§ π‘šπ‘’, 𝑑𝛼1 ∧ 𝑑𝛼1 ∧ 𝑑𝛼2)

(5)

2326-9865

Vol. 71 No. 3s2 (2022) 743 http://philstat.org.ph

= 𝐴(π‘₯π›Όβˆ§ π‘‘π›Όβˆ§ π‘šπ‘’, π‘¦π›Όβˆ—βˆ—βˆ§ 𝑑𝛼1 ∧ 𝑑𝛼2) = 𝐴(π‘₯π›Όβˆ§ π‘‘π›Όβˆ§ π‘šπ‘’, π‘¦π›Όβˆ—βˆ—βˆ§ 𝑑𝛼2∧ 𝑑𝛼1) = 𝐴(π‘₯π›Όβˆ§ π‘‘π›Όβˆ§ π‘šπ‘’, π‘¦π›Όβˆ—βˆ—βˆ§ 𝑑𝛼2∧ 𝑑𝛼2∧ 𝑑𝛼1) = 𝐴(π‘₯π›Όβˆ§ π‘‘π›Όβˆ§ π‘šπ‘’, π‘¦π›Όβˆ§ π‘šπ‘’βˆ§ 𝑑𝛼1 ∧ 𝑑𝛼2) = 𝐴(π‘₯π›Όβˆ§ π‘‘π›Όβˆ§ π‘šπ‘’, π‘¦π›Όβˆ§ π‘šπ‘’βˆ§ 𝑑𝛼)

= 𝐴(π‘₯π›Όβˆ§ π‘‘π›Όβˆ§ π‘šπ‘’, π‘¦π›Όβˆ§ π‘‘π›Όβˆ§ π‘šπ‘’)

= 1 Theorem 3.4

Let (𝐡, 𝐴) be a BADFL with maximal element π‘š Define 𝛼𝑓: (𝐡, 𝐴) β†’ (π΅βˆ—, 𝐴) by (𝛼𝑓(π‘₯𝛼), π‘₯π›Όβˆ—βˆ—) = 1, π‘₯𝛼 ∈ 𝐡. Then 𝛼𝑓 is an fuzzy epimorphism.

Proof. For anyπ‘₯𝛼, π‘¦π›Όβˆˆ 𝐡, we have

𝐴((π‘₯𝛼 β‡’ 𝑦𝛼)βˆ—βˆ—, [(π‘₯𝛼⇒ 𝑦𝛼) ∧ π‘šπ‘’]βˆ—βˆ—) = 𝐴((π‘₯𝛼 β‡’ 𝑦𝛼)βˆ—βˆ—, [(π‘₯𝛼 β‡’ 𝑦𝛼) ∧ (π‘₯𝛼⇒ π‘šπ‘’)]βˆ—βˆ— ) = 𝐴((π‘₯𝛼 β‡’ 𝑦𝛼)βˆ—βˆ—, [π‘₯𝛼⇒ (π‘¦π›Όβˆ§ π‘šπ‘’)]βˆ—βˆ— )

= 𝐴((π‘₯𝛼 β‡’ 𝑦𝛼)βˆ—βˆ—, [π‘₯𝛼 β‡’ (π‘¦π›Όβˆ—βˆ—βˆ§ 𝑑𝛼)]βˆ—βˆ— ) for some dense elements 𝑑𝛼 in 𝐡.

= 𝐴((π‘₯𝛼 β‡’ 𝑦𝛼)βˆ—βˆ—, [(π‘₯𝛼⇒ π‘¦π›Όβˆ—βˆ—) ∧ (π‘₯𝛼 β‡’ 𝑑𝛼)]βˆ—βˆ— ) = 𝐴((π‘₯𝛼 β‡’ 𝑦𝛼)βˆ—βˆ—, (π‘₯𝛼 β‡’ π‘¦π›Όβˆ—βˆ—)βˆ—βˆ—βˆ§ (π‘₯𝛼 β‡’ 𝑑𝛼)βˆ—βˆ— ) = 𝐴((π‘₯𝛼 β‡’ 𝑦𝛼)βˆ—βˆ—, (π‘₯𝛼 β‡’ π‘¦π›Όβˆ—βˆ—)βˆ—βˆ—βˆ§ π‘šπ‘’)

= 𝐴((π‘₯𝛼 β‡’ 𝑦𝛼)βˆ—βˆ—, (π‘₯π›Όβˆ—βˆ—β‡’ π‘¦π›Όβˆ—βˆ—) ∧ π‘šπ‘’) = 𝐴((π‘₯𝛼 β‡’ 𝑦𝛼)βˆ—βˆ—, π‘₯π›Όβˆ—βˆ—β‡’ π‘¦π›Όβˆ—βˆ—)

β‡’ 𝐴 (𝛼𝑓(π‘₯𝛼 β‡’ 𝑦𝛼), 𝛼𝑓(π‘₯𝛼) β‡’ 𝛼𝑓(𝑦𝛼)) = 1 Thus 𝛼𝑓 is an epimorphism from theorem 3.2

Theorem 3.5

Let (𝐡, 𝐴) be a BADFL and π‘₯𝛼 be an element of 𝐡. Then π‘₯𝛼 is dense if and only if there is an element 𝑦𝛼 of 𝐡 such that 𝐴(π‘₯π›Όβˆ§ π‘šπ‘’, π‘¦π›Όβˆ—βˆ—β‡’ 𝑦𝛼) = 1.

Proof. Assume π‘₯𝛼 is a dense element of 𝐡. Then

𝐴(π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼, π‘šπ‘’ β‡’ π‘₯𝛼) = 𝐴(π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼, π‘šπ‘’βˆ§ (π‘šπ‘’ β‡’ π‘₯𝛼)) = 𝐴(π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼, π‘šπ‘’βˆ§ π‘šπ‘’βˆ§ π‘₯𝛼)

= 𝐴(π‘₯π›Όβˆ—βˆ—β‡’ π‘₯𝛼, π‘₯π›Όβˆ§ π‘šπ‘’) = 1.

Conversely assume that 𝐴(π‘₯π›Όβˆ§ π‘šπ‘’, π‘¦π›Όβˆ—βˆ—β‡’ 𝑦𝛼) for some 𝑦𝛼 ∈ 𝐡. Then from the proof of theorem 3.3. we have 𝐴(π‘₯π›Όβˆ§ π‘šπ‘’, π‘¦π›Όβˆ—βˆ—βˆ§ 𝑦𝛼) = 1, (i.e.) π‘¦π›Όβˆ—βˆ—β‡’ 𝑦𝛼 is a dense element of 𝐡 so that π‘₯π›Όβˆ§ π‘šπ‘’ is a dense element of 𝐡 and hence π‘₯𝛼 is a dense element of 𝐡. Since 𝐴(π‘₯π›Όβˆ—, (π‘₯π›Όβˆ§ π‘šπ‘’)βˆ—) = 1.

Definition 3.2

Let (𝐡, 𝐴) be a BADFL and πœ™: (π΅βˆ—, 𝐴) Γ— (𝐡, 𝐴) β†’ (𝐡, 𝐴) be a map such that (i) π‘“π‘Ž: (𝐡, 𝐴) β†’ (𝐡, 𝐴) defined by 𝐴(π‘“π‘Ž(𝑑𝛼), 𝑓(π‘Žπ›Ό, 𝑑𝛼)) = 1 is an fuzzy endomorphism.

(ii) 𝐴 (𝑓(π‘Žπ›Όβˆ§ 𝑏𝛼, 𝑑𝛼), 𝑓(π‘Žπ›Ό, 𝑓(𝑏𝛼, 𝑑𝛼))) = 1

(6)

2326-9865

Vol. 71 No. 3s2 (2022) 744 http://philstat.org.ph

(iii) If 𝐴(π‘Žπ›Ό, 𝑏𝛼) > 0 then 𝐴(𝑓(𝑏𝛼, 𝑑𝛼), 𝑓(π‘Žπ›Ό, 𝑑𝛼)) > 0 (iv) 𝐴(𝑓(0, 𝑑𝛼), π‘šπ‘’) = 1, 𝐴(𝑓(π‘šπ‘’, 𝑑𝛼), 𝑑𝛼) = 1

for any π‘Žπ›Ό, 𝑏𝛼 ∈ π΅βˆ— and 𝑑𝛼 ∈ 𝐡. Then 𝑓 is said to be an admissible map.

Definition 3.3

Let (𝐡, 𝐴) be a BADFL and 𝑓: (π΅βˆ—, 𝐴) Γ— (π΅βˆ—, 𝐴) β†’ (𝐡, 𝐴) be an admissible map.

Define the relation πœƒπ‘“ on (π΅βˆ—, 𝐴) Γ— (𝐡, 𝐴) by (π‘Žπ›Ό, 𝑑𝛼)πœƒπ‘“(𝑏𝛼, 𝑒𝛼) ⇔ 𝐴(π‘Žπ›Ό, 𝑏𝛼) = 1 and 𝐴(𝑓(π‘Žπ›Ό, π‘‘π›Όβˆ§ π‘šπ‘’), 𝑓(π‘Žπ›Ό, π‘’π›Όβˆ§ π‘šπ‘’)) = 1. Then πœƒπ‘“ is an equivalence relation on (π΅βˆ—, 𝐴) Γ— (𝐡, 𝐴). We denote the equivalence class (π‘Ž,𝑑)

πœƒπ‘“ by [π‘Žπ›Ό, 𝑑𝛼]𝑓. Lemma 3.1

Let (𝐡, 𝐴) be an BADFL. Then for any π‘Žπ›Ό, 𝑏𝛼 ∈ π΅βˆ—and 𝑑𝛼, π‘’π›Όβˆˆ 𝐡.

𝐴(𝑏𝛼, π‘Žπ›Ό) > 0 and 𝐴(𝑓(π‘Žπ›Ό, π‘‘π›Όβˆ§ π‘šπ‘’), 𝑓(π‘Žπ›Ό, π‘’π›Όβˆ§ π‘šπ‘’)) = 1.

Then 𝐴 (𝑓(𝑏𝛼, π‘‘π›Όβˆ§ π‘šπ‘’, 𝑓(𝑏𝛼, π‘’π›Όβˆ§ π‘šπ‘’))) = 1.

(i) 𝐴([(π‘Žπ›Ό, 𝑑𝛼), (𝑏𝛼, 𝑒𝛼)]) > 0 ⇔ 𝐴(π‘Žπ›Ό, 𝑏𝛼) > 0 and (𝑓(π‘Žπ›Ό, π‘‘π›Όβˆ§ π‘šπ‘’), 𝑓(π‘Žπ›Ό, π‘’π›Όβˆ§ π‘šπ‘’)) > 0 Proof. Let 𝐴(𝑏𝛼, π‘Žπ›Ό) > 0 and 𝐴(𝑓(π‘Žπ›Ό, π‘‘π›Όβˆ§ π‘šπ‘’), 𝑓(π‘Žπ›Ό, π‘’π›Όβˆ§ π‘šπ‘’)) = 1

Now

𝐴(𝑓(𝑏𝛼, π‘‘π›Όβˆ§ π‘šπ‘’), 𝑓(π‘Žπ›Όβˆ§ 𝑏𝛼, π‘‘π›Όβˆ§ π‘šπ‘’)) = 𝐴 (𝑓(𝑏𝛼, π‘‘π›Όβˆ§ π‘šπ‘’), 𝑓(𝑏𝛼, 𝑓(π‘Žπ›Ό, π‘‘π›Όβˆ§ π‘šπ‘’))) = 𝐴 (𝑓(𝑏𝛼, π‘‘π›Όβˆ§ π‘šπ‘’), 𝑓(𝑏𝛼, 𝑓(π‘Žπ›Ό, π‘’π›Όβˆ§ π‘šπ‘’)))

= 𝐴(𝑓(𝑏𝛼, π‘‘π›Όβˆ§ π‘šπ‘’), 𝑓(π‘π›Όβˆ§ π‘Žπ›Ό, π‘’π›Όβˆ§ π‘šπ‘’)) = 𝐴(𝑓(𝑏𝛼, π‘‘π›Όβˆ§ π‘šπ‘’), 𝑓(π‘Žπ›Όβˆ§ 𝑏𝛼, π‘’π›Όβˆ§ π‘šπ‘’)) 𝐴(𝑓(𝑏𝛼, π‘‘π›Όβˆ§ π‘šπ‘’), 𝑓(𝑏𝛼, π‘’π›Όβˆ§ π‘šπ‘’)) = 1

References

[1] S. Burris and H. P. Sankappanavar. A course in Universal Algebra. Springer-Verlag, New York, Heidelberg, Berlin, 1981.

[2] W. C. Nemitz. Implicative semilattices. Jour. Transactions of American Math. Soc., 117:128–142, 1965.

[3] G. C. Rao. Almost Distributive Lattices. PhD thesis, Department of Mathematics, Andhra University, 1980.

[4] G. C. Rao and Berhanu Assaye. Closed elements of heyting almost distributive lattices.

International journal of Computational Cognition(http://www. IJCCUS), 9(2),2011.

[5] G. C. Rao and B. Assaye, Implicative filters on heyting almost distributive lattices, Inter. J.

Computational Cognition, 8, 55-59.

[6] A. Berhanu, G. Yohannes and T. Bekalu, Almost Distributive Fuzzy Lattice, International Journal of Mathematics and its Application, 5(1-C), 307- 316, 2017.

[7] A. Berhanu, A. Mihret and T. Gerima, B-Almost Distributive Fuzzy Lattice, Bulletin of the Section of Logic, 47(3), 171–185, 2018.

[8] U. M. Swamy and G. C. Rao. Almost distributive lattices. Jour. Aust. Math. Soc. (Series A), 31:77–91, 1981.

(7)

2326-9865

Vol. 71 No. 3s2 (2022) 745 http://philstat.org.ph

[9] K. Rekhalakshmi, V. Maheswari and V. Balaji, Closed elements of B-Almost distributive fuzzy lattices (Communicated).

[10] L. A. Zadeh, Fuzzy sets. Information and Control, 8(3), 338–353, 1965.

[11] E. Sanchez, Resolution of composite fuzzy relation equation. Information and Control, 30(1), 38–48, 1976.

[12] I. Chon, Fuzzy partial order relations and fuzzy lattices. Korean J. Math., 17(4), 361–374, 2009.

[13] J. A. Goguen, L-fuzzy set. J. Math. Anal. Appl., 18(1), 145–174, 1967.

[14] G. Rao, B. Assaye and M. Mani, Heyting almost distributive lattices, Inter. J.

Computational Cognition, 8(3), 85–89, 2010.

[15] B. A. Alaba and D. N. Derso, Heyting Almost Distributive Fuzzy Lattices. IJCSAM (International Journal of Computing Science and Applied Mathematics, 4(1), 23-26, 2018.

[16] G. C. Rao and Berhanu Assaye. Dense elements of heyting almost distributive lattices, International Journal Of Computational Cognition (Http://Www.Ijcc.Us), 9(2), 2011.

Referensi

Dokumen terkait

It was observed that the influence of strategic sustainability management consisting of internal and external challenges as well as sat kerthi culture adopted as

To design the controller of this PSS, at the first time, we change the mathematical model of SIMB into fuzzy model T-S, after that we define the fuzzy output feedback controller, we