• Tidak ada hasil yang ditemukan

Electricity Genera on Jordan Valley Landfill, Hong Kong

N/A
N/A
Protected

Academic year: 2023

Membagikan "Electricity Genera on Jordan Valley Landfill, Hong Kong"

Copied!
22
0
0

Teks penuh

(1)

Example –  Electricity  Genera(on   Jordan  Valley  Landfill,  Hong  Kong  

Waste  in  Place:    1.3  Million  tonnes   Landfill  operated  from  1986-­‐1991   Waste  intake:    ~400  to  1000  tpd  

LFG  Recovery:  ~50  m3/hr    (up  to  500  m3/hr)  

§ Design  electrical  power  genera9on  capacity:  220  kW  

§ Produces  electrical  power  for  onsite  leachate  pre-­‐treatment  works    

(2)

Purifica(on  for  Use  as  Process  Heat  

§  Technology  

§  Gas  is  purified  from  50%  to  97-­‐  99%  methane  

§  Removal  of  carbon  dioxide  is  primary  step

 

§   Compressed  Natural  Gas  (CNG)  

§   Pipeline  quality  gas  

§  Liquefied  Natural  Gas  (LNG)    

(3)

§  Advantages  

§  Inject  treated  product  into  pipeline  

§  Methane  can  be  used  as  raw  material  

§  Reduc(on  in  use  of    fossil  fuels  

§  Disadvantages  

§  Must  meet  strict  standards  of  pipeline/user  

§  Economical  for  large  scale  only  

§  Requires  extensive  pretreatment  to  remove  all   components  other  than  methane  

§  Very  expensive,  massive  size,  high  demand  on  

Purifica(on  

(4)

Example –  Purifica(on     NENT  Landfill,  Hong  Kong  

§  6600  m3/hr  of  LFG  purified  to  90%+  CH4  and  compressed  into  18  km   pipeline  to  provide  process  heat  to  industrial  facility  

§  4MW  On-­‐site  Power  Genera9on    

§  On-­‐site  leachate  treatment  

  Landfill  Capacity:    35  Million  m3  

Landfilling  began:  1995  (~30  years  design  life)   Waste  Intake:    ~3500  tpd  

LFG  Recovery:  >6600  m3/hr  

(5)

Example –  Purifica(on  (LFG  to  CNG)   Xiaping  Landfill,  Shenzhen  

§  500  m3/hr  of  LFG  purified  to  90%+  CH4  and  compressed  into  CNG    

§  Provides  fuel  to  on-­‐site  vehicles  

Landfill  Capacity:    47  Million  m3  

Landfilling  began:  1997  (30  years  design  life)   Waste  In  place:  13  Million  tonnes  

Waste  Intake:    3000~3500  tpd   LFG  Recovery:  >9000  m3/hr  

(6)

Example  –  Purifica(on  (LFG  to  LNG)     Altamount  Landfill,  California,  USA    

Waste  In  place:  36.8  Million  tonnes   LFG  to  LNG  opera9on  began  in  2009   LFG  Recovery:  ~3500  m3/hr  

§  85,000  m3  of  LFG  converted  to  49,000  liters  of  LNG  daily  

§  Provides  fuel  to  300  garbage  trucks  

(7)

§  Boilers  

§  Kilns  

§  Furnaces  

§  Process  heat  

§  Leachate  pretreatment  and  evapora(on  

§  Cement  manufacturing  

§  Lumber  drying  

§  Co-­‐combus(on  (e.g.,  in  waste  incinerator)

§  Innova(ve  applica(ons  

§  Greenhouses    

§  Infrared  heaters    

§  Porery  kilns  

Direct  Thermal  Applica(ons  

(8)

§  Gas  piped  to  a  nearby  customer  for  use   in  boiler,  kiln  or  other  process  

§  100  projects  in  the  US  

§  Pipeline  length  range  from  .5  to  18  km  

§  Less  than  5  kilometers  is  most  feasible  

§  LFG  can  be  used  on-­‐site  or  off-­‐site    

§  Best  suited  when  need  for  fuel  is   con(nuous  

Direct  Thermal  Applica(ons  

(9)

Direct  Thermal  Applica(ons  

(10)

Example   –  Process  Heat  

Shuen  Wan  Landfill,  Hong  Kong  

§  Delivered  2,000m3/hr  LFG  (50%+CH4)  to  Towngas  plant  as  process   heat  for  use  in  reformers  during  the  produc9on  of  town  gas  

Landfill  operated  from  1973  to  1995   Waste  in  place:    16  Million  tonnes   LFGE  System  in  opera9on  since  1999   Design  Capacity:  2200  m3/hr      

LFG  Recovery:  300  m3/hr  to  2000  m3/hr)  

(11)

Direct  Thermal  Applica(ons  

Greenhouse  

§  Direct  heat   genera(on  or  

residual  heat  from   power  genera(on  

§  Carbon  dioxide  can   be  used  to  grow  

greenhouse  plants  

§  6  projects  in  the  US  

(opera(ng  or  under  

construc(on)  

(12)

Infrared  Heater  

§  Provide  heat  to  store   room  or  maintenance   workplace  

§  A  small  amount  of  LFG   can  heat  a  large  volume  

§  Simple  installa(on  

§  4  opera(ng  projects  in  

Direct  Thermal  Applica(ons  

(13)

LFG  as  Process  Heat  for     Leachate  Evapora9on  

§ Evaporate  leachate  and  other                          contaminants  with  LFG

§ Reduce  leachate  volume  by  95%+  

§  Commercially  Available  Technology  

§  Units  Opera(ng  in  Asia    

§  16  opera(onal  units  in  the  U.S.  

Direct  Thermal  Applica(ons  

(14)

Example –  Leachate  Evapora(on  System     Anding  Landfill,  Beijing  

Landfill  Capacity:    3.56  Million  m3   Landfilling  began:  11/1996  (14  years   design  life)  

Waste  In  place:  >4.2  Million  tonnes   Waste  Intake:    800~2000  tpd  

LFG  Recovery:  ~400  m3/hr  

§ Design  capacity  of  EVAP:  40  m3  of  leachate  daily

§ First  approved  CDM  project  in  China  

§ First  applica9on  of  leachate  evapora9on  in  Asia  

(15)

Advantages:  

§  Low  pretreatment  requirement;  mainly   dehumidifica(on  

§  Conven(onal  equipment  can  be  used  with  minimal   modifica(ons  

§  Boilers  not  sensi(ve  to  trace  components  

§  Rela(vely  low  capital  and  O&M  costs  

Disadvantages:  

§  End  user  needs  to  be  within  reasonably  close  distance   of  landfill  

§  Care  must  be  taken  to  avoid  contamina(on  of  products

Direct  Thermal  Applica(ons  

(16)

Purifica(on  and  Direct  Thermal   Applica(ons

Technology No.  of  Projects  in  

USA  *

Boiler 54  

Direct  Hea(ng 42  

High  BTU  Fuel 22  

Leachate  Evapora(on 16  

Greenhouse 6  

Alterna(ve  Fuel  (CNG  or  LNG) 3  

Medium  BTU  Fuel  injected  into  Natural   1  

(17)

Combined  Heat  and  Power  

§  Large  Industrial  Applica(ons  

§  Microturbine  Applica(ons  

§   Advantages  

§  Greater  overall  energy  recovery  efficiency  from   waste  heat  recovery  -­‐  up  to  80%    

§  Specialized  CHP  systems  available  

§  Flexible  -­‐  hot  water  or  steam  genera(on  from   recovered  heat  

§  Disadvantages  

§  Addi(onal  capital  and  opera(ng  costs  

(18)

§  9.5  mile  pipeline  from   landfill  

§  4  turbines  retrofired  to   burn  LFG  

§  4.8  MW  =  25%  of  plant ’ s   electrical  needs  

§  72  MMBtu/hr  =  80%  of   plant ’ s  thermal  needs  

(hot  water,  space  hea(ng,   cooling)  

Combined  Heat  and  Power  –  South  Carolina,  USA  

(19)

§  First  School  Co-­‐

genera(on  (CHP)   Project  On  LFG  

§  12  Microturbines  With       360  kW  Capacity  

§  Exhaust  Energy  

Produces  290,000  Btus/

Hour  At  550

o

 

§  School  Expects  To  Save  

$100,000/Year  

Combined  Heat  and  Power  -­‐  Illinois,  USA  

(20)

Significant  Co-­‐benefits  of  Methane  Recovery   and  Use  Projects  

BENEFITS  OF  METHANE  PROJECTS  

 

§  Reduced  waste  of  a  valuable  fuel  and  important  local  energy  source   and    

§  Improved  industrial  safety  and  produc(vity  

§  Improved  air  quality,  water  quality  and  reduced  odors  

§  Reduced  greenhouse  gas  emissions  

§  Progress  toward  sustainable  development  goals  

§  Economic  growth  and  energy  security    

BUT    BARRIERS  EXIST…  

§  Lack  of  awareness  of  emission  levels  and  value  of  lost  fuel  

§  Lack  of  informa(on  on  and  training  in  available  technologies  and   management  prac(ces  

§  Tradi(onal  industry  prac(ces  

§  Regulatory  and  legal  issues  

(21)

Poten(al  Revenue  Streams  

•  Cash  from  Trash!    

§  Energy  sales  

§  Direct  use:  $2~8/MMBTU  

§  Electricity:  $0.05~0.10/kWh  

§  Renewable  /  green  incen(ves:    varies  

§  Grid  connec(on  subsidy:  depends  on  loca(on  

§  Emission  reduc(on  credits  (CER;  VER;  Gold  Standard):  

$3~20/tCO2e  

(22)

For  more  informa(on,  contact:  

 

Bryce  Lloyd  –  bryce.lloyd@owthk.com.hk  

Thank  You!  

   

Referensi

Dokumen terkait

This means that the financial statements of cash waqf funds issued by LAZISMU Pamekasan and KSPPS Nuri East Java are still lacking from the financial

Based on the collected data in the first cycle planning, acting, and observing stages, the research subject had these attributes: Table 8: The Attributes of Research Subject in