• Tidak ada hasil yang ditemukan

Neutrosophic Beta Omega Closed Sets in Neutrosophic Topological Spaces

N/A
N/A
Protected

Academic year: 2023

Membagikan "Neutrosophic Beta Omega Closed Sets in Neutrosophic Topological Spaces "

Copied!
9
0
0

Teks penuh

(1)

2326-9865

129

Neutrosophic Beta Omega Closed Sets in Neutrosophic Topological Spaces

S. Pious Missier1,b), A. Anusuya2,a), A. Nagarajan3,c)

1Head & Associate Professor, Department of Mathematics, Don Bosco College of Arts and Science,

(Affiliated to Manonmaniam Sundaranar University,Tirunelveli) Keela Eral, Thoothukudi, Tamil Nadu-628 908, India.

2 Research Scholar(Reg.No-19222232092024), V.O.Chidambaram College, (Affiliated to Manonmaniam Sundaranar University,Tirunelveli), Thoothukudi-628 003,

India.

3Head & Associate Professor, V. O. Chidambaram College, Thoothukudi, Tamilnadu-628 008, India. nagarajan.voc@gmail.com

b)spmissier@gmail.com

a)anuanishnakul@gmail.com

c)nagarajan.voc@gmail.com

Article Info

Page Number: 129 – 137 Publication Issue:

Vol. 71 No. 3s (2022)

Article History

Article Received: 22 April 2022 Revised: 10 May 2022

Accepted: 15 June 2022 Publication: 19 July 2022

Abstract

We introduce and examine several applications of neutrosophic beta omega closed sets namely π‘‡π‘π›½πœ” βˆ’π‘ π‘, π‘ƒπ‘‡π‘π›½πœ” βˆ’π‘ π‘, π›½π‘‡π‘π›½πœ” βˆ’π‘ π‘, π‘†πΊπ‘‡π‘π›½πœ” βˆ’π‘ π‘, πΊπ‘†π‘‡π‘π›½πœ” βˆ’π‘ π‘in this study. We also introduce the concept of neutrosophic betaomega continuous mapping in neutrosophic topology. Furthermore, we study the relation between the neutrosophic betaomega continuous mapping with the already existing neutrosophic continuous mapping. In addition, we discuss the properties of neutrosophic betaomega continuous mapping.

Keywords:π‘‡π‘π›½πœ” βˆ’π‘ π‘, π‘ƒπ‘‡π‘π›½πœ” βˆ’π‘ π‘, π›½π‘‡π‘π›½πœ” βˆ’π‘ π‘, π‘†πΊπ‘‡π‘π›½πœ” βˆ’π‘ π‘, πΊπ‘†π‘‡π‘π›½πœ” βˆ’π‘ π‘,neutrosophic beta omega continuous mapping.

AMS Mathematics Subject Classification:18B30,03E72 I. INTRODUCTION

Fuzzy set theory introduced by Zadeh[11] has laid the foundation for the new mathematical theories in the research of mathematics. Later, Attanasov[2] developed the concept of intuitionistic fuzzy sets. Smarandache[7] was the first to coin the term "neutrosophic set.".

Neutrosophic operations and neutrosophic continuous functions have been investigated by Salama[10]. Here, we shall introduce the applications of neutrosophic beta omega closed set and neutrosophic continuity of neutrosophic-beta-omega sets. Also we present the implications of neutrosophic –beta-omega-continuous mapping.

(2)

2326-9865

II. PRELIMINARIES

Definition 2.1.[7] If βˆ†π‘ is a nonempty fixed set. A neutrosophic set (N-Set) GN is a form factor GN = {οƒ‘οƒ‘πœ, ΞΌG N(𝜁), ΟƒGN(𝜁), Ο…GN(𝜁): πœοƒ‘βˆ†π‘} where ΞΌ

G N(𝜁), ΟƒGN(𝜁) and Ο…GN(𝜁)represents the membership level, non-determination level and non-membership level respectively of each element πœοƒ‘οƒ‘βˆ†π‘to the set 𝐺𝑁. A Neutrosophic set 𝐺𝑁 = {οƒ‘πœ, ΞΌ

G N(𝜁), ΟƒGN(𝜁), Ο…GN(𝜁): πœοƒ‘βˆ†π‘} can be recognized as a triple order μ

G N, ΟƒGN, Ο…GNin ]0,1+[on

βˆ†π‘.

Definition 2.2. [1] For any two sets GNand HN,

1. GN βŠ†οƒ‘HNμG N(𝜁) μH N (𝜁), ΟƒGN(𝜁) σHN(𝜁) and Ο…GN(𝜁) υHN(𝜁)  πœοƒ‘βˆ†π‘ 2. GNβ‹‚ HN = οƒ‘πœ, ΞΌG N(𝜁) μH N(𝜁), ΟƒGN(𝜁) σHN(𝜁), Ο…GN(𝜁) υHN(𝜁) 

3. GN⋃ HN = οƒ‘πœ, ΞΌG N(𝜁) μH N(𝜁), ΟƒGN(𝜁) σHN(𝜁), Ο…GN(𝜁) υHN(𝜁)  4. GNC = {οƒ‘πœ, Ο…GN(𝜁), 1- ΟƒGN(𝜁), ΞΌ

G N(𝜁): πœοƒ‘βˆ†π‘} 5. 0N = {οƒ‘οƒ‘πœ, 0, 0, 1: πœοƒ‘βˆ†π‘}

6. 1N = {οƒ‘οƒ‘πœ, 1, 1, 0: πœοƒ‘βˆ†π‘}

Definition 2.3. [9] A neutrosophic topology (NT) is a family πœπ‘ of neutrosophic subsets ofβˆ†π‘whose member satisfy the following axioms:

1. 0𝑁, 1𝑁 βˆˆοƒ‘πœπ‘

2. β„˜π‘ ∩ ℛ𝑁 βˆˆοƒ‘πœπ‘οƒ‘for any β„˜π‘, ℛ𝑁 ∈ πœπ‘ 3. βˆͺ ℛ𝑁 𝑖 ∈ πœπ‘οƒ‘βˆ€οƒ‘{ ℛ𝑁 𝑖 : i βˆˆοƒ‘J} βŠ† πœπ‘

Any neutrosophic set in πœπ‘ is a neutrosophic open set (NO-set). If a neutrosophic set GN is a neutrosophic open set,then its complement GNc is a neutrosophic closed set(NC-set) in

βˆ†π‘.Also, neutrosophic topological space (NTS) is denoted by (βˆ†π‘, πœπ‘).

Definition 2.4. [8] A N-Set𝐺𝑁 of (βˆ†π‘,πœπ‘) is calledneutrosophic beta omegaclosed(π‘π›½πœ”πΆ) if 𝛽𝑐𝑙𝑁(𝐺𝑁) οƒπ‘ˆπ‘ whenever πΊπ‘οƒπ‘ˆπ‘ and π‘ˆπ‘ is Nπœ”π‘‚ in (βˆ†π‘,πœπ‘).

Definition 2.5. [8]For every set 𝐺𝑁 βŠ† οƒ‘βˆ†π‘, πœπ‘οƒ‘, we define 1. π›½πœ”π‘π‘™π‘(𝐺𝑁)= ∩{𝑉𝑁: πΊπ‘βŠ† 𝑉𝑁, 𝑉𝑁 ∈ π‘π›½πœ”Cοƒ‘βˆ†π‘, πœπ‘οƒ‘οƒ‘}.

2. π›½πœ”π‘–π‘›π‘‘π‘(𝐺𝑁) = βˆͺ{π‘ˆπ‘: π‘ˆπ‘ βŠ† 𝐺𝑁 and π‘ˆπ‘ ∈ π‘π›½πœ”π‘‚οƒ‘βˆ†π‘, πœπ‘οƒ‘}

Definition2.6. [6]A mapping𝑓: βˆ†π‘, πœπ‘ β†’ 𝛀𝑁, πœŽπ‘ is said to be

1. Neutrosophic-continuous(π‘π‘π‘œπ‘›π‘‘) if π‘“βˆ’1(𝐺𝑁) is 𝑁𝐢set in οƒ‘βˆ†π‘, πœπ‘οƒ‘οƒ‘for each𝑁𝐢-set 𝐺𝑁 in (𝛀𝑁, πœŽπ‘).

2. Neutrosophic-pre-continuous(π‘π‘ƒπ‘π‘œπ‘›π‘‘) if π‘“βˆ’1(𝐺𝑁) is 𝑁𝑃𝐢set in οƒ‘βˆ†π‘,πœπ‘οƒ‘οƒ‘for each𝑁𝐢-set 𝐺𝑁 in (𝛀𝑁, πœŽπ‘).

3. Neutrosophic-beta-continuous(π‘π›½π‘π‘œπ‘›π‘‘) if π‘“βˆ’1(𝐺𝑁) is 𝑁𝛽Cset in οƒ‘βˆ†π‘, πœπ‘οƒ‘οƒ‘for each𝑁𝐢-set 𝐺𝑁 in (𝛀𝑁, πœŽπ‘)

4. Neutrosophic-alpha-generalized-continuous(π‘π›ΌπΊπ‘π‘œπ‘›π‘‘) if π‘“βˆ’1(𝐺𝑁) is 𝑁𝛼𝐺𝐢set in οƒ‘βˆ†π‘, πœπ‘οƒ‘οƒ‘for each𝑁𝐢-set 𝐺𝑁 in (𝛀𝑁, πœŽπ‘).

III. APPLICATIONS OF NEUTROSOPHIC BETA OMEGA CLOSED SETS Definition 3.1.A neutrosophic topological space(βˆ†π‘,πœπ‘) is called a

(3)

2326-9865

131 2. Pre-π‘‡π‘π›½πœ”-space(π‘ƒπ‘‡π‘π›½πœ”βˆ’π‘ π‘) if allπ‘π›½πœ”πΆset is NPC.

3. Beta-π‘‡π‘π›½πœ”-space(π›½π‘‡π‘π›½πœ”βˆ’π‘ π‘) if allπ‘π›½πœ”πΆset is N𝛽𝐢.

4. Semi-generalized-π‘‡π‘π›½πœ”-space(π‘†πΊπ‘‡π‘π›½πœ”βˆ’π‘ π‘) if allπ‘π›½πœ”πΆset is NSGC.

5. Generalized-semi-𝑇𝑁𝛽 πœ”-space(πΊπ‘†π‘‡π‘π›½πœ”βˆ’π‘ π‘) if allπ‘π›½πœ”πΆset is NGSC.

Example 3.1.Let βˆ†π‘ = [0, 1], πœπ‘ = {0𝑁, 𝐺𝑁𝑐 Ξ» , 𝐻𝑁𝑐 Ξ» , 1𝑁},(βˆ†π‘, πœπ‘) = {0𝑁, 𝐺𝑁(Ξ»), 𝐻𝑁 Ξ» , 1𝑁}. where

𝐺𝑁(Ξ») =

< πœ†, πœ†, 1 βˆ’ πœ† > π‘€π‘•π‘’π‘Ÿπ‘’ 0 ≀ πœ† ≀1

2

< 1 βˆ’ πœ†, 1 βˆ’ πœ†, πœ† >1

2≀ πœ† ≀ 1 and 𝐻𝑁(Ξ») =

< πœ†, πœ†, 1 βˆ’ πœ† > π‘€π‘•π‘’π‘Ÿπ‘’ 0 ≀ πœ† ≀1

2

< 1

2, 1

2, 1

2> 1

2≀ πœ† ≀ 1 . Then πœπ‘ is a NT. Here, (βˆ†π‘, πœπ‘) is π‘‡π‘π›½πœ”βˆ’π‘ π‘.

Example 3.2. Let βˆ†π‘ = {πœ†1,πœ†2, πœ†3}, πœπ‘ = {0𝑁, 𝐺𝑁, 1𝑁} where 𝐺𝑁 = < 𝜁, πœ†1

0.7,πœ†2

0.6,πœ†3

0.5 ,

πœ†1 0.6,πœ†2

0.6,πœ†3

0.7 , πœ†1

0.3,πœ†2

0.5,πœ†3

0.4 >.Then πœπ‘ is a NT. Then π‘π›½πœ”πΆ(βˆ†π‘, πœπ‘) = (βˆ†π‘, πœπ‘)-{ 𝑃𝑁 / πΊπ‘βŠ†π‘ƒπ‘ βŠ‚ 1𝑁} = 𝑁𝑃𝐢(βˆ†π‘, πœπ‘). Therefore,every π‘π›½πœ”πΆset is𝑁𝑃𝐢. Hence(βˆ†π‘,πœπ‘) is π‘ƒπ‘‡π‘π›½πœ”βˆ’π‘ π‘.

Example 3.3. Let βˆ†π‘ = {πœ†1,πœ†2, πœ†3}, πœπ‘ = {0𝑁, 𝐺𝑁, 1𝑁} where 𝐺𝑁 = < 𝜁, πœ†1

0.6,πœ†2

0.6,πœ†3

0.6 ,

πœ†1 0.7,πœ†2

0.7,πœ†3

0.7 , πœ†1

0.3,πœ†2

0.3,πœ†3

0.4 >.Then πœπ‘ is a NT. Then π‘π›½πœ”πΆ(βˆ†π‘, πœπ‘) = (βˆ†π‘, πœπ‘)-{ 𝑃𝑁 / πΊπ‘βŠ†π‘ƒπ‘ βŠ‚ 1𝑁} = 𝑁𝛽𝐢(βˆ†π‘, πœπ‘). Therefore,every π‘π›½πœ”πΆset is NΞ²C. Hence(βˆ†π‘, πœπ‘) is π›½π‘‡π‘π›½πœ”βˆ’π‘ π‘.

Example 3.4. Let βˆ†π‘ = {πœ†1, πœ†2, πœ†3}, πœπ‘ = {0𝑁, 𝐺𝑁, 1𝑁} where 𝐺𝑁 = < 𝜁, πœ†1

0.3,πœ†2

0.4,πœ†3

0.4 ,

πœ†1 0.2,πœ†2

0.3,πœ†3

0.1 , πœ†1

0.8,πœ†2

0.8,πœ†3

0.9 >.Then πœπ‘ is a NT. Then π‘π›½πœ”πΆ(βˆ†π‘, πœπ‘) = (βˆ†π‘, πœπ‘) = 𝑁𝐺𝑆𝐢(βˆ†π‘, πœπ‘). Therefore every π‘π›½πœ”πΆset is 𝑁𝐺𝑆𝐢. Hence(βˆ†π‘, πœπ‘) is πΊπ‘†π‘‡π‘π›½πœ”βˆ’π‘ π‘.

Example 3.5. Let βˆ†π‘ = {πœ†1, πœ†2, πœ†3},πœπ‘ = {0𝑁, 𝐺𝑁, 1𝑁} where 𝐺𝑁 = < 𝜁, πœ†1

0.3,πœ†2

0.3,πœ†3

0.3 ,

πœ†1 0.1,πœ†2

0.3,πœ†3

0.1 , πœ†1

0.8,πœ†2

0.8,πœ†3

0.8 >.Then πœπ‘ is a NT. Then π‘π›½πœ”πΆ(βˆ†π‘, πœπ‘) = (βˆ†π‘, πœπ‘) = 𝑁𝑆𝐺𝐢(βˆ†π‘, πœπ‘). Therefore every π‘π›½πœ”πΆset is 𝑁𝑆𝐺𝐢. Hence(βˆ†π‘, πœπ‘)is π‘†πΊπ‘‡π‘π›½πœ”βˆ’π‘ π‘.

Theorem3.1.

(a). Every π‘ƒπ‘‡π‘π›½πœ” βˆ’π‘ π‘ is π›½π‘‡π‘π›½πœ” βˆ’π‘ π‘. (b). Every π‘‡π‘π›½πœ” βˆ’π‘ π‘ is π‘ƒπ‘‡π‘π›½πœ” βˆ’π‘ π‘. (c). Every π‘‡π‘π›½πœ” βˆ’π‘ π‘ is π›½π‘‡π‘π›½πœ” βˆ’π‘ π‘. (d). Every π‘‡π‘π›½πœ” βˆ’π‘ π‘ is πΊπ‘†π‘‡π‘π›½πœ” βˆ’π‘ π‘. (e). Every π‘‡π‘π›½πœ” βˆ’π‘ π‘ is π‘†πΊπ‘‡π‘π›½πœ” βˆ’π‘ π‘.

Proof :

(4)

2326-9865

(a). Let(βˆ†π‘, πœπ‘) beπ‘ƒπ‘‡π‘π›½πœ” βˆ’π‘ π‘. We know that, every 𝑁𝑃𝐢 set is 𝑁𝛽𝐢 set and since every π‘π›½πœ”πΆset is 𝑁𝑃𝐢, we get π‘π›½πœ”πΆset is 𝑁𝛽𝐢 set.Hence(βˆ†π‘, πœπ‘) is a π›½π‘‡π‘π›½πœ” βˆ’π‘ π‘.

(b), (c), (d) follow from the facts that every 𝑁𝐢 set is 𝑁𝑃𝐢 set, 𝑁𝛽𝐢 set, 𝑁𝐺𝑆C set.

𝑁𝑆𝐺𝐢 set respectively.

Remark 3.1.The examples below show that the converse of the preceding theorems does not have to be true.

Example 3.6.Takeβˆ†π‘ = {πœ†1, πœ†2, πœ†3}, πœπ‘ = {0𝑁, 𝐺𝑁, 1𝑁} where 𝐺𝑁 = < 𝜁, πœ†1

0.3,πœ†2

0.3,πœ†3

0.4 ,

πœ†1 0.3,πœ†2

0.3,πœ†3

0.3 , πœ†1

0.6,πœ†2

0.6,πœ†3

0.6 >.Then πœπ‘ is a NT. Then π‘π›½πœ”πΆ(βˆ†π‘, πœπ‘) = (βˆ†π‘, πœπ‘) = 𝑁𝛽𝐢(βˆ†π‘, πœπ‘). But 𝑁𝑃𝐢(βˆ†π‘, πœπ‘) = (βˆ†π‘, πœπ‘)-{𝑃𝑁 / 𝐺𝑁 βŠ‚ 𝑃𝑁 βŠ‚ 𝐺𝑁𝐢}-{𝑄𝑁 / 𝐺𝑁 βŠ‚ 𝑄𝑁 ⊈ 𝐺𝑁𝐢} .Hence(βˆ†π‘, πœπ‘)is π›½π‘‡π‘π›½πœ”βˆ’π‘ π‘but not π‘ƒπ‘‡π‘π›½πœ”βˆ’π‘ π‘.

Example 3.7. Let βˆ†π‘ = {πœ†1, πœ†2, πœ†3}, πœπ‘ = {0𝑁, 𝐺𝑁, 1𝑁} where 𝐺𝑁 = < 𝜁, πœ†1

0.7,πœ†2

0.6,πœ†3

0.5 ,

πœ†1 0.6,πœ†2

0.6,πœ†3

0.7 , πœ†1

0.3,πœ†2

0.5,πœ†3

0.4 >.Then πœπ‘ is a NT. Then π‘π›½πœ”πΆ(βˆ†π‘, πœπ‘) = (βˆ†π‘, πœπ‘)-{𝑃𝑁 / 𝐺𝑁 βŠ† 𝑃𝑁 βŠ‚ 1𝑁} = 𝑁𝑃𝐢(βˆ†π‘, πœπ‘)and 𝑁𝐢(βˆ†π‘, πœπ‘)={0𝑁, 𝐺𝑁𝐢, 1𝑁}. Hence(βˆ†π‘, πœπ‘)is π‘ƒπ‘‡π‘π›½πœ”βˆ’π‘ π‘but not π‘‡π‘π›½πœ” βˆ’π‘ π‘.

Example 3.8. Let βˆ†π‘ = {πœ†1,πœ†2, πœ†3}, πœπ‘ = {0𝑁, 𝐺𝑁, 1𝑁} where 𝐺𝑁 = <ΞΆ, πœ†1

0.6,πœ†2

0.6,πœ†3

0.6 ,

πœ†1 0.7,πœ†2

0.7,πœ†3

0.7 , πœ†1

0.3,πœ†2

0.3,πœ†3

0.4 >.Then πœπ‘ is a NT. Then π‘π›½πœ”πΆ(βˆ†π‘, πœπ‘)= (βˆ†π‘, πœπ‘)-{𝑃𝑁 / πΊπ‘βŠ† 𝑃𝑁 βŠ‚ 1𝑁} = 𝑁𝛽𝐢(βˆ†π‘, πœπ‘) and 𝑁𝐢(βˆ†π‘, πœπ‘) ={0𝑁, 𝐺𝑁𝐢, 1𝑁}. Hence(βˆ†π‘, πœπ‘)is π›½π‘‡π‘π›½πœ”βˆ’π‘ π‘but not π‘‡π‘π›½πœ” βˆ’π‘ π‘.

Example 3.9. Let βˆ†π‘ = {πœ†1, πœ†2, πœ†3}, πœπ‘ = {0𝑁, 𝐺𝑁, 1𝑁} where 𝐺𝑁 = <ΞΆ, πœ†1

0.3,πœ†2

0.4,πœ†3

0.4 ,

πœ†1 0.2,πœ†2

0.3,πœ†3

0.1 , πœ†1

0.8,πœ†2

0.8,πœ†3

0.9 >.Then πœπ‘ is a NT. Then π‘π›½πœ”πΆ(βˆ†π‘, πœπ‘) = (βˆ†π‘, πœπ‘)= 𝑁𝐺𝑆𝐢(βˆ†π‘, πœπ‘) and 𝑁𝐢(βˆ†π‘, πœπ‘) ={0𝑁, 𝐺𝑁𝐢, 1𝑁}. Hence(βˆ†π‘, πœπ‘)is πΊπ‘†π‘‡π‘π›½πœ”βˆ’π‘ π‘but not π‘‡π‘π›½πœ” βˆ’π‘ π‘.

Example 3.10.Let βˆ†π‘ = {πœ†1, πœ†2, πœ†3}, πœπ‘ = {0𝑁, 𝐺𝑁, 1𝑁} where 𝐺𝑁 = < 𝜁, πœ†1

0.3,πœ†2

0.3,πœ†3

0.3 ,

πœ†1 0.1,πœ†2

0.3,πœ†3

0.1 , πœ†1

0.8,πœ†2

0.8,πœ†3

0.8 >.Then πœπ‘is a NT. Then π‘π›½πœ”πΆ(βˆ†π‘, πœπ‘) = (βˆ†π‘, πœπ‘)= 𝑁𝑆𝐺𝐢(βˆ†π‘, πœπ‘) and 𝑁𝐢(βˆ†π‘, πœπ‘) ={0𝑁,𝐺𝑁𝐢, 1𝑁}. Therefore every π‘π›½πœ”πΆ set is 𝑁𝑆𝐺𝐢. Hence(βˆ†π‘, πœπ‘) is π‘†πΊπ‘‡π‘π›½πœ”βˆ’π‘ π‘but not π‘‡π‘π›½πœ” βˆ’π‘ π‘.

IV. NEUTROSOPHIC BETA OMEGACONTINUOUS MAPPING

Definition4.1. A mapping 𝑓: βˆ†π‘, πœπ‘ β†’ 𝛀𝑁, πœŽπ‘ is calledneutrosophic betaomegacontinuous(π‘π›½πœ”π‘π‘œπ‘›π‘‘) if π‘“βˆ’1(𝐺𝑁) is π‘π›½πœ”πΆset in (βˆ†π‘, πœπ‘)for all𝑁𝐢-set 𝐺𝑁 in (𝛀𝑁, πœŽπ‘).

Example 4.1. Let βˆ†π‘ = {πœ†1, πœ†2, πœ†3}, Ξ“N= {𝛿1, 𝛿2, 𝛿3},πœπ‘ = {0𝑁, 𝐺𝑁, 1N} and πœŽπ‘ = {0𝑁, 𝐻𝑁, π‘Šπ‘, 1N} where 𝐺𝑁 = < 𝜁, πœ†1

0.6,πœ†2

0.7,πœ†3

0.6 , πœ†1

0.7,πœ†2

0.8,πœ†3

0.7 , πœ†1

0.4,πœ†2

0.3,πœ†3

0.4 >, 𝐻𝑁 = <

(5)

2326-9865

133 𝜁, 𝛿1

0.7,𝛿2

0.7,𝛿3

0.7 , 𝛿1

0.8,𝛿2

0.8,𝛿3

0.7 , 𝛿1

0.3,𝛿2

0.2,𝛿3

0.2 >, π‘Šπ‘ =

< 𝜁, 𝛿1

0.8,𝛿2

0.7,𝛿3

0.8 , 𝛿1

0.9,𝛿2

0.8,𝛿3

0.7 , 𝛿1

0.2,𝛿2

0.2,𝛿3

0.2 >.Then πœπ‘ and πœŽπ‘ are NTs. Define a mapping 𝑓: π›₯𝑁, πœπ‘ β†’ 𝛀𝑁, πœŽπ‘ by 𝑓(πœ†1) = 𝛿1, 𝑓(πœ†2) = 𝛿2 and 𝑓 πœ†3 = 𝛿3. Then 𝑓 βˆ’1(𝑉𝑁) is NΞ²Ο‰C in (βˆ†π‘, πœπ‘) for every 𝑁𝐢set 𝑉𝑁in (𝛀𝑁, πœŽπ‘). Hence𝑓 is π‘π›½πœ”π‘π‘œπ‘›π‘‘.

Theorem 4.1.

1. Every π‘π‘π‘œπ‘›π‘‘ mapping is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping.

2. Every NΞ²cont mapping is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping.

3. Every π‘πΊβˆ—π‘π‘œπ‘›π‘‘ mappingis π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping.

4. Every π‘πœ“π‘π‘œπ‘›π‘‘ mapping is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping.

5. Every π‘π‘ŠGβˆ—π‘π‘œπ‘›π‘‘ mapping is π‘π›½πœ”π‘π‘œπ‘›π‘‘ mapping.

6. Every π‘π‘ƒπ‘π‘œπ‘›π‘‘mapping is π‘π›½πœ”π‘π‘œπ‘›π‘‘ mapping.

7.

Proof:

1. Taking𝑓as aπ‘π‘π‘œπ‘›π‘‘mappingand𝑉𝑁 be any 𝑁𝐢-setin (𝛀𝑁, πœŽπ‘). Since,𝑓 is π‘π‘π‘œπ‘›π‘‘ mapping, we get π‘“βˆ’1(𝑉𝑁) is 𝑁𝐢-set in (βˆ†π‘, πœπ‘) implies π‘“βˆ’1(𝑉𝑁) is π‘π›½πœ”πΆset. Hence 𝑓 is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping in (βˆ†π‘, πœπ‘).

2. Let 𝑓 be any NΞ²π‘π‘œπ‘›π‘‘mapping and 𝑉𝑁 be any 𝑁𝐢-set in (𝛀𝑁, πœŽπ‘). Since 𝑓 is NΞ²π‘π‘œπ‘›π‘‘mapping, we get π‘“βˆ’1(𝑉𝑁) is 𝑁𝛽𝐢 in βˆ†π‘, πœπ‘ .Since every𝑁𝛽𝐢set isπ‘π›½πœ”πΆ,π‘“βˆ’1(𝑉𝑁) is π‘π›½πœ”πΆ. Hence 𝑓 is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping in (βˆ†π‘, πœπ‘).

3. Let 𝑓 beπ‘πΊβˆ—π‘π‘œπ‘›π‘‘ mapping and 𝑉𝑁 be any 𝑁𝐢-set in (𝛀𝑁, πœŽπ‘). Since 𝑓 is π‘πΊβˆ—π‘π‘œπ‘›π‘‘mapping, we get π‘“βˆ’1(𝑉𝑁) is 𝑁𝐺*C in (βˆ†π‘, πœπ‘). Therefore, π‘“βˆ’1(𝑉𝑁) is π‘π›½πœ”πΆ, because every π‘πΊβˆ—πΆ set is π‘π›½πœ”πΆ set. Hence 𝑓 is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping in (βˆ†π‘, πœπ‘) 4. Let 𝑓 be π‘πœ“π‘π‘œπ‘›π‘‘mapping and 𝑉𝑁 be any 𝑁𝐢-set in (𝛀𝑁, πœŽπ‘). Since 𝑓 is π‘πœ“π‘π‘œπ‘›π‘‘mapping, we

get π‘“βˆ’1(𝑉𝑁) is π‘πœ“πΆin (βˆ†π‘, πœπ‘). Since allπ‘πœ“πΆ set is π‘π›½πœ”πΆ,π‘“βˆ’1(𝑉𝑁) is NΞ²Ο‰C. Hence 𝑓 is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping in (βˆ†π‘, πœπ‘).

5. Let 𝑓 be π‘π‘ŠGβˆ—π‘π‘œπ‘›π‘‘mapping and 𝑉𝑁 be any 𝑁𝐢-set in (𝛀𝑁, πœŽπ‘). Since 𝑓 is π‘π‘ŠGβˆ—π‘π‘œπ‘›π‘‘mapping, we get π‘“βˆ’1(𝑉𝑁) is π‘π‘ŠπΊβˆ—πΆ in (βˆ†π‘, πœπ‘).We know that every π‘π‘ŠπΊβˆ—πΆ set is π‘π›½πœ” set,π‘“βˆ’1(𝑉𝑁) is π‘π›½πœ”πΆ. Hence 𝑓 is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping in (βˆ†π‘, πœπ‘).

6. Let 𝑓 be π‘π‘ƒπ‘π‘œπ‘›π‘‘mapping in (βˆ†π‘, πœπ‘). Let 𝑉𝑁 be any 𝑁𝐢-set in (𝛀𝑁, πœŽπ‘)). Since 𝑓 is π‘π‘π‘œπ‘›π‘‘mapping, we get π‘“βˆ’1(𝑉𝑁) is 𝑁𝑃𝐢in (βˆ†π‘, πœπ‘). Every 𝑁𝑃𝐢 is π‘π›½πœ”πΆ that impliesπ‘“βˆ’1(𝑉𝑁) isπ‘π›½πœ”πΆ. Hence 𝑓 is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping in (βˆ†π‘, πœπ‘).

Example 4.2. Let βˆ†π‘ = {πœ†1, πœ†2, πœ†3}, 𝛀𝑁 = {𝛿1, 𝛿2, 𝛿3},πœπ‘ = {0𝑁, 𝐺𝑁, 1N} and πœŽπ‘ = {0𝑁, 𝐻𝑁, 1N} where 𝐺𝑁 = < 𝜁, πœ†1

0.2,πœ†2

0.2,πœ†3

0.1 , πœ†1

0.7,πœ†2

0.7,πœ†3

0.7 , πœ†1

0.7,πœ†2

0.7,πœ†3

0.7 >, 𝐻𝑁 =

< 𝜁, 𝛿1

0.2,𝛿2

0.2,𝛿3

0.1 , 𝛿1

0.2,𝛿2

0.1,𝛿3

0.2 , 𝛿1

0.7,𝛿2

0.8,𝛿3

0.8 >.Then πœπ‘ and πœŽπ‘ are NTs. Define a mapping 𝑓: π›₯𝑁, πœπ‘ β†’ 𝛀𝑁, πœŽπ‘ by 𝑓(πœ†1) = 𝛿1, 𝑓(πœ†2) = 𝛿2 and 𝑓 πœ†3 = 𝛿3. Then 𝑓 is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping but not π‘π›½π‘π‘œπ‘›π‘‘ mapping.

(6)

2326-9865

Example 4.3. Let βˆ†π‘ = {πœ†1, πœ†2, πœ†3}, 𝛀𝑁 = {𝛿1, 𝛿2, 𝛿3},πœπ‘ = {0𝑁, 𝐺𝑁, 1N} and πœŽπ‘ = {0𝑁, 𝐻𝑁, π‘Šπ‘ 1N} where 𝐺𝑁 = < 𝜁, 0.5πœ†1,0.6πœ†2,0.5πœ†3 , 0.4πœ†1,0.3πœ†2,0.4πœ†3 , 0.6πœ†1,0.8πœ†2,0.7πœ†3 >, 𝐻𝑁 = < 𝜁,

𝛿1 0.6,𝛿2

0.9,𝛿3

0.7 , 𝛿1

0.8,𝛿2

0.8,𝛿3

0.7 , 𝛿1

0.3,𝛿2

0.4,𝛿3

0.3 >, π‘Šπ‘ =

< 𝜁, 𝛿1

0.7,𝛿2

0.9,𝛿3

0.8 , 𝛿1

0.8,𝛿2

0.9,𝛿3

0.7 , 𝛿1

0.2,𝛿2

0.4,𝛿3

0.2 >.Then πœπ‘ and πœŽπ‘ are NTs. Define a mapping 𝑓: π›₯𝑁, πœπ‘ β†’ 𝛀𝑁, πœŽπ‘ by 𝑓(πœ†1) = 𝛿1, 𝑓(πœ†2) = 𝛿2 and 𝑓 πœ†3 = 𝛿3. Then 𝑓 is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping but not π‘πΊβˆ—π‘π‘œπ‘›π‘‘mapping.

Example 4.4. Let βˆ†π‘ = {πœ†1, πœ†2, πœ†3}, 𝛀𝑁 = {𝛿1, 𝛿2, 𝛿3},πœπ‘ = {0𝑁, 𝐺𝑁, 1N} and πœŽπ‘ = {0𝑁, HN, 1N} where 𝐺𝑁 = < 𝜁, πœ†1

0.3,πœ†2

0.3,πœ†3

0.1 , πœ†1

0.2,πœ†2

0.2,πœ†3

0.2 , πœ†1

0.8,πœ†2

0.8,πœ†3

0.7 >, 𝐻𝑁 = < 𝜁,

𝛿1 0.6,𝛿2

0.6,𝛿3

0.6 , 𝛿1

0.5,𝛿2

0.6,𝛿3

0.6 , 𝛿1

0.4,𝛿2

0.4,𝛿3

0.4 >.Then πœπ‘and πœŽπ‘ are NT. Define a mapping 𝑓: π›₯𝑁, πœπ‘ β†’ 𝛀𝑁, πœŽπ‘ by 𝑓(πœ†1) = 𝛿1, 𝑓(πœ†2) = 𝛿2 and 𝑓 πœ†3 = 𝛿3. Then 𝑓 is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping but not π‘π‘ŠGβˆ—π‘π‘œπ‘›π‘‘mapping.

Remark 4.1.The converse of the preceding theorem does not have to be true.

1. The example 4.1. shows that the converse of theorem 4.1(1) is not true.

2. Theexample 4.3. shows that the converse of the 4.1(4) does not exist.

3. The example 4.2 shows that π‘π›½πœ”π‘π‘œπ‘›π‘‘need not beπ‘π‘ƒπ‘π‘œπ‘›π‘‘.

Remark 4.2. The following examples show that π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping set and π‘πΊπ‘†π‘π‘œπ‘›π‘‘ mapping are independent in (βˆ†π‘, πœπ‘).

Example 4.5. Let βˆ†π‘ = {πœ†1, πœ†2, πœ†3}, 𝛀𝑁 = {𝛿1, 𝛿2, 𝛿3}, πœπ‘ = {0𝑁, 𝐺𝑁, 1N} and πœŽπ‘ = {0𝑁, 𝐻𝑁, π‘Šπ‘ 1N}, where 𝐺𝑁 = < 𝜁, πœ†1

0.9,πœ†2

0.8,πœ†3

0.9 , πœ†1

0.8,πœ†2

0.8,πœ†3

0.7 , πœ†1

0.3,πœ†2

0.2,πœ†3

0.2 >, 𝐻𝑁 = < 𝜁,

𝛿1 0.7,𝛿2

0.7,𝛿3

0.8 , 𝛿1

0.7,𝛿2

0.7,𝛿3

0.6 , 𝛿1

0.4,𝛿2

0.3,𝛿3

0.7 >, π‘Šπ‘ =

< 𝜁, 𝛿1

0.6,𝛿2

0.6,𝛿3

0.8 , 𝛿1

0.6,𝛿2

0.6,𝛿3

0.6 , 𝛿1

0.5,𝛿2

0.4,𝛿3

0.7 >.Then πœπ‘ and πœŽπ‘ are NT. Define a mapping 𝑓: π›₯𝑁, πœπ‘ β†’ 𝛀𝑁, πœŽπ‘ by 𝑓(πœ†1) = 𝛿1, 𝑓(πœ†2) = 𝛿2 and 𝑓 πœ†3 = 𝛿3. Then 𝑓 is π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping notπ‘πΊπ‘†π‘π‘œπ‘›π‘‘ mapping.

Example 4.6. Let βˆ†π‘ = {πœ†1, πœ†2, πœ†3}, 𝛀𝑁 = {𝛿1, 𝛿2, 𝛿3},πœπ‘ = {0𝑁, 𝐺𝑁, 1N} and πœŽπ‘ = {0𝑁, 𝐻𝑁, 1N}, where 𝐺𝑁 = < 𝜁, πœ†1

0.9,πœ†2

0.8,πœ†3

0.9 , πœ†1

0.8,πœ†2

0.7,πœ†3

0.7 , πœ†1

0.2,πœ†2

0.2,πœ†3

0.2 >, 𝐻𝑁 = < 𝜁,

𝛿1 0.1,𝛿2

0.1,𝛿3

0.1 , 𝛿1

0.1,𝛿2

0.1,𝛿3

0.1 , 𝛿1

0.9,𝛿2

0.9,𝛿3

0.9 >.Then πœπ‘ and πœŽπ‘ are NT. Define a mapping 𝑓: π›₯𝑁, πœπ‘ β†’ 𝛀𝑁, πœŽπ‘ by 𝑓(πœ†1) = 𝛿1, 𝑓(πœ†2) = 𝛿2 and 𝑓 πœ†3 = 𝛿3.Then 𝑓 isπ‘πΊπ‘†π‘π‘œπ‘›π‘‘mapping but not π‘π›½πœ”π‘π‘œπ‘›π‘‘mapping.

Remark 4.3. Consider the examples4.5. and 4.6., these examples supports the fact thatπ‘πΊπ‘π‘œπ‘›π‘‘ and π‘π›ΌπΊπ‘π‘œπ‘›π‘‘ mappings are independent with π‘π›½πœ”π‘π‘œπ‘›π‘‘in (βˆ†π‘, πœπ‘).

(7)

2326-9865

135 Figure.1(The implications of π‘΅πœ·πŽπ’„π’π’π’• mapping)

V. SOME THEOREMS AND PROPERTIES OF NΞ²Ο‰-CONTINUOUS MAPPING Theorem5.1.If 𝑓: π›₯𝑁, πœπ‘ β†’ (𝛀𝑁, πœŽπ‘)is π‘π›½πœ”π‘π‘œπ‘›π‘‘and𝑔: (𝛀𝑁, πœŽπ‘) β†’ (Ω𝑁, πœ‘π‘) 𝑖𝑠 π‘π‘π‘œπ‘›π‘‘ then their composition π‘”π‘œπ‘“: (βˆ†π‘,πœπ‘)β†’ (𝛺𝑁, πœ‘π‘) is π‘π›½πœ”π‘π‘œπ‘›π‘‘.

Proof : Let 𝐺𝑁 be any N-set of (𝛺𝑁, πœ‘π‘). Since 𝑔 is π‘π‘π‘œπ‘›π‘‘, π‘”βˆ’1(𝐺𝑁)is NC-set in (𝛀𝑁, πœŽπ‘).

Since 𝑓 is π‘π›½πœ”π‘π‘œπ‘›π‘‘, π‘“βˆ’1(π‘”βˆ’1 𝐺𝑁 ) = (π‘”π‘œπ‘“)βˆ’1 𝐺𝑁 isπ‘π›½πœ”πΆin (βˆ†π‘,πœπ‘). Therefore π‘”π‘œπ‘“ is π‘π›½πœ”π‘π‘œπ‘›π‘‘.

Remark 5.1. If two mappings areπ‘π›½πœ”π‘π‘œπ‘›π‘‘, Then theircompositionneed not be π‘π›½πœ”π‘π‘œπ‘›π‘‘. Example 5.1.Let βˆ†π‘ = {πœ†1, πœ†2, πœ†3}, 𝛀𝑁 = {𝛿1, 𝛿2, 𝛿3}, Ω𝑁 = {𝛾1, 𝛾2, 𝛾3}, πœπ‘ = {0𝑁, 𝐺𝑁, 1N} and πœŽπ‘ = {0𝑁, 𝐻𝑁, 1N}, πœŽπ‘ = {0𝑁, 𝐼𝑁, 1N}, where 𝐺𝑁 =

< 𝜁, πœ†1

0.7,πœ†2

0.8,πœ†3

0.7 , πœ†1

0.8,πœ†2

0.7,πœ†3

0.8 , πœ†1

0.3,πœ†2

0.2,πœ†3

0.3 >, 𝐻𝑁 =

< 𝜁, 𝛿1

0.9,𝛿2

0.9,𝛿3

0.9 , 𝛿1

0.9,𝛿2

0.9,𝛿3

0.9 , 𝛿1

0.1,𝛿2

0.1,𝛿3

0.1 >, 𝐼𝑁 =

< 𝜁, 𝛿1

0.2,𝛿2

0.1,𝛿3

0.2 , 𝛿1

0.1,𝛿2

0.1,𝛿3

0.1 , 𝛿1

0.8,𝛿2

0.8,𝛿3

0.8 >.Then πœπ‘ and πœŽπ‘ are NTs. Define the mappings𝑓: π›₯𝑁, πœπ‘ β†’ 𝛀𝑁, πœŽπ‘ and𝑔: (𝛀𝑁, πœŽπ‘) β†’ (Ω𝑁, πœ‘π‘)by 𝑓(πœ†1) = 𝛿1, 𝑓(πœ†2) = 𝛿2,𝑓 πœ†3 = 𝛿3, 𝑔(𝛿1) = 𝛾1, 𝑔(𝛿2) = 𝛾2 and 𝑔 𝛿3 = 𝛾3. Then 𝑓and 𝑔 areπ‘π›½πœ”π‘π‘œπ‘›π‘‘ mapping but 𝑓 ∘ 𝑔 is notπ‘π›½πœ”π‘π‘œπ‘›π‘‘ mapping.

Theorem 5.2. A map 𝑓: π›₯𝑁, πœπ‘ β†’ (𝛀𝑁, πœŽπ‘)is π‘π›½πœ”π‘π‘œπ‘›π‘‘ if and only if π‘“βˆ’1(𝐺𝑁) is π‘π›½πœ”π‘‚ in π›₯𝑁, πœπ‘ , for every 𝑁𝑂-set 𝐺𝑁 in (𝛀𝑁, πœŽπ‘).

Proof : Let 𝑓: π›₯𝑁, πœπ‘ β†’ (𝛀𝑁, πœŽπ‘)beπ‘π›½πœ”π‘π‘œπ‘›π‘‘ and 𝐺𝑁 be a𝑁𝑂-set in (𝛀𝑁, πœŽπ‘). Then π‘“βˆ’1(𝐺𝑁𝐢) is π‘π›½πœ”πΆin (βˆ†π‘,πœπ‘). But π‘“βˆ’1 𝐺𝑁𝐢 =(π‘“βˆ’1(𝐺𝑁)𝐢 and π‘“βˆ’1(𝐺𝑁)is NΞ²Ο‰O in (βˆ†π‘,πœπ‘).

Converse is similar.

Theorem 3.3.3. Let 𝑓: π›₯𝑁, πœπ‘ β†’ (𝛀𝑁, πœŽπ‘)be a map. Assume that NΞ²Ο‰O π›₯𝑁, πœπ‘ is 𝑁𝐢-set under any union. Then the following are equivalent :

π‘π›½πœ”

π‘π‘œπ‘›π‘‘

𝑁𝛽

π‘π‘œπ‘›π‘‘

𝑁

π‘π‘œπ‘›π‘‘

𝐺𝑆

π‘π‘œπ‘›π‘‘

𝑁𝑃

π‘π‘œπ‘›π‘‘

π‘π‘ŠπΊ

βˆ—π‘π‘œπ‘›π‘‘

π‘πœ“

π‘π‘œπ‘›π‘‘

𝑁𝐺

βˆ—π‘π‘œπ‘›π‘‘

𝑁𝐺

π‘π‘œπ‘›π‘‘

𝑁𝛼𝐺

π‘π‘œπ‘›π‘‘

Referensi

Dokumen terkait

Keterangan yang di dapat dari Tabel 2 adalah jenis operasi yang telah dilaksanakan yakni percobaan yang di lakukan adalah dengan satu kali akses pada layanan dengan satu kom puter

The hymns are well chosen, comprising translations from Latin and Greek, French and German, numerous standard English hymns and some of the best recent "Gospel Songs." The number is