• Tidak ada hasil yang ditemukan

References

N/A
N/A
Protected

Academic year: 2024

Membagikan "References"

Copied!
6
0
0

Teks penuh

(1)

References

Abd-Alrazaq, A. A., Alajlani, M., Alalwan, A. A., Bewick, B. M., Gardner, P.,

& Househ, M. (2019). An overview of the features of chatbots in mental health: A scoping review. International Journal of Medical Informatics, 132, 103978.

Adewumi, T., Liwicki, F., & Liwicki, M. (2022). Vector representations of idioms in conversational systems. arXiv preprint arXiv:2205.03666.

Billinghurst, M. (2017, May). The coming age of empathic computing.

Retrieved from https://medium.com/super-ventures-blog/the-coming -age-of-empathic-computing-617caefc7016

Bodeker, G. (2018). Mental wellness: Pathways, evidence and horizons. Global Wellness Institute.

Cassell, J., Tartaro, A., Rankin, Y., Oza, V., & Tse, C. (2007). Virtual peers for literacy learning. Educational Technology, 39–43.

Chan, L. D., & Ong, E. (2018). Engaging children in conversations during story reading.

Chawla, R., & Anuradha, J. (2018). Counsellor chatbot. Comput. Sci, 5, 126–

136.

Chen, Z., Lu, Y., Nieminen, M. P., & Lucero, A. (2020). Creating a chatbot for and with migrants: chatbot personality drives co-design activities. In Proceedings of the 2020 acm designing interactive systems conference (pp.

219–230).

Clark, A. J. (2016). Empathy and alfred adler: An integral perspective. The Journal of Individual Psychology,72(4), 237–253.

Clarke, A., Friede, T., Putz, R., Ashdown, J., Martin, S., Blake, A., . . . others (2011). Warwick-edinburgh mental well-being scale (wemwbs): validated for teenage school students in england and scotland. a mixed methods assess- ment. BMC public health, 11(1), 1–9.

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning.arXiv preprint arXiv:1511.01432.

Das, S. (2021, March). Rnn vs transformers. https://insightimi.wordpress .com/2021/03/21/rnn-vs-transformers/.

(2)

Day, M.-Y., & Hung, C.-S. (2019). Ai affective conversational robot with hybrid generative-based and retrieval-based dialogue models. In2019 ieee 20th in- ternational conference on information reuse and integration for data science (iri) (pp. 403–409).

De Nieva, J. O., Joaquin, J. A., Tan, C. B., Marc Te, R. K., & Ong, E. (2020).

Investigating students’ use of a mental health chatbot to alleviate academic stress. In 6th international acm in-cooperation hci and ux conference (pp.

1–10).

Devaram, S. (2020). Empathic chatbot: Emotional intelligence for empathic chatbot: Emotional intelligence for mental health well-being. arXiv preprint arXiv:2012.09130.

Dibitonto, M., Leszczynska, K., Tazzi, F., & Medaglia, C. M. (2018). Chatbot in a campus environment: design of lisa, a virtual assistant to help students in their university life. In International conference on human-computer inter- action (pp. 103–116).

Dinan, E., Roller, S., Shuster, K., Fan, A., Auli, M., & Weston, J. (2018). Wiz- ard of wikipedia: Knowledge-powered conversational agents. arXiv preprint arXiv:1811.01241.

DOH. (2018). Irr for mental health act signed. Retrieved fromhttps://www.doh .gov.ph/press-release-/mental-health-act-IRR

Elmasri, D., & Maeder, A. (2016). A conversational agent for an online mental health intervention. In International conference on brain informatics (pp.

243–251).

Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (woebot): a randomized controlled trial. JMIR mental health, 4(2), e19.

Fryer, L., & Carpenter, R. (2006). Bots as language learning tools. Language Learning & Technology, 10(3), 8–14.

Gao, D., Zhu, J., & Li, F. (2021). A hybrid and regenerative model chat robot based on lstm and attention model (Tech. Rep.). EasyChair.

Garg, R., & Sengupta, S. (2020). Conversational technologies for in-home learn- ing: using co-design to understand children’s and parents’ perspectives. In Proceedings of the 2020 chi conference on human factors in computing sys- tems (pp. 1–13).

Ghandeharioun, A., McDuff, D., Czerwinski, M., & Rowan, K. (2019). Towards understanding emotional intelligence for behavior change chatbots. In2019 8th international conference on affective computing and intelligent interac- tion (acii) (pp. 8–14).

Gottman, J. M., Katz, L. F., & Hooven, C. (1996). Parental meta-emotion philos- ophy and the emotional life of families: Theoretical models and preliminary data. Journal of Family Psychology, 10(3), 243.

(3)

Gu, J.-C., Liu, H., Ling, Z.-H., Liu, Q., Chen, Z., & Zhu, X. (2021). Partner matters! an empirical study on fusing personas for personalized response selection in retrieval-based chatbots. InProceedings of the 44th international acm sigir conference on research and development in information retrieval (pp. 565–574).

Gu, X., Yoo, K. M., & Ha, J.-W. (2021). Dialogbert: Discourse-aware response generation via learning to recover and rank utterances. In Proceedings of the aaai conference on artificial intelligence (Vol. 35, pp. 12911–12919).

Hobert, S. (2019). Say hello to ‘coding tutor’ ! design and evaluation of a chatbot- based learning system supporting students to learn to program.

Houben, M., Van Den Noortgate, W., & Kuppens, P. (2015). The relation be- tween short-term emotion dynamics and psychological well-being: A meta- analysis. Psychological bulletin, 141(4), 901.

Huang, J., Li, Q., Xue, Y., Cheng, T., Xu, S., Jia, J., & Feng, L. (2015). Teen- chat: a chatterbot system for sensing and releasing adolescents’ stress. In International conference on health information science (pp. 133–145).

IBM. (2020a, July). Natural language processing. Retrieved from https://

www.ibm.com/cloud/learn/natural-language-processing

IBM. (2020b, August). Neural networks. Retrieved fromhttps://www.ibm.com/

cloud/learn/neural-networks

Inkster, B., Sarda, S., & Subramanian, V. (2018). An empathy-driven, conversa- tional artificial intelligence agent (wysa) for digital mental well-being: real- world data evaluation mixed-methods study. JMIR mHealth and uHealth, 6(11), e12106.

Khaw, D., & Kern, M. (2014). A cross-cultural comparison of the perma model of well-being. Undergraduate Journal of Psychology at Berkeley, University of California, 8(1), 10–23.

Kulatska, I. (2019). Arguebot: Enabling debates through a hybrid retrieval- generation-based chatbot (Unpublished master’s thesis). University of Twente.

Kumar, S., Nilsen, W. J., Abernethy, A., Atienza, A., Patrick, K., Pavel, M., . . . others (2013). Mobile health technology evaluation: the mhealth evidence workshop. American journal of preventive medicine, 45(2), 228–236.

Lee, Y.-C., Yamashita, N., Huang, Y., & Fu, W. (2020). ” i hear you, i feel you”:

encouraging deep self-disclosure through a chatbot. In Proceedings of the 2020 chi conference on human factors in computing systems (pp. 1–12).

Li, J., Sun, X., Wei, X., Li, C., & Tao, J. (2019). Reinforcement learning based emotional editing constraint conversation generation. arXiv preprint arXiv:1904.08061.

Lin, Z., Xu, P., Winata, G. I., Siddique, F. B., Liu, Z., Shin, J., & Fung, P.

(2020). Caire: An end-to-end empathetic chatbot. In Proceedings of the aaai conference on artificial intelligence (Vol. 34, pp. 13622–13623).

(4)

Liu, Y., Liu, M., Wang, X., Wang, L., & Li, J. (2013). Pal: a chatterbot system for answering domain-specific questions. In Proceedings of the 51st annual meeting of the association for computational linguistics: System demonstra- tions (pp. 67–72).

Lubis, N., Sakti, S., Yoshino, K., & Nakamura, S. (2018). Eliciting positive emo- tion through affect-sensitive dialogue response generation: A neural network approach. In Proceedings of the aaai conference on artificial intelligence (Vol. 32).

Maroengsit, W., Piyakulpinyo, T., Phonyiam, K., Pongnumkul, S., Chaovalit, P.,

& Theeramunkong, T. (2019). A survey on evaluation methods for chatbots.

In Proceedings of the 2019 7th international conference on information and education technology (pp. 111–119).

Mind. (2020, July). How to improve your mental wellbeing. https://

www.mind.org.uk/information-support/tips-for-everyday-living/

wellbeing/wellbeing/?o=10135.

Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a word–emotion association lexicon. Computational intelligence,29(3), 436–465.

Morrissey, K., & Kirakowski, J. (2013). ‘realness’ in chatbots: establishing quan- tifiable criteria. InInternational conference on human-computer interaction (pp. 87–96).

Narain, J., Quach, T., Davey, M., Park, H. W., Breazeal, C., & Picard, R. (2020).

Promoting wellbeing with sunny, a chatbot that facilitates positive messages within social groups. In Extended abstracts of the 2020 chi conference on human factors in computing systems (pp. 1–8).

Ong, E., Go, M. J., Lao, R., Pastor, J., & To, L. B. (2021). Towards building mental health resilience through storytelling with a chatbot.

Picard, R. W. (2000). Affective computing. MIT press.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).

Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

Radziwill, N. M., & Benton, M. C. (2017). Evaluating quality of chatbots and intelligent conversational agents. arXiv preprint arXiv:1704.04579.

Ramesh, K., Ravishankaran, S., Joshi, A., & Chandrasekaran, K. (2017). A survey of design techniques for conversational agents. In International conference on information, communication and computing technology (pp. 336–350).

Rankin, J. L., Lane, D. J., Gibbons, F. X., & Gerrard, M. (2004). Adolescent self-consciousness: Longitudinal age changes and gender differences in two cohorts. Journal of Research on Adolescence, 14(1), 1–21.

Rashkin, H., Smith, E. M., Li, M., & Boureau, Y.-L. (2018a). I know the feeling:

Learning to converse with empathy.

Rashkin, H., Smith, E. M., Li, M., & Boureau, Y.-L. (2018b). Towards empathetic open-domain conversation models: A new benchmark and dataset. arXiv

(5)

preprint arXiv:1811.00207.

Rivera, A. K. B., & Antonio, C. A. T. (2017). Mental health stigma among filipinos: Time for a paradigm shift. Philippine Journal of Health Research and Development, 21(2), 20–24.

Roller, S., Dinan, E., Goyal, N., Ju, D., Williamson, M., Liu, Y., . . . oth- ers (2020). Recipes for building an open-domain chatbot. arXiv preprint arXiv:2004.13637.

Santos, K.-A., Ong, E., & Resurreccion, R. (2020). Therapist vibe: children’s expressions of their emotions through storytelling with a chatbot. In Pro- ceedings of the interaction design and children conference (pp. 483–494).

Schwartz, H. A., Sap, M., Kern, M. L., Eichstaedt, J. C., Kapelner, A., Agrawal, M., . . . others (2016). Predicting individual well-being through the language of social media. InBiocomputing 2016: Proceedings of the pacific symposium (pp. 516–527).

Seligman, M. E. (2012). Flourish: A visionary new understanding of happiness and well-being. Simon and Schuster.

Shevat, A. (2017). Designing bots: Creating conversational experiences. O’Reilly.

Sia, D. E., Yu, M. J., Daliva, J. L., Montenegro, J., & Ong, E. (2021). Investigating the acceptability and perceived effectiveness of a chatbot in helping students assess their well-being. InAsian chi symposium 2021 (pp. 34–40).

Tammewar, A., Pamecha, M., Jain, C., Nagvenkar, A., & Modi, K. (2017).

Production ready chatbots: generate if not retrieve. arXiv preprint arXiv:1711.09684.

Tang, F., Zeng, L., Wang, F., & Zhou, J. (2021). Implementation of personagpt dialog model.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

Veloso, A., Mitra-Ventanilla, R., Navarro, K., Rovero, Z., & Tan, A. (2019).

Mobile digital health in the philippines: Issues, risks, challenges, and oppor- tunities.

Wanner, L., Andr´e, E., Blat, J., Dasiopoulou, S., Farr´us, M., Fraga, T., . . . others (2017). Design of a knowledge-based agent as a social companion. Procedia Computer Science, 121, 920–926.

Weizenbaum, J. (1966). Eliza—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36–45.

WHO. (2019a, October). Mental health. https://www.who.int/news-room/

facts-in-pictures/detail/mental-health.

WHO. (2019b). Mental health: Fact sheet. https://www.euro.who.int/ data/

assets/pdf file/0004/404851/MNH FactSheet ENG.pdf.

WHO. (2020, March). Philippines who special initiative for mental health sit-

(6)

uational assessment. https://www.who.int/docs/default-source/

mental-health/special-initiative/who-special-initiative -country-report---philippines---2020.pdf?sfvrsn=4b4ec2ee 8.

Wu, Q., Zhang, Y., Li, Y., & Yu, Z. (2019). Alternating recurrent dialog model with large-scale pre-trained language models.

Xu, Y., & Warschauer, M. (2020). Exploring young children’s engagement in joint reading with a conversational agent. In Proceedings of the interaction design and children conference (pp. 216–228).

Yang, W., Zeng, G., Tan, B., Ju, Z., Chakravorty, S., He, X., . . . others (2020). On the generation of medical dialogues for covid-19. arXiv preprint arXiv:2005.05442.

Yin, J., Chen, Z., Zhou, K., & Yu, C. (2019). A deep learning based chatbot for campus psychological therapy. arXiv preprint arXiv:1910.06707.

Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., & Weston, J. (2018).

Personalizing dialogue agents: I have a dog, do you have pets too? arXiv preprint arXiv:1801.07243.

Zhang, Y., Sun, S., Galley, M., Chen, Y.-C., Brockett, C., Gao, X., . . . Dolan, B. (2019). Dialogpt: Large-scale generative pre-training for conversational response generation. arXiv preprint arXiv:1911.00536.

Zhong, P., Wang, D., & Miao, C. (2019). An affect-rich neural conversational model with biased attention and weighted cross-entropy loss. InProceedings of the aaai conference on artificial intelligence (Vol. 33, pp. 7492–7500).

Zhou, L., Gao, J., Li, D., & Shum, H.-Y. (2020). The design and implementation of xiaoice, an empathetic social chatbot. Computational Linguistics,46(1), 53–93.

Zhu, W., Zhou, X., Wang, K., Luo, X., Li, X., Ni, Y., & Xie, G. (2019). Panlp at mediqa 2019: Pre-trained language models, transfer learning and knowledge distillation. InProceedings of the 18th bionlp workshop and shared task (pp.

380–388).

Referensi

Dokumen terkait

People who are not in touch with their spiritual health usually experience negative feeling that can create the environment for emotional, physical, and mental illness.. They do

Hasil penelitian ini menunjukkan hasil adanya hubungan yang positif dan signifikan antara emotional intelligence dengan psychological well-being pada remaja

The correlation between seven types of adverse childhood experiences and mental well-being showed that emotional violence, physical violence, emotional neglect, physical

The survey of relationship and comparison: Emotional intelligence, competitive anxiety and mental toughness female super league basketball players.. Psikologi tentang

Key Words: emotional intelligence, self-esteem, self-efficacy, psychological well being, senior high school students Abstrak: Penelitian ini bertujuan untuk mengetahui hubungan

Indirect Effects Influence Indirect Effects Emotional Intelligence Employee Performance 0,134 Work EnvironmentEmployee Performance 0,148 Source: Research Results, 2019 Data

MATLAB-WEB CRAWLING & TEXT MINING IMPLEMENTATION :MATLAB AS A WEB CRAWLING & TEXT MINING TOOLS FOR HORIZONTAL SOCIAL CONFLICT-WARNING INTELLIGENCE SYSTEM Page 125 of 128 Yudha

For the present study entitled as “Comparative Study of Mental Health With Relation To Emotional Intelligence and Self-Confidence of Physical Education Students of Sant Baba Bhag Singh