• Tidak ada hasil yang ditemukan

Power Series Methods for Solving Fractal Differential Equations using Least Squares Approximations

N/A
N/A
Protected

Academic year: 2023

Membagikan "Power Series Methods for Solving Fractal Differential Equations using Least Squares Approximations "

Copied!
15
0
0

Teks penuh

(1)

2326-9865

Vol. 71 No. 3s3 (2022) 115 http://philstat.org.ph

Power Series Methods for Solving Fractal Differential Equations using Least Squares Approximations

Dafar Zuhier Ali #1, Adil AL-Rammahi *2

#1,*2 Faculty of Computer Sciences and Mathematics, University of Kufa, Najaf,Iraq [email protected] , [email protected]

ORCID#1: 0000-0003-3361-0182, ORCID*2: 0000-0003-3856-0663

Issue: Special Issue on Mathematical Computation in Combinatorics and Graph Theory in Mathematical Statistician and Engineering Applications

Article Info

Page Number: 115 - 129 Publication Issue:

Vol 71 No. 3s3 (2022)

Article History

Article Received: 30 April 2022 Revised: 22 May 2022

Accepted: 25 June 2022 Publication: 02 August 2022

Abstract

For introducing of studying the fractal differential Equations, a proposed method for its solution was studied using Power series Methods via least squares approximations. The method depend on the definitions of Riemann-liouville fractional derivatives. The linear non homogenous fractal differential Equations are solved with detailed examples. For checking the errors, many comparisons of solutions with exact solutions and with known solutions.

Keywords:Riemann-liouville, fractal differential Equations, Power series methods, least squares approximations, Fractional residual power series.

2010 AMS: 40Cxx, 40C19

1. Introduction

Fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary order, which unifies and generalizes the notions of integer-order differentiation and n-fold integration [1,2,3,4]. Commonly these fractional integrals and derivatives were not known to many scientists and up until recent years, they have been only used in a purely mathematical context, but during these last few decades these integrals and derivatives have been applied in many science contexts due to their frequent appearance in various applications in the fields of fluid mechanics, viscoelasticity, biology, physics, image processing, entropy theory, and engineering [5,6,7,8] It is well known that the fractional order differential and integral operators are non-local operators. This is one reason why fractional calculus theory provides an excellent instrument for description of memory and hereditary properties of various physical processes. For example, half-order derivatives and integrals proved to be more useful for the formulation of certain electrochemical problems than the classical models [1,2,3,4]. Applying fractional calculus theory to entropy theory has also become a significant tool and a hotspot research domain [9,10] Power series have become a fundamental tool in the study of elementary functions and also other not so elementary ones as can be checked in any book of analysis. They have been widely used in computational science for easily obtaining an approximation of functions [11] In physics, chemistry, and many other sciences this power expansion has allowed scientist to make an approximate study of many systems, neglecting higher order terms around the equilibrium point.

(2)

2326-9865

Vol. 71 No. 3s3 (2022) 116 http://philstat.org.ph

This is a fundamental tool to linearize a problem, which guarantees easy analysis[12,13 ] The study of fractional derivatives presents great difficulty due to their complex integro-differential definition, which makes a simple manipulation with standard integer operators a complex operation that should be done carefully. The solution of fractional differential equations (FDEs), in most methods, appears as a series solution of fractional power series (FPS) [14,15,16,17] We will study a developed solution method, which is the combination of two methods of the power series and the approximation of least squares with giving some examples and solving them in the developed way and comparing with the real solution as shown in the drawing and the attached tables with examples and programmed in Matlab.

2-Basic concepts of fractal differential equations

Defintion (1):In the theory of fractional calculus, the entire gamma function ฮ“(t) plays a substantial turn. An inclusive definition of ฮ“(t) is that supplied by Euler limit [17]

ฮ“(t) =lim

Nโ†’โˆž

N!Nt

t(t+1)(t+2)(t+N) , t > 0 (1)

Whilst the beneficial integral convert form is defined by:

ฮ“(t)=โˆซ y0โˆž tโˆ’1eโˆ’u du, R(t) > 0 (2)

Defintion(2):The ฮฑ th order left and right Riemann-liouville integrals of funaction y(x) are defined on the interval (a,b) as following[1][18][22]:

a๐ผ๐‘ฅ๐›ผ y(t) = 1

ะ“(ฮฑ) โˆซax(xโˆ’s)y(s)1โˆ’ฮฑ ds (3) x๐ผ๐‘๐›ผ y(t) = 1

ะ“(ฮฑ) โˆซxb(xโˆ’s)y(s)1โˆ’ฮฑ ds (4)

Where ฮฑ > 0 are called fractional integrals of the order ฮฑ, they are sometimes called left-sides and right-sided fractional integrals respectively.

Defintion (3) : The ฮฑ th order left and right Riemann-liouville drrivative of funaction y(t) are defined on the interval (a,b) are given as[1, 18, 22]

RL ๐ทa,xฮฑ y(t) = 1

ะ“(nโˆ’ฮฑ) dn

dxn โˆซ (x โˆ’ ฯ„)ax nโˆ’ฮฑโˆ’1 y(ฯ„)dฯ„ (5) RL ๐ท๐‘ฅ,๐‘๐›ผ y(x) = (โˆ’1)n

ะ“(nโˆ’ฮฑ) dn

dxn โˆซ (ฯ„ โˆ’ x)xb nโˆ’ฮฑโˆ’1 y(ฯ„)dฯ„ (6) where n โˆ’ 1 < ๐›ผ < ๐‘› โˆˆ z+.

2.1:the composition of Riemann-liouville fractional integral and derivative

โ€ข If ๐น โˆˆ ๐ถ[0, โˆž),then the Riemann-liouville fractional order integral has the following important property [1],[18]:

Iฮฑ(Iฮฒ f(x)) = Iฮฒ(Iฮฑ f(x)) = Iฮฑ+ฮฒ f(x) where ฮฑ > 0 ๐‘Ž๐‘›๐‘‘ ๐›ฝ > 0

= 1

ฮ“(ฮฑ + ฮฒ) โˆซ(x โˆ’ t)ฮฑ+ฮฒโˆ’1

x

0

f(t) dt

โ€ข let use consider the fractional derivative of order ฮฑ a fractional derivative of order ฮฒ [2],[19]

๐ท๐›ผ(๐ท๐›ฝ๐‘“(๐‘ก)) = ๐ท๐›ผ+๐›ฝ๐‘“(๐‘ก)

โ€ข for ๐›ผ > 0, ๐‘ก > 0 [2],[3]

Dฮฑ(Iฮฑf(t)) = f(t)

(3)

2326-9865

Vol. 71 No. 3s3 (2022) 117 http://philstat.org.ph

โ€ข ๐ท๐›ผ(๐œ†๐‘“(๐‘ก) + ๐œ‡๐‘”(๐‘ก)) = ๐œ†๐ท๐›ผ๐‘“(๐‘ก) + ๐œ‡๐ท๐›ผ๐‘”(๐‘ก) [2]

โ€ข ๐ท๐›ผ(๐‘˜๐‘“(๐‘ก)) = ๐‘˜๐ท๐›ผ๐‘“(๐‘ก) ๐›ผ > 0

โ€ข ๐ท๐›ผ(๐‘“(๐‘ก). ๐‘”(๐‘ก)) = [๐ท๐›ผ๐‘“(๐‘ก)]. ๐‘”(๐‘ก) + ๐‘“(๐‘ก)[๐ท๐›ผg(t)][2]

โ€ข ๐ท๐›ผ(๐‘“(๐‘ก) + ๐‘”(๐‘ก)) = ๐ท๐›ผ๐‘“(๐‘ก) + ๐ท๐›ผ๐‘”(๐‘ก) ๐›ผ โˆˆ ๐‘…

2.2 The derivative of fractal differential equation[2][18]

โ€ข Dฮฑ(xn) = ฮ“(nโˆ’1)

ฮ“(nโˆ’ฮฑ+1) xnโˆ’ฮฑ

โ€ข Dฮฑ(sin ฮฑx) = aฮฑsin (ax +ฯ€

2ฮฑ)

โ€ข Dฮฑ(cos ฮฑx) = aฮฑcos (ax +ฯ€

2ฮฑ)

โ€ข Dฮฑ (ekx) = kฮฑ ekx

โ€ข Dฮฑ(C) = Cxโˆ’ฮฑ

ฮ“(1โˆ’ฮฑ)

2.3:leaste square approximation:

Definition(4) Another approach to approximating a function f(x) on an interval a โ‰ค x โ‰ค b is to seek an approximation p(x) with a small โ€˜average errorโ€™ over the interval of approximation. A convenient definition of the average error of the approximation is given by[17][18]

๐ธ(๐‘; ๐‘“) โ‰ก [ 1

๐‘โˆ’๐‘Žโˆซ [๐‘“(๐‘ฅ) โˆ’ ๐‘(๐‘ฅ)]๐‘Ž๐‘ ] (7)

This is also called the root-mean-square-error (denoted subsequently by RMSE) in the

approximation of f(x) by p(x). Note first that choosing p(x) to minimize E(p; f) is equivalent to minimizing

โˆซ [๐‘“(๐‘ฅ) โˆ’ ๐‘(๐‘ฅ)]๐‘Ž๐‘ 2๐‘‘๐‘ฅ (8)

thus dispensing with the square root and multiplying fraction (although the minimums are generally different). The minimizing of (8) is called the least squares approximation problem For a given function

2.4:solution of homogeneous fractal differential eqution

The Power series is a fundamental tool in the study of elementary functions. They have been widely used in computational science for easily obtaining an approximation of functions. In thermal

physics and many other sciences this power expansion has allowed scientist to make an approximate study of many differential equations

Theorem(1): Suppose that u(t) has a FPS representation at t = t0 of the form [19]:

๐‘ฆ(๐‘ก) = โˆ‘โˆžn=0cn(t โˆ’ tยฐ)nฮฑ= cยฐ+ c1(t โˆ’ tยฐ)๐›ผ+ c2(๐‘ก โˆ’ ๐‘กยฐ )2๐›ผ+ โ‹ฏ (๐‘› ๐‘ก๐‘–๐‘š๐‘’ ) (9)

Where 0 โ‰ค ๐‘š โˆ’ 1 < ๐›ผ โ‰ค ๐‘š, ๐‘š โˆˆ ๐‘+๐‘Ž๐‘›๐‘‘ ๐‘ก โ‰ฅ ๐‘กยฐ is called afractional power series about ๐‘กยฐ,where ๐‘ก is variable and ๐‘๐‘›are the coefficients of series and will be of the form[24]

๐‘๐‘› =๐ทะ“(๐‘›๐›ผ+1)๐‘›๐›ผ๐‘ฆ(๐‘กยฐ) (10)

Theorem(2): Suppose that the fractional power series โˆ‘โˆž๐‘›=0๐‘๐‘›๐‘ก๐‘›๐›ผ has radius of convergence ๐‘… >

0. If ๐‘“(๐‘ก) is afunaction defined by ๐‘“(๐‘ก) = โˆ‘โˆž๐‘›=0๐‘๐‘›๐‘ก๐‘›๐›ผ on

0 โ‰ค ๐‘ก โ‰ค ๐‘…,Then for ๐‘š โˆ’ 1 < ๐›ผ โ‰ค ๐‘š and 0 โ‰ค ๐‘ก โ‰ค ๐‘… we have[21][24]

(4)

2326-9865

Vol. 71 No. 3s3 (2022) 118 http://philstat.org.ph

Dฮฑf(t) = โˆ‘โˆžn=0๐‘๐‘›ะ“(nฮฑโˆ’ฮฑ+1)ะ“(nฮฑ+1) t(nโˆ’1)ฮฑ (11) Iฮฑf(t) = โˆ‘ ๐‘๐‘› ะ“(nฮฑ+1)

ะ“(nฮฑ+ฮฑ+1)

โˆžn=0 t(n+1)ฮฑ(12)

(2.4.1)Fractional residual power series method

we intend to use the FRPS method to solve a class of solid systems In fractional order by replacing FPS expansions within the remaining truncation functions. To do this, we assume that the FPS solution at t = 0 has the following form: The objective of the FRPS algorithm is to obtain an approximate solution supporting the the proposed model. Thus, using the initial conditions, it can be written as follows[25]

๐‘ฆ = โˆ‘ ๐‘๐‘›๐‘ก๐›ผ๐‘›

ะ“(๐‘›๐›ผ+1)

โˆž๐‘›=0 (13)

And the solution approximation is ๐‘ฆ(๐‘ก) = ๐‘ยฐ+ โˆ‘ ๐‘๐‘›๐‘ก๐›ผ๐‘›

ะ“(๐‘›๐›ผ+1)

โˆž๐‘›=1 . (14)

Example(1): consider the fractional differential equation Solve ๐ท๐›ผ ๐‘ฆ โˆ’ ๐‘ฆ = 0

Solution: Suppose that ๐‘ฆ = โˆ‘ ๐‘๐‘›๐‘ฅ๐›ผ๐‘›

ะ“(๐‘›๐›ผ+1)

โˆž๐‘›=0 and We substitute it in the given equation[24].

๐‘™๐‘’๐‘ก ๐‘ฆ = โˆ‘ ๐‘๐‘›๐‘ฅ๐›ผ๐‘› ะ“(๐‘›๐›ผ + 1)

โˆž

๐‘›=0

๐ท12(โˆ‘ ๐‘๐‘›๐‘ฅ๐›ผ๐‘› ะ“(๐‘›๐›ผ + 1)

โˆž

๐‘›=0

) โˆ’ (โˆ‘ ๐‘๐‘›๐‘ฅ๐›ผ๐‘› ะ“(๐‘›๐›ผ + 1)

โˆž

๐‘›=0

) = 0

(โˆ‘ ๐‘๐‘›

ะ“(๐‘›๐›ผ + 1)๐ท12๐‘ฅ๐‘›๐›ผ

โˆž

๐‘›=0

) โˆ’ (โˆ‘ ๐‘๐‘›๐‘ฅ๐›ผ๐‘› ะ“(๐‘›๐›ผ + 1)

โˆž

๐‘›=0

) = 0

(โˆ‘ ๐‘๐‘› ะ“(๐‘›๐›ผ + 1)

ะ“(๐‘›๐›ผ + 1) ะ“(๐‘›๐›ผ โˆ’ ๐›ผ + 1)

โˆž

๐‘›=0

๐‘ฅ๐‘›๐›ผ) โˆ’ (โˆ‘ ๐‘๐‘›๐‘ฅ๐›ผ๐‘› ะ“(๐‘›๐›ผ + 1)

โˆž

๐‘›=0

) = 0

(โˆ‘ ๐‘๐‘›

ะ“(๐›ผ(๐‘› โˆ’ 1) + 1)

โˆž

๐‘›=0

๐‘ฅ๐‘›๐›ผ) โˆ’ (โˆ‘ ๐‘๐‘›๐‘ฅ๐›ผ๐‘› ะ“(๐‘›๐›ผ + 1)

โˆž

๐‘›=0

) = 0

Let ๐‘˜ = ๐‘› โˆ’ 1 ๐‘˜ = ๐‘›

(โˆ‘ ๐‘๐‘˜+1 ะ“(๐‘˜๐›ผ + 1)

โˆž

๐‘›=0

๐‘ฅ๐‘˜๐›ผ) โˆ’ (โˆ‘ ๐‘๐‘˜๐‘ฅ๐‘˜๐›ผ ะ“(๐‘˜๐›ผ + 1)

โˆž

๐‘›=0

) = 0

โˆ‘ ๐‘๐‘˜+1โˆ’ ๐‘๐‘˜

โˆž

๐‘›=0

( ๐‘ฅ๐›ผ๐‘˜

ะ“(๐›ผ๐‘˜ + 1)) = 0๐‘Ž๐‘›๐‘‘ ๐‘ฅ๐›ผ๐‘˜

ะ“(๐›ผ๐‘˜ + 1)โ‰  0 ๐‘๐‘˜+1โˆ’ ๐‘๐‘˜ = 0 โ‡’ ๐‘๐‘˜(๐‘ โˆ’ 1) = 0 ๐‘๐‘ข๐‘ก ๐‘๐‘˜ โ‰  0 โ‡’ ๐’„ = ๐Ÿ ๐‘ฆ(๐‘ฅ) = ๐‘ยฐ+ ๐‘1 ๐‘ฅ๐›ผ

ะ“(๐›ผ+1)+ ๐‘2 ๐‘ฅ2๐›ผ

ะ“(2๐›ผ+1)+ ๐‘3 ๐‘ฅ3๐›ผ

ะ“(3๐›ผ+1)+โ‹ฏ

The genral solution is ๐‘ฆ = โˆ‘ ๐‘๐‘›๐‘ฅ๐›ผ๐‘›

ะ“(๐‘›๐›ผ+1)

โˆž๐‘›=0 .

(5)

2326-9865

Vol. 71 No. 3s3 (2022) 119 http://philstat.org.ph

3. Suggested method for solving nonhomogeneous fractal differential equations power series with the use of least squares approximation

If we had a non-homogenuse linear fractal differential equation in the form for example , Dฮฑy + by = f(x), it is solved by a power series method, which is to substitute for each ๐‘ฆ =

โˆ‘ ๐‘๐‘›๐‘ฅ๐‘›๐›ผ

๐›ค(๐‘›๐›ผ+1)

โˆž๐‘›=0 and simplify the expression ๐ท๐›ผ๐‘ฆ + ๐‘๐‘ฆ = ๐‘“(๐‘ฅ)

๐‘ฆ = โˆ‘ ๐‘๐‘›๐‘ฅ๐‘›๐›ผ ๐›ค(๐‘›๐›ผ + 1)

โˆž

๐‘›=0

๐ท๐›ผโˆ‘ ๐‘๐‘›๐‘ฅ๐‘›๐›ผ ๐›ค(๐‘›๐›ผ + 1)

โˆž

๐‘›=0

+ ๐‘ โˆ‘ ๐‘๐‘›๐‘ฅ๐‘›๐›ผ ๐›ค(๐‘›๐›ผ + 1)

โˆž

๐‘›=0

= ๐‘“(๐‘ฅ)

โˆ‘ ๐‘๐‘›

๐›ค(๐‘›๐›ผ + 1)๐ท๐›ผ๐‘ฅ๐‘›๐›ผ

โˆž

๐‘›=0

+ ๐‘ โˆ‘ ๐‘๐‘›

๐›ค(๐‘›๐›ผ + 1) ๐‘ฅ๐‘›๐›ผ

โˆž

๐‘›=0

= ๐‘“(๐‘ฅ)

โˆ‘ ๐‘๐‘›

๐›ค(๐‘›๐›ผ + 1)

๐›ค(๐‘›๐›ผ + 1) ๐›ค(๐‘›๐›ผ + 1 โˆ’ ๐›ผ)

โˆž

๐‘›=0

๐‘ฅ๐‘›๐›ผโˆ’๐›ผ + ๐‘ โˆ‘ ๐‘๐‘›

๐›ค(๐‘›๐›ผ + 1) ๐‘ฅ๐‘›๐›ผ

โˆž

๐‘›=0

= ๐‘“(๐‘ฅ)

โˆ‘ ๐‘๐‘›

๐›ค(๐‘›๐›ผ + 1 โˆ’ ๐›ผ)

โˆž

๐‘›=0

๐‘ฅ๐›ผ(๐‘›โˆ’1)+ ๐‘ โˆ‘ ๐‘๐‘›

๐›ค(๐‘›๐›ผ + 1) ๐‘ฅ๐‘›๐›ผ

โˆž

๐‘›=0

= ๐‘“(๐‘ฅ)

โˆ‘ ๐‘๐‘›

โˆž

๐‘›=0

[ ๐‘ฅ๐›ผ(๐‘›โˆ’1)

๐›ค(๐‘›๐›ผ + 1 โˆ’ ๐›ผ)+ ๐‘ ๐‘ฅ๐‘›๐›ผ

๐›ค(๐‘›๐›ผ + 1)] = ๐‘“(๐‘ฅ) We assume the [ ๐‘ฅ๐›ผ(๐‘›โˆ’1)

๐›ค(๐‘›๐›ผ+1โˆ’๐›ผ)+ ๐‘ ๐‘ฅ๐‘›๐›ผ

๐›ค(๐‘›๐›ผ+1)] = ๐‘ค๐‘›

โˆ‘ ๐‘๐‘›

โˆž

๐‘›=0

๐‘ค๐‘› = ๐‘“(๐‘ฅ)

๐‘ยฐ๐‘คยฐ+ ๐‘1๐‘ค1+ ๐‘2๐‘ค2+ โ‹ฏ + ๐‘๐‘›๐‘ค๐‘› = ๐‘“(๐‘ฅ) By using least squares approximation

โˆ†= โˆซ (๐‘‡(๐‘ฆ) โˆ’ ๐‘ฆ)๐‘Ž๐‘ 2 (15)

๐‘‡(๐‘ฆ) = โˆ‘โˆž๐‘›=0๐‘๐‘›๐‘ค๐‘›โˆ’ ๐‘“(๐‘ฅ)(16) ๐‘ฆ = โˆ‘ ๐‘๐‘›

๐›ค(๐‘›๐›ผ+1)

โˆž๐‘›=0 ๐‘ฅ๐‘›๐›ผ = โˆ‘โˆž๐‘›=0๐‘๐‘›๐‘ฃ๐‘› (17)

We substitute (16), (17) in (15)

โˆ†= โˆซ [(โˆ‘ ๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

โˆ’ ๐‘“) โˆ’ โˆ‘ ๐‘๐‘›

โˆž

๐‘›=0

๐‘ฃ๐‘›]

๐‘

๐‘Ž

2

โˆ†= โˆซ [(โˆ‘ ๐‘๐‘›(๐‘ค๐‘›

โˆž

๐‘›=0

โˆ’ ๐‘ฃ๐‘›) โˆ’ ๐‘“)]

๐‘

๐‘Ž

2

โˆ†= โˆซ(๐‘ยฐ

๐‘

๐‘Ž

(๐‘คยฐโˆ’๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’๐‘ฃ1) + ๐‘2(๐‘ค2โˆ’๐‘ฃ2) + โ‹ฏ + ๐‘๐‘›(๐‘ค๐‘›โˆ’๐‘ฃ๐‘›) โˆ’ ๐‘“)2

(6)

2326-9865

Vol. 71 No. 3s3 (2022) 120 http://philstat.org.ph

๐œ•โˆ†

๐œ•๐‘ยฐ= 2 โˆซ(๐‘ยฐ

๐‘

๐‘Ž

(๐‘คยฐโˆ’๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’๐‘ฃ1) + ๐‘2(๐‘ค2โˆ’๐‘ฃ2) + โ‹ฏ + ๐‘๐‘›(๐‘ค๐‘›โˆ’๐‘ฃ๐‘›) โˆ’ ๐‘“)(๐‘คยฐโˆ’๐‘ฃยฐ) = 0

๐œ•โˆ†

๐œ•๐‘1 = 2 โˆซ (๐‘๐‘Ž๐‘ ยฐ(๐‘คยฐโˆ’๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’๐‘ฃ1) + ๐‘2(๐‘ค2โˆ’๐‘ฃ2) + โ‹ฏ + ๐‘๐‘›(๐‘ค๐‘›โˆ’๐‘ฃ๐‘›) โˆ’ ๐‘“)(๐‘ค1โˆ’๐‘ฃ1) = 0

๐œ•โˆ†

๐œ•๐‘2= 2 โˆซ(๐‘ยฐ

๐‘

๐‘Ž

(๐‘คยฐโˆ’๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’๐‘ฃ1) + ๐‘2(๐‘ค2โˆ’๐‘ฃ2) + โ‹ฏ + ๐‘๐‘›(๐‘ค๐‘›โˆ’๐‘ฃ๐‘›) โˆ’ ๐‘“)(๐‘ค2โˆ’๐‘ฃ2) = 0

๐œ•โˆ†

๐œ•๐‘๐‘› = 2 โˆซ(๐‘ยฐ

๐‘

๐‘Ž

(๐‘คยฐโˆ’๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’๐‘ฃ1) + ๐‘2(๐‘ค2โˆ’๐‘ฃ2) + โ‹ฏ + ๐‘๐‘›(๐‘ค๐‘›โˆ’๐‘ฃ๐‘›) โˆ’ ๐‘“)(๐‘ค๐‘›โˆ’๐‘ฃ๐‘›) = 0

๐‘‡ = ๐‘ค โˆ’ ๐‘ฃ

0 = 2 โˆซ (๐‘๐‘Ž๐‘ ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2+โ€ฆ+๐‘๐‘›๐‘ค๐‘›โˆ’ ๐‘“)๐‘‡ยฐ 0 = 2 โˆซ (๐‘๐‘Ž๐‘ ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2+โ€ฆ+๐‘๐‘›๐‘ค๐‘› โˆ’ ๐‘“)๐‘‡1 0 = 2 โˆซ (๐‘ยฐ

๐‘

๐‘Ž ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2+โ€ฆ+๐‘๐‘›๐‘ค๐‘› โˆ’ ๐‘“)๐‘‡2 0 = 2 โˆซ (๐‘๐‘Ž๐‘ ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2+โ€ฆ+๐‘๐‘›๐‘ค๐‘› โˆ’ ๐‘“)๐‘‡๐‘› 0 = โˆซ (๐‘ยฐ

๐‘

๐‘Ž ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2+โ€ฆ+๐‘๐‘›๐‘‡๐‘›โˆ’ ๐‘“)๐‘‡ยฐ 0 = โˆซ (๐‘ยฐ

๐‘

๐‘Ž ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2++๐‘๐‘›๐‘‡๐‘›โˆ’ ๐‘“)๐‘‡1 0 = โˆซ (๐‘๐‘Ž๐‘ ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2+โ€ฆ+๐‘๐‘›๐‘‡๐‘›โˆ’ ๐‘“)๐‘‡2 0 = โˆซ (๐‘๐‘Ž๐‘ ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2+โ€ฆ+๐‘๐‘›๐‘‡๐‘›โˆ’ ๐‘“)๐‘‡๐‘› 0 = โˆซ (๐‘ยฐ

๐‘

๐‘Ž ๐‘‡ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1๐‘‡ยฐ+ ๐‘2๐‘‡2๐‘‡ยฐ+โ€ฆ+๐‘๐‘›๐‘‡๐‘›๐‘‡ยฐโˆ’ ๐‘“๐‘‡ยฐ) 0 = โˆซ (๐‘๐‘Ž๐‘ ยฐ๐‘‡ยฐ๐‘‡1+ ๐‘1๐‘‡1๐‘‡1+ ๐‘2๐‘‡2๐‘‡1+โ€ฆ+๐‘๐‘›๐‘‡๐‘›๐‘‡1โˆ’ ๐‘“๐‘‡1) 0 = โˆซ (๐‘๐‘Ž๐‘ ยฐ๐‘‡ยฐ๐‘‡2+ ๐‘1๐‘‡1๐‘‡2+ ๐‘2๐‘‡2๐‘‡2+โ€ฆ+๐‘๐‘›๐‘‡๐‘›๐‘‡2โˆ’ ๐‘“๐‘‡2) 0 = โˆซ (๐‘ยฐ

๐‘

๐‘Ž ๐‘‡ยฐ๐‘‡๐‘›+ ๐‘1๐‘‡1๐‘‡๐‘›+ ๐‘2๐‘‡2๐‘‡๐‘›++๐‘๐‘›๐‘‡๐‘›๐‘‡๐‘›โˆ’ ๐‘“๐‘‡๐‘›) Let ๐‘› = 2 โ‡’ ๐‘ยฐ, ๐‘1, ๐‘2

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1๐‘‡ยฐ+ ๐‘2๐‘‡2๐‘‡ยฐ

๐‘

๐‘Ž

= โˆซ ๐‘“๐‘‡ยฐ

๐‘

๐‘Ž

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡1+ ๐‘1๐‘‡1๐‘‡1+ ๐‘2๐‘‡2๐‘‡1

๐‘

๐‘Ž

= โˆซ ๐‘“๐‘‡1

๐‘

๐‘Ž

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡2+ ๐‘1๐‘‡1๐‘‡2+ ๐‘2๐‘‡2๐‘‡2

๐‘

๐‘Ž

= โˆซ ๐‘“๐‘‡2

๐‘

๐‘Ž

(7)

2326-9865

Vol. 71 No. 3s3 (2022) 121 http://philstat.org.ph [

โˆซ ๐‘‡ยฐ2

๐‘

๐‘Ž

โˆซ ๐‘‡1๐‘‡ยฐ

๐‘

๐‘Ž

โˆซ ๐‘‡2๐‘‡ยฐ

๐‘

๐‘Ž

โˆซ ๐‘‡ยฐ๐‘‡1

๐‘

๐‘Ž

โˆซ ๐‘‡12

๐‘

๐‘Ž

โˆซ ๐‘‡2๐‘‡1

๐‘

๐‘Ž

โˆซ ๐‘‡ยฐ๐‘‡2

๐‘

๐‘Ž

โˆซ ๐‘‡1๐‘‡2

๐‘

๐‘Ž

โˆซ ๐‘‡22

๐‘

๐‘Ž ]

[ ๐‘ยฐ ๐‘1 ๐‘2] =

[

โˆซ ๐‘“๐‘‡ยฐ

๐‘

๐‘Ž

โˆซ ๐‘“๐‘‡1

๐‘

๐‘Ž

โˆซ ๐‘“๐‘‡2

๐‘

๐‘Ž ]

๐‘™๐‘’๐‘ก

[

โˆซ ๐‘‡ยฐ2

๐‘

๐‘Ž

โˆซ ๐‘‡1๐‘‡ยฐ

๐‘

๐‘Ž

โˆซ ๐‘‡2๐‘‡ยฐ

๐‘

๐‘Ž

โˆซ ๐‘‡ยฐ๐‘‡1

๐‘

๐‘Ž

โˆซ ๐‘‡12

๐‘

๐‘Ž

โˆซ ๐‘‡2๐‘‡1

๐‘

๐‘Ž

โˆซ ๐‘‡ยฐ๐‘‡2

๐‘

๐‘Ž

โˆซ ๐‘‡1๐‘‡2

๐‘

๐‘Ž

โˆซ ๐‘‡22

๐‘

๐‘Ž ]

= ๐ด,

[

โˆซ ๐‘“๐‘‡ยฐ

๐‘

๐‘Ž

โˆซ ๐‘“๐‘‡1

๐‘

๐‘Ž

โˆซ ๐‘“๐‘‡2

๐‘

๐‘Ž ]

= ๐ต ๐‘Ž๐‘›๐‘‘ [ ๐‘ยฐ ๐‘1 ๐‘2

] = ๐‘

And the above described is solved to extract the unknown C values according to the equation (๐ด๐‘‡. ๐ด)โˆ’1๐ด๐‘‡. ๐ต = ๐ถ (18)

4. implimentations and comparisons of proposed method

We will make a comparison between the solution in the assumed way and the exact solution for the two examples shown below and through Figures (1) and (2) and the data table (1), (2) we will find the error value as shown in the mentioned tables

Example(2) solve the fractal differential๐ท12 ๐‘ฆ = ๐‘ฅ2, ๐›ผ =1

2 ๐‘Ž๐‘›๐‘‘ ๐‘› = 4, ๐‘ฆ(0) = 0 ( ๐ท12 ๐‘ฆ = ๐‘ฅ2) โˆ— ๐ท12

๐ท12๐ท12 ๐‘ฆ = ๐ท12 ๐‘ฅ2 ๐ท๐‘ฆ = ๐›ค(3)

๐›ค(52) ๐‘ฅ32

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= 3โˆš๐œ‹2

4

๐‘ฅ32

๐‘‘๐‘ฆ ๐‘‘๐‘ฅ= 8

3โˆš๐œ‹ ๐‘ฅ32

โˆซ ๐‘‘๐‘ฆ = โˆซ 8

3โˆš๐œ‹ ๐‘ฅ32 ๐‘‘๐‘ฅ ๐‘ฆ = 8

3โˆš๐œ‹ ๐‘ฅ2 5 2

5+ ๐‘, ๐‘ = 0 ๐‘ฆ = 16

15โˆš๐œ‹ ๐‘ฅ52 is the exact solution and solving the fractal differential eqution by the proposed method equation๐ท12 ๐‘ฆ = ๐‘ฅ2

let ๐‘ฆ = โˆ‘ ๐‘๐‘›๐‘ฅ๐‘›๐›ผ

๐›ค(๐‘›๐›ผ+1)

โˆž๐‘›=0

(8)

2326-9865

Vol. 71 No. 3s3 (2022) 122 http://philstat.org.ph ๐ท12 โˆ‘( ๐‘๐‘›๐‘ฅ๐‘›๐›ผ

๐›ค(๐‘›๐›ผ + 1) )

โˆž

๐‘›=0

= ๐‘ฅ2

โˆ‘( ๐‘๐‘›

๐›ค(๐‘›๐›ผ + 1) ๐ท12 ๐‘ฅ๐‘›๐›ผ )

โˆž

๐‘›=0

= ๐‘ฅ2

โˆ‘( ๐‘๐‘› ๐›ค(๐‘›๐›ผ + 1)

๐›ค(๐‘›๐›ผ + 1)

๐›ค(๐‘›๐›ผ โˆ’ ๐›ผ + 1) )๐‘ฅ๐›ผ(๐‘›โˆ’1)

โˆž

๐‘›=0

= ๐‘ฅ2

โˆ‘( ๐‘๐‘› ๐›ค(๐‘›๐›ผ + 1)

๐›ค(๐‘›๐›ผ + 1)

๐›ค(๐‘›๐›ผ โˆ’ ๐›ผ + 1) )๐‘ฅ๐›ผ(๐‘›โˆ’1)

โˆž

๐‘›=0

= ๐‘ฅ2

โˆ‘( ๐‘๐‘›

๐›ค(๐‘›๐›ผ โˆ’ ๐›ผ + 1) )๐‘ฅ๐›ผ(๐‘›โˆ’1)

โˆž

๐‘›=0

= ๐‘ฅ2

โˆ‘ ๐‘๐‘› ๐‘ฅ๐›ผ(๐‘›โˆ’1)

๐›ค(๐‘›๐›ผโˆ’๐›ผ+1)

โˆž๐‘›=0 = ๐‘ฅ2let ๐‘ค๐‘› = ๐‘ฅ๐›ผ(๐‘›โˆ’1)

๐›ค(๐‘›๐›ผโˆ’๐›ผ+1)

โˆ‘ ๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

= ๐‘ฅ2

โˆ†= โˆซ(๐‘‡(๐‘ฆ) โˆ’ ๐‘ฆ)2

1

0

๐‘‡(๐‘ฆ) = โˆ‘ ๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

โˆ’ ๐‘ฅ2๐‘™๐‘’๐‘ก๐‘ฃ = ๐‘ฅ๐‘›๐›ผ ๐›ค(๐‘›๐›ผ + 1)

โˆ†= โˆซ (โˆ‘01 โˆž๐‘›=0๐‘๐‘›๐‘ค๐‘›โˆ’ ๐‘ฅ2โˆ’ โˆ‘โˆž๐‘›=0๐‘๐‘›๐‘ฃ๐‘›)2 ๐‘ฆ = โˆ‘โˆž๐‘›=0๐‘๐‘›๐‘ฃ๐‘›

โˆ†= โˆซ(โˆ‘ ๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

โˆ’

1

0

โˆ‘ ๐‘๐‘›

โˆž

๐‘›=0

๐‘ฃ๐‘›โˆ’ ๐‘ฅ2)2

โˆ†= โˆซ (โˆ‘01 โˆž๐‘›=0๐‘๐‘›๐‘ค๐‘›โˆ’ ๐‘๐‘›๐‘ฃ๐‘›โˆ’ ๐‘ฅ2)2

โˆ†= โˆซ(โˆ‘ ๐‘๐‘›(๐‘ค๐‘›

3

๐‘›=0

โˆ’

1

0

๐‘ฃ๐‘›) โˆ’ ๐‘ฅ2)2 ๐‘™๐‘’๐‘ก ๐‘› = 3

โˆ†= โˆซ(๐‘ยฐ(๐‘คยฐโˆ’

1

0

๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + ๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)2

๐œ•โˆ†

๐œ•๐‘ยฐ= 2โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + ๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)(๐‘คยฐโˆ’ ๐‘ฃยฐ)

1

0

๐œ•โˆ†

๐œ•๐‘1 = 2โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + ๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)(๐‘ค1โˆ’ ๐‘ฃ1)

1

0

๐œ•โˆ†

๐œ•๐‘2 = 2โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)(๐‘ค2โˆ’ ๐‘ฃ2)

1

0

(9)

2326-9865

Vol. 71 No. 3s3 (2022) 123 http://philstat.org.ph

๐œ•โˆ†

๐œ•๐‘3 = 2โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)(๐‘ค3โˆ’ ๐‘ฃ3)

1

0

0 = 2โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)(๐‘คยฐโˆ’ ๐‘ฃยฐ)

1

0

0 = 2โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3 โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)(๐‘ค1 โˆ’ ๐‘ฃ1)

1

0

0 = 2โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2 โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)(๐‘ค2 โˆ’ ๐‘ฃ2)

1

0

0 = 2โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2 โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)(๐‘ค3 โˆ’ ๐‘ฃ3)

1

0

0 =โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)(๐‘คยฐโˆ’ ๐‘ฃยฐ)

1

0

0 =โˆซ (๐‘01 ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)(๐‘ค1โˆ’ ๐‘ฃ1) 0 = โˆซ (๐‘01 ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)(๐‘ค2 โˆ’ ๐‘ฃ2) 0 =โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) + ๐‘3(๐‘ค3โˆ’ ๐‘ฃ3) โˆ’ ๐‘ฅ2)(๐‘ค3โˆ’ ๐‘ฃ3)

1

0

๐‘™๐‘’๐‘ก ๐‘‡ = ๐‘ค โˆ’ ๐‘ฃ

0 =โˆซ(๐‘ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2+ ๐‘3๐‘‡3โˆ’ ๐‘ฅ2)๐‘‡ยฐ

1

0

0 =โˆซ(๐‘ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2+ ๐‘3๐‘‡3โˆ’ ๐‘ฅ2)๐‘‡1

1

0

0 =โˆซ(๐‘ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2+ ๐‘3๐‘‡3โˆ’ ๐‘ฅ2)๐‘‡2

1

0

0 =โˆซ(๐‘ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2+ ๐‘3๐‘‡3โˆ’ ๐‘ฅ2)๐‘‡3

1

0

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡ยฐ+ โˆซ ๐‘1๐‘‡1๐‘‡ยฐ

1

0

+ โˆซ ๐‘2๐‘‡2๐‘‡ยฐ

1

0

+ โˆซ ๐‘3๐‘‡3๐‘‡ยฐ

1

0

โˆ’ โˆซ ๐‘ฅ2

1

0

๐‘‡ยฐ

1

0

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡1+ โˆซ ๐‘1๐‘‡1๐‘‡1

1

0

+ โˆซ ๐‘2๐‘‡2๐‘‡1

1

0

+ โˆซ ๐‘3๐‘‡3๐‘‡1

1

0

โˆ’ โˆซ ๐‘ฅ2

1

0

๐‘‡1

1

0

(10)

2326-9865

Vol. 71 No. 3s3 (2022) 124 http://philstat.org.ph

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡2+ โˆซ ๐‘1๐‘‡1๐‘‡2

1

0

+ โˆซ ๐‘2๐‘‡2๐‘‡2

1

0

+ โˆซ ๐‘3๐‘‡3๐‘‡2

1

0

โˆ’ โˆซ ๐‘ฅ2

1

0

๐‘‡2

1

0

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡3+ โˆซ ๐‘1๐‘‡1๐‘‡3+ โˆซ ๐‘2๐‘‡2๐‘‡3

1

0

+ โˆซ ๐‘3๐‘‡3๐‘‡3

1

0 1

0

โˆ’ โˆซ ๐‘ฅ2

1

0

๐‘‡3

1

0

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡ยฐ+ โˆซ ๐‘1๐‘‡1๐‘‡ยฐ

1

0

+ โˆซ ๐‘2๐‘‡2๐‘‡ยฐ

1

0

+ โˆซ ๐‘3๐‘‡3๐‘‡ยฐ

1

0

= โˆซ ๐‘ฅ2

1

0

๐‘‡ยฐ

1

0

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡1+ โˆซ ๐‘1๐‘‡1๐‘‡1

1

0

+ โˆซ ๐‘2๐‘‡2๐‘‡1

1

0

+ โˆซ ๐‘3๐‘‡3๐‘‡1

1

0

= โˆซ ๐‘ฅ2

1

0

๐‘‡1

1

0

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡2+ โˆซ ๐‘1๐‘‡1๐‘‡2

1

0

+ โˆซ ๐‘2๐‘‡2๐‘‡2

1

0

+ โˆซ ๐‘3๐‘‡3๐‘‡2

1

0

= โˆซ ๐‘ฅ2

1

0

๐‘‡2

1

0

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡3+ โˆซ ๐‘1๐‘‡1๐‘‡3+ โˆซ ๐‘2๐‘‡2๐‘‡3

1

0

+ โˆซ ๐‘3๐‘‡3๐‘‡3

1

0 1

0

= โˆซ ๐‘ฅ2

1

0

๐‘‡3

1

0

[

โˆซ๐‘‡ยฐ๐‘‡ยฐ

1

0

โˆซ ๐‘‡1๐‘‡ยฐ

1

0

โˆซ ๐‘‡2๐‘‡ยฐ

1

0

โˆซ ๐‘‡3๐‘‡ยฐ

1

0

โˆซ ๐‘‡ยฐ๐‘‡1

1

0

โˆซ ๐‘‡1๐‘‡1

1

0

โˆซ ๐‘‡2๐‘‡1

1

0

โˆซ ๐‘‡3๐‘‡1

1

0

โˆซ ๐‘‡ยฐ๐‘‡2

1

0

โˆซ ๐‘‡ยฐ๐‘‡3

1

0

โˆซ ๐‘‡1๐‘‡2

1

0

โˆซ ๐‘‡1๐‘‡3

1

0

โˆซ ๐‘‡2๐‘‡2

1

0

โˆซ ๐‘‡2๐‘‡3

1

0

โˆซ ๐‘‡3๐‘‡2

1

0

โˆซ ๐‘‡3๐‘‡3

1

0 ]

[ ๐ถยฐ ๐ถ1 ๐ถ2 ๐ถ3

] =

[

โˆซ ๐‘ฅ2

1

0

๐‘‡ยฐ

โˆซ ๐‘ฅ2

1

0

๐‘‡1

โˆซ ๐‘ฅ2

1

0

๐‘‡2

โˆซ ๐‘ฅ2

1

0

๐‘‡3 ]

Figure (1): The approximate solution of Example (2) for some ๐›ผ = 0.5

(11)

2326-9865

Vol. 71 No. 3s3 (2022) 125 http://philstat.org.ph

Example(3) solve the fractal differential๐ท12 ๐‘ฆ = ๐‘ฅ2โˆ’ 2๐‘ฅ, ๐›ผ =1

2 ๐‘Ž๐‘›๐‘‘ ๐‘› = 3, ๐‘ฆ(0) = 0 ๐ท12 ๐‘ฆ = ๐‘ฅ2โˆ’ 2๐‘ฅ

๐‘ฆ = 16

15โˆš๐œ‹ ๐‘ฅ52+ 8

3โˆš๐œ‹๐‘ฅ32 is the exact solution and solving the fractal differential eqution by the Suggested method equation๐ท12 ๐‘ฆ = ๐‘ฅ2โˆ’ 2๐‘ฅ (1)

let ๐‘ฆ = โˆ‘ ๐‘๐‘›๐‘ฅ๐‘›๐›ผ

๐›ค(๐‘›๐›ผ+1)(2)

โˆž๐‘›=0

๐ท12 โˆ‘( ๐‘๐‘›๐‘ฅ๐‘›๐›ผ ๐›ค(๐‘›๐›ผ + 1) )

โˆž

๐‘›=0

= ๐‘ฅ2โˆ’ 2๐‘ฅ

โˆ‘( ๐‘๐‘›

๐›ค(๐‘›๐›ผ + 1) ๐ท12 ๐‘ฅ๐‘›๐›ผ )

โˆž

๐‘›=0

= ๐‘ฅ2โˆ’ 2๐‘ฅ

โˆ‘( ๐‘๐‘› ๐›ค(๐‘›๐›ผ + 1)

๐›ค(๐‘›๐›ผ + 1)

๐›ค(๐‘›๐›ผ โˆ’ ๐›ผ + 1) )๐‘ฅ๐›ผ(๐‘›โˆ’1)

โˆž

๐‘›=0

= ๐‘ฅ2โˆ’ 2๐‘ฅ

โˆ‘( ๐‘๐‘› ๐›ค(๐‘›๐›ผ + 1)

๐›ค(๐‘›๐›ผ + 1)

๐›ค(๐‘›๐›ผ โˆ’ ๐›ผ + 1) )๐‘ฅ๐›ผ(๐‘›โˆ’1)

โˆž

๐‘›=0

= ๐‘ฅ2โˆ’ 2๐‘ฅ

โˆ‘( ๐‘๐‘›

๐›ค(๐‘›๐›ผ โˆ’ ๐›ผ + 1) )๐‘ฅ๐›ผ(๐‘›โˆ’1)

โˆž

๐‘›=0

= ๐‘ฅ2โˆ’ 2๐‘ฅ

โˆ‘ ๐‘๐‘› ๐‘ฅ๐›ผ(๐‘›โˆ’1)

๐›ค(๐‘›๐›ผโˆ’๐›ผ+1)

โˆž๐‘›=0 = ๐‘ฅ2โˆ’ 2๐‘ฅlet ๐‘ค๐‘› = ๐‘ฅ๐›ผ(๐‘›โˆ’1)

๐›ค(๐‘›๐›ผโˆ’๐›ผ+1)

โˆ‘ ๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

= ๐‘ฅ2

โˆ†= โˆซ(๐‘‡(๐‘ฆ) โˆ’ ๐‘ฆ)2

1

0

(1)

๐“๐š๐›๐ฅ๐ž (๐Ÿ) ๐€๐ฉ๐ฉ๐ซ๐จ๐ฑ๐ข๐ฆ๐š๐ญ๐ž ๐ฌ๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง๐ฌ ๐Ÿ๐จ๐ซ ๐ญ๐ก๐ž ๐ž๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž(๐Ÿ)

๐’™ ๐’š(๐‘ซ๐’Š๐’“๐’†๐’„๐’• ๐’”๐’๐’๐’–๐’•๐’Š๐’๐’) ๐’š(๐‘ซ๐’†๐’—๐’†๐’๐’๐’‘๐’†๐’… ๐’Ž๐’†๐’•๐’‰๐’๐’…) ๐‘ฌ๐’“๐’“๐’๐’“

0.0000000 0.0000000 0.0000000 0.0000000

0.1000000 0.0019027 0.0019031 0.0000004

0.2000000 0.0107632 0.0107654 0.0000022

0.3000000 0.0296599 0.0296659 0.0000060

0.4000000 0.0608859 0.0608981 0.0000123

0.5000000 0.1063632 0.1063846 0.0000214

0.6000000 0.1677817 0.1678154 0.0000338

0.7000000 0.2466673 0.2467169 0.0000496

0.8000000 0.3444224 0.3444917 0.0000693

0.9000000 0.4623519 0.4624450 0.0000930

1.0000000 0.6016811 0.6018022 0.0001211

(12)

2326-9865

Vol. 71 No. 3s3 (2022) 126 http://philstat.org.ph

๐‘‡(๐‘ฆ) = โˆ‘ ๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

โˆ’ (๐‘ฅ2 โˆ’ 2๐‘ฅ)๐‘™๐‘’๐‘ก๐‘ฃ = ๐‘ฅ๐‘›๐›ผ ๐›ค(๐‘›๐›ผ + 1)

โˆ†= โˆซ (โˆ‘01 โˆž๐‘›=0๐‘๐‘›๐‘ค๐‘›โˆ’ (๐‘ฅ2 โˆ’ 2๐‘ฅ) โˆ’ โˆ‘โˆž๐‘›=0๐‘๐‘›๐‘ฃ๐‘›)2 ๐‘ฆ = โˆ‘โˆž๐‘›=0๐‘๐‘›๐‘ฃ๐‘›

โˆ†= โˆซ(โˆ‘ ๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

โˆ’

1

0

โˆ‘ ๐‘๐‘›

โˆž

๐‘›=0

๐‘ฃ๐‘›โˆ’ (๐‘ฅ2โˆ’ 2๐‘ฅ))2

โˆ†= โˆซ (โˆ‘01 โˆž๐‘›=0๐‘๐‘›๐‘ค๐‘›โˆ’ ๐‘๐‘›๐‘ฃ๐‘›โˆ’ (๐‘ฅ2โˆ’ 2๐‘ฅ))2

โˆ†= โˆซ(โˆ‘ ๐‘๐‘›(๐‘ค๐‘›

3

๐‘›=0

โˆ’

1

0

๐‘ฃ๐‘›) โˆ’ (๐‘ฅ2โˆ’ 2๐‘ฅ))2 ๐‘™๐‘’๐‘ก ๐‘› = 3

โˆ†= โˆซ(๐‘ยฐ(๐‘คยฐโˆ’

1

0

๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + ๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) โˆ’ (๐‘ฅ2 โˆ’ 2๐‘ฅ))2

๐œ•โˆ†

๐œ•๐‘ยฐ= 2โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + ๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) โˆ’ (๐‘ฅ2โˆ’ 2๐‘ฅ))(๐‘คยฐโˆ’ ๐‘ฃยฐ)

1

0

๐œ•โˆ†

๐œ•๐‘1 = 2โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + ๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) โˆ’ (๐‘ฅ2โˆ’ 2๐‘ฅ)(๐‘ค1โˆ’ ๐‘ฃ1)

1

0

๐œ•โˆ†

๐œ•๐‘2= 2โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) โˆ’ (๐‘ฅ2โˆ’ 2๐‘ฅ)(๐‘ค2โˆ’ ๐‘ฃ2)

1

0

0 =โˆซ(๐‘ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) โˆ’ (๐‘ฅ2โˆ’ 2๐‘ฅ)(๐‘คยฐโˆ’ ๐‘ฃยฐ)

1

0

0 =โˆซ (๐‘01 ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) โˆ’ (๐‘ฅ2โˆ’ 2๐‘ฅ)(๐‘ค1 โˆ’ ๐‘ฃ1) 0 = โˆซ (๐‘01 ยฐ(๐‘คยฐโˆ’ ๐‘ฃยฐ) + ๐‘1(๐‘ค1โˆ’ ๐‘ฃ1) + +๐‘2(๐‘ค2โˆ’ ๐‘ฃ2) โˆ’ (๐‘ฅ2โˆ’ 2๐‘ฅ))(๐‘ค2โˆ’ ๐‘ฃ2) ๐‘™๐‘’๐‘ก ๐‘‡ = ๐‘ค โˆ’ ๐‘ฃ

0 =โˆซ(๐‘ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2โˆ’ (๐‘ฅ2โˆ’ 2๐‘ฅ))๐‘‡ยฐ

1

0

0 =โˆซ(๐‘ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2โˆ’ (๐‘ฅ2โˆ’ 2๐‘ฅ))๐‘‡1

1

0

0 =โˆซ(๐‘ยฐ๐‘‡ยฐ+ ๐‘1๐‘‡1+ ๐‘2๐‘‡2โˆ’ (๐‘ฅ2โˆ’ 2๐‘ฅ))๐‘‡2

1

0

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡ยฐ+ โˆซ ๐‘1๐‘‡1๐‘‡ยฐ

1

0

+ โˆซ ๐‘2๐‘‡2๐‘‡ยฐ

1

0

= โˆซ(๐‘ฅ2โˆ’ 2๐‘ฅ)

1

0

๐‘‡ยฐ

1

0

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡1+ โˆซ ๐‘1๐‘‡1๐‘‡1

1

0

+ โˆซ ๐‘2๐‘‡2๐‘‡1

1

0

= โˆซ(๐‘ฅ2 โˆ’ 2๐‘ฅ)

1

0

๐‘‡1

1

0

(13)

2326-9865

Vol. 71 No. 3s3 (2022) 127 http://philstat.org.ph

โˆซ ๐‘ยฐ๐‘‡ยฐ๐‘‡2+ โˆซ ๐‘1๐‘‡1๐‘‡2

1

0

+ โˆซ ๐‘2๐‘‡2๐‘‡2

1

0

= โˆซ(๐‘ฅ2โˆ’ 2๐‘ฅ)

1

0

๐‘‡2

1

0

[

โˆซ ๐‘‡ยฐ๐‘‡ยฐ

1

0

โˆซ ๐‘‡1๐‘‡ยฐ

1

0

โˆซ ๐‘‡1๐‘‡2

1

0

โˆซ ๐‘‡ยฐ๐‘‡1

1

0

โˆซ ๐‘‡1๐‘‡1

1

0

โˆซ ๐‘‡1๐‘‡2

1

0

โˆซ ๐‘‡ยฐ๐‘‡2

1

0

โˆซ ๐‘‡1๐‘‡2

1

0

โˆซ ๐‘‡2๐‘‡2

1

0 ]

[ ๐ถยฐ ๐ถ1 ๐ถ2

] =

[

โˆซ(๐‘ฅ2 โˆ’ 2๐‘ฅ)

1

0

๐‘‡ยฐ

โˆซ(๐‘ฅ2โˆ’ 2๐‘ฅ)

1

0

๐‘‡1

โˆซ(๐‘ฅ2โˆ’ 2๐‘ฅ)

1

0

๐‘‡2 ]

Figure (2): The approximate solution of Example (3) for some ๐›ผ = 0.5 ๐“๐š๐›๐ฅ๐ž (๐Ÿ) ๐€๐ฉ๐ฉ๐ซ๐จ๐ฑ๐ข๐ฆ๐š๐ญ๐ž ๐ฌ๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง๐ฌ ๐Ÿ๐จ๐ซ ๐ญ๐ก๐ž ๐ž๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž(๐Ÿ‘)

๐’™ ๐’š(๐‘ซ๐’Š๐’“๐’†๐’„๐’• ๐’”๐’๐’๐’–๐’•๐’Š๐’๐’) ๐’š(๐‘ซ๐’†๐’—๐’†๐’๐’๐’‘๐’†๐’… ๐’Ž๐’†๐’•๐’‰๐’๐’…) ๐‘ฌ๐’“๐’“๐’๐’“

0.0000000 0.0000000 0.0000000 0.0000000

0.1000000 -0.0456644 -0.0456736 0.0000092

0.2000000 -0.1237768 -0.1238017 0.0000249

0.3000000 -0.2175059 -0.2175496 0.0000438

0.4000000 -0.3196507 -0.3197150 0.0000643

0.5000000 -0.4254528 -0.4255384 0.0000856

0.6000000 -0.5313086 -0.5314156 0.0001069

0.7000000 -0.6342872 -0.6344149 0.0001276

0.8000000 -0.7318976 -0.7320448 0.0001473

0.9000000 -0.8219590 -0.8221244 0.0001654

1.0000000 -0.9025217 -0.9027033 0.0001816

Referensi

Dokumen terkait