• Tidak ada hasil yang ditemukan

The Study Analogue of Harnack’s Theorem and Some Properties of 𝐴(𝑧) Harmonic Functions

N/A
N/A
Protected

Academic year: 2023

Membagikan "The Study Analogue of Harnack’s Theorem and Some Properties of 𝐴(𝑧) Harmonic Functions "

Copied!
11
0
0

Teks penuh

(1)

1374 Vol. 71 No. 3 (2022)

http://philstat.org.ph

The Study Analogue of Harnack’s Theorem and Some Properties of 𝐴(𝑧) Harmonic Functions

*Jaafar Jabbar Qasim

Department of Mathematics - College of Education, Al-Mustansiriyah University

[email protected]

** Ahmed Khalaf Radhi

Department of Mathematics - College of Education, Al-Mustansiriyah University,

**[email protected]

Article Info

Page Number: 1374-1384 Publication Issue:

Vol.71 No.3 (2022)

Article History

Article Received: 12 January 2022 Revised: 25 Febuary 2022

Accepted: 20 April 2022 Publication: 09June 2022

Abstract: In this paper we provide a definition of 𝐴(𝑧)- tasks of harmonic and Devoted some properties of 𝐴(𝑧)-harmonic task, and analogue of Harnack’s Theorem.

Keywords: 𝐴(𝑧)-analytic task, 𝐴(𝑧)-harmonic task.

Introduction

This work is concerned with A(z)-harmonic tasks. The answer to the Beltrami equation

(1)

Known as the analytical task of A(z). It is widely knowledge that the link between equation (1) and Quasiconformal mappings is direct. There is a common misconception that A(z) is a measu- rable task and that | A (z)|C1 virtually anyin which in the area DC. Actual part of the Equation for the Solution (1)

The composition comprises of an opening and three body paragraphs. In the first paragraph, we provide a basic overview of the A(z)- analytic tasks, which will be covered in greater detail in

πœ•π‘“(𝑧)

πœ•π‘§ βˆ’ 𝐴(𝑧) πœ•π‘“(𝑧)

πœ•π‘§ = 0

𝑒(𝑧) = 𝑅𝑒𝑓(𝑧)

(2)

1375 Vol. 71 No. 3 (2022)

http://philstat.org.ph

𝑒

𝑗

∈ β„Ž

𝐴

(𝐷)

subsequent sections on the A(z)- harm-onic task. In the next paragraph, we define A ( z ) harm- onic tasks, introduce the comparable Laplace operator βˆ† A u, and describe the taskal features, Poisson integral formula, and mean value theorem for A(z)-harmonic tasks. The third paragraph discusses Harnack's inequality and theorem on monoto-nically sequences of A(z)-harmonic tasks

1. Preliminary information

Both the solution to equation (1) and the quasiconformal homeomorphisms of Flat areas have been thoroughly investigated. We limit ourselves here to work citations ([1, 6, 8, and 11]) and the formulation of the three theorems given below:

First theorem: For each complex-measurable β„‚ task, There is a one of homeom-orphic X(z) solution to the first equation that fixes the coordinates 0,1 as:

Observe that in the case of the last task is exclusively in the Area DβŠ‚C definied, it may extend to the entire by putting it outside A=0, hence the first formulation of the 1st theorem applies for every area

Second Theorem formulation [3]: in which is homeomorphic task, exhausts the collection of all generalized equation solutions (1). Solution according to the first Theorem, and Ξ¦(ΞΎ) is a homeomorphic task in area X.

Furthermore, in the case of the f(z) contains isolated singular points, (D). So, a holomorphic task possess the same types for isolated singularities.

Nota bene:

According to Theorem 2, the A-analytic task f performs internal mapping.

That is, it transforms one open set to another.

Therefore, the maximum principle holds true for these tasks; given each confined area DβŠ‚C, the modulus of f = constant reaches its maximum value only on that area Boundaries,

for example

Whenever the task is not 0, the minimal principle also holds.

For example

𝑋(𝑧)

𝑓(𝑧) = Ξ¦ 𝑋(𝑧) , 𝐴(𝑧) ∢ 𝐴

∞

< 1

𝑓(𝑧) < max

π‘§βˆˆπœ•π·

𝑓(𝑧) , 𝑧 ∈ 𝐷 𝑓(𝑧) > min

π‘§βˆˆπœ•π‘§

𝑓(𝑧) , z∈ 𝐷

D βŠ‚ C

Ξ¦ = π‘“π‘œπ‘₯

βˆ’1

(3)

1376 Vol. 71 No. 3 (2022)

http://philstat.org.ph 𝐷𝐴 = πœ•

πœ•π‘§ βˆ’ 𝐴 (𝑧) πœ•

πœ• 𝑧 , 𝐷𝐴 = πœ•

πœ•π‘§ βˆ’ 𝐴(𝑧) πœ•

πœ•π‘§.

Third Theorem [6]. In the case of a task A(z) is based on a group of m-smooth class tasks A(z)∈C^m (D), so, each f solution for equation number1 and as belongs to the same class, here, let only consider the case in which A(z) stands for an anti-analytic task βˆ‚A=0 in an area DβŠ‚C also

so we can get :

In the case of (1) is correct, so, the class of is A(z) - analytic function 𝑓 ∈ 𝑂𝐴(𝐷) is defined by the fact that 𝐷𝐴𝑓 = 0. It follows from Theorem 3 that the anti-analytic function 𝑂𝐴(𝐷) βŠ‚ 𝐢∞(𝐷) is endlessly smooth (D).

Fourth Theorem. 𝟏𝟏 . (π΄π‘›π‘Žπ‘™π‘œπ‘”π‘’π‘’ π‘œπ‘“ πΆπ‘Žπ‘’π‘β„Žπ‘¦ π‘‘β„Žπ‘’π‘œπ‘Ÿπ‘’π‘š). In the case of in which 𝐷 βŠ‚ β„‚ is an area contain piecewise smoothly boundaries πœ•π·, and in the case of the area 𝐷 is connected as a fixed point πœ‰ ∈ 𝐷 simply, so, :

is accurately specified in an area D, in which γ(ξ , z) has been a smooth curve involving the points, ξ , z∈D. An integral of

is a, because the area D is merely connected, and A (z) stands for a holomorphic function.

It has been integration path, and corresponds with an anti-derivative,

Theorem 5. 𝟏𝟎 . In the event that D is merely a connected and convex region, the kernel-style task

(2)

𝑓(𝑧)(𝑑𝑧+𝐴(𝑧)𝑑𝑧 ) = 0

πœ•π·

𝑓 ∈ 𝐢

π‘š

(𝐷).

π‘˜(𝑧,πœ‰) = 1

2πœ‹π‘–βˆ™ 1

𝑧 βˆ’ πœ‰+ π‘‘πœπ›Ύ(πœ‰,𝑧)𝐴 (𝜏)

𝐼´(𝑧) = 𝐴 (𝑧) I (z) =

Ξ³(ΞΎ ,z)

𝐴 (Ο„)d(Ο„)

𝐴(𝑧) ≀ 𝐢 < 1, (0 < 𝐢 < 1), βˆ€π‘§ ∈ 𝐷

πœ“(𝑧, πœ‰) = 𝑧 βˆ’ πœ‰ +

𝛾(πœ‰,𝑧)

𝐴 (𝜏)

(4)

1377 Vol. 71 No. 3 (2022)

http://philstat.org.ph

Is there A(z)-analytic task out of a point in which z=ΞΎ In the case of so, so, k∈ O_A (Dβˆ–{ΞΎ}) is an answer; also, z=ΞΎ the task k(z,ΞΎ) is easy task at z=ΞΎ.

Proof. A simple check shows that the task

The task πœ“(πœ‰, 𝑧) = 𝑧 – πœ‰ + 𝛾(πœ‰ ,𝑧)𝐴 (𝜏)π‘‘πœ has a unique simple zero at the point 𝑧 = πœ‰. In fact, πœ‰, 𝑧 is a segment which connects the points πœ‰, 𝑧 ∈ 𝐷, so,

and since 𝐴(𝑧) ≀ 𝑐 < 1, we have

the task πœ“(𝑧, πœ‰) has only one zero and it is simple at the point 𝑧 = πœ‰, therefore, k (z, πœ‰) is holomorphic in 𝐷 βˆ– {πœ‰} . 𝑧 = πœ‰ is its simple pole.

Remark 1. Notably, area D has been convex; 𝐾 (z, πœ‰) possesses a simple single-pole point z = πœ‰. In the case of region D C has not been Convex and it is merely simple-Linked, regardless of the tasks:

Theorem 6: Let 𝐷 βŠ‚ β„‚ be any arbitrary convex area, and let 𝐺 βŠ‚ 𝐷 be any arbitrary subarea with a smooth or piecewise smooth border βˆ‚G.

Therefore, the formula (3) applies to any task f(z) ∈ 𝑂𝐴(𝐺) ∩ 𝐢(𝐺 ) (3)

Proof. Fixing a point z ∈ 𝐺 and small circle U (z , πœ€ ) βŠ‚ 𝐺 , πœ€ > 0, the following theorem

πœ“(𝑧, πœ‰) = 𝑧 – πœ‰ +𝐼(𝑧) = 𝑧 – πœ‰ +

𝛾(πœ‰ ,𝑧)

𝐴 (𝜏)π‘‘πœ , is 𝐴(𝑧) – analytic in 𝐷:

πœ•

𝑧

𝑧 – πœ‰ + 𝐼(𝑧)

πœ•

𝑧

𝐼(𝑧) =

πœ•πΌ(𝑍)

πœ•π‘§

𝐴 (𝑧)

πœ•

𝑧

𝑧 – πœ‰ + 𝐼(𝑧) i.e. πœ“(𝑧, πœ‰) ∈ 𝑂

𝐴

(𝐷).

𝑧 – πœ‰ +

𝛾(πœ‰ ,𝑧)

𝐴 (𝜏)π‘‘πœ

= 𝑧 – πœ‰ +

πœ‰,𝑧

𝐴 (𝜏)π‘‘πœ

𝑧 – πœ‰ + β‰₯ 𝑧 βˆ’ πœ‰ –

𝛾(πœ‰ ,𝑧)

𝐴 (𝜏)π‘‘πœ

πœ‰,𝑧

𝐴 (𝜏)π‘‘πœ β‰₯

β‰₯ 𝑧 βˆ’ πœ‰ βˆ’

πœ‰,𝑧

𝐴(𝜏) π‘‘πœ β‰₯ 𝑧 βˆ’ πœ‰ βˆ’ 𝑐 βˆ™

πœ‰,𝑧

π‘‘πœ = (1 βˆ’ 𝑐) 𝑧 βˆ’ πœ‰ > 0, 𝑧 β‰  πœ‰.

𝑓(𝑧) = 𝐾

πœ•πΊ

(πœ‰ , 𝑧 ) 𝑓( πœ‰ ) (π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰ ) , z ∈ 𝐺 .

πœ“(πœ‰, 𝑧) = πœ‰ – z +

𝛾(𝑧 ,πœ‰)

𝐴 (𝜏)π‘‘πœ

(5)

1378 Vol. 71 No. 3 (2022)

http://philstat.org.ph holds: (4)

𝟐. A(z)βˆ’harmonic task

As stated earlier, the A(z)-harmonic task is the real component of A(z)-analytical tasks. The imaginary component of the analytical task is harmonic. A(z)-harmonic tasks exist when A(z) represents anti-analytic tasks.

Theorem 7: The real component of the analytic task f(z) ∈ 𝑂𝐴(𝐺) satisfies the following equations.

βˆ†π΄π‘’ = 0 (4) in which

Note Theorem 7 gives the following determinations for the A(z)-harmonic task.

Definition 1.

In area G, a task of twice differentiable function 𝑒 ∈ 𝐢2(𝐺), 𝑒 ∢ 𝐺 β†’ 𝑅 is A(z)-harmonic if, called A(z)βˆ’harmonic, it is a solution to the differential equation (4).

β„Žπ΄(𝐺)is the symbol for a class for A(z)-harmonic tasks in area (G), and both the real and imaginary components of the A(z)-analytic task 𝑓(𝑧) ∈ 𝑂𝐴(𝐺) are A(z)-harmonic tasks.

Likewise, the opposite is true for Areas with a simple link.

Theorem 8. f(z)∈ 𝑂𝐴(𝐺, such that u =Re f, exists in the case of the task 𝑒(𝑧) ∈ β„Žπ΄(𝐺), (G), in which G is a simply connected area.

For A(z)-harmonic tasks, theoretically, operator A(z)βˆ’has the similar role as u operator concerning harmonic and subharmonic tasks (Namely, we must provide the integral principle.

Assume GβŠ‚C to be the convex area, and let

correspond to the appropriately defined task for G.

𝐾 (πœ‰ , 𝑧 ) 𝑓(

πœ•πΊ

πœ‰ ) (π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰ ) =

πœ‰ βˆ’π‘§ =𝑐

𝐾 (πœ‰ , 𝑧 ) 𝑓( πœ‰ ) (π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰ ), but according to the Stokes formula we have:

πœ‰ βˆ’π‘§ = πœ€

𝐾 (πœ‰ , 𝑧 ) 𝑓( πœ‰ ) (π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰ ) =

πœ‰ βˆ’π‘§ = πœ€

𝑓(πœ‰)𝑀 (πœ‰ , 𝑧 ) =

πœ‰ βˆ’π‘§ β‰€πœ€

𝑑 𝑓(πœ‰)𝑀 (πœ‰ , 𝑧 ) =

πœ‰ βˆ’π‘§ β‰€πœ€

𝑑𝑓(πœ‰)𝑀 (πœ‰ , 𝑧 ) +

𝑓(πœ‰)𝑑𝑀 (πœ‰ , 𝑧 )

πœ‰ βˆ’π‘§ β‰€πœ€

⟢ 0 + 𝑓(𝑧) = 𝑓(𝑧) , π‘“π‘œπ‘Ÿ πœ€ ⟢ 0 ∎

βˆ†

𝐴

=

πœ•

πœ•π‘§ 1

1βˆ’ 𝐴 2

[(1 + 𝐴

2

)

πœ•π‘’

πœ•π‘§

βˆ’ 2𝐴

πœ•π‘’

πœ•π‘§

] +

πœ•

πœ•π‘§ 1

1βˆ’ 𝐴 2

[(1 + 𝐴

2

)

πœ•π‘’

πœ•π‘§

βˆ’ 2𝐴

πœ•π‘’

πœ•π‘§

] .

πœ“(𝑧,

πœ‰) = 𝑧 βˆ’ πœ‰ +

𝛾(πœ‰,𝑧)

𝐴 (𝜏)π‘‘πœ

(6)

1379 Vol. 71 No. 3 (2022)

http://philstat.org.ph

Theorem 9. Poisson's formula (by Poisson's Theorem) holds in the case of a task u(z) has been A(z)-harmonic in the lemniscate L(a,R)βŠ‚D, continuous in its closure, specifically u(z)∈h_A (L(a,R))∩C(L Μ…(a,R))

(5)

Other side in the case of the tasks Ο†(ΞΎ) continuous at the boundaries of the lemniscate 𝐿(π‘Ž, 𝑅) βŠ‚ 𝐷, So, the Task:

Is the Lemniscate a Solution to the Dirichlet Problem:

𝐿(π‘Ž, π‘Ÿ): βˆ†π΄π‘’ = 0 βˆ€ 𝑧 ∈ 𝐿(π‘Ž, 𝑅) , 𝑒 πœ•πΏ(π‘Ž, 𝑅) = πœ‘.

Theorem 10. in the case of task u is an 𝐴(𝑧) –harm-onic in a Lemn-iscate

so, the following equality holds for any r < 𝑅:

Proof. Since 𝑒 ∈ β„Žπ΄(𝐿(𝑧, 𝑅)) so, there is a task 𝑓(𝑧) ∈ 𝑂𝐴(𝐿(𝑧, 𝑅)) for which 𝑒(𝑧) = 𝑅𝑓(𝑧).

we expand the task 𝑓(𝑧) in the area 𝐿(𝑧, 𝑅) in a Taylor series

If π‘Ÿ < 𝑅, the Series converges uniformly in a lemniscate πœ“(πœ‰, 𝑧) ≀ π‘Ÿ.

Compute the following Integrals:

𝑒(𝑧) =

1

2πœ‹π‘Ÿ

Ο†(ΞΎ)

π‘Ÿ2βˆ’ πœ“(πœ‰,π‘Ž) 2

πœ“(πœ‰,𝑧) 2

π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰

πœ“(πœ‰,π‘Ž) =𝑅

(6)

𝐿(𝑧, 𝑅) = {πœ‰ ∈ 𝐺:

πœ“

(

𝑧,πœ‰

)

<𝑅

} βŠ‚ 𝐺

f (z)= βˆžπ‘›=0

𝑐

𝑛

πœ“

𝑛

(ΞΎ , 𝑧).

𝑒(𝑧) =

1

2

( 𝑓 (z) + 𝑓 (z) ) =

1

2 βˆžπ‘›=0

𝑐

𝑛

πœ“

𝑛

(ΞΎ , 𝑧) + 𝑐

𝑛

πœ“

𝑛

(ΞΎ , 𝑧)

(7) using π‘‘πœ“(πœ‰,

𝑧) = π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰ = π‘Ÿπ‘–π‘’

𝑖𝑑

𝑑𝑑, 0 ≀ 𝑑 ≀ 2πœ‹

and π‘‘πœ‰

+ 𝐴(πœ‰)π‘‘πœ‰ = π‘Ÿπ‘‘π‘‘ , 𝑒(𝑧) =

1

2πœ‹π‘Ÿ πœ“(πœ‰,𝑧) =π‘Ÿ

u(ΞΎ) π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰

.

𝑒(𝑧) =

1

2πœ‹π‘Ÿ

u(ΞΎ)

π‘Ÿ2βˆ’ πœ“ (πœ‰,π‘Ž) 2

πœ“ (πœ‰,𝑧) 2

π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰

πœ“ (πœ‰,π‘Ž) =𝑅

.

(7)

1380 Vol. 71 No. 3 (2022)

http://philstat.org.ph

Integrating the part-equality (15) in a perimeter for lemniscate yields a subsequent equivalence:

Theorem 11. (Fubini’s Theorem). In the case of 𝑓(π‘₯, 𝑦) is continuous throughout the rectangular region, 𝑅: π‘Ž ≀ π‘₯ ≀ 𝑏, 𝑐 ≀ 𝑦 ≀ 𝑑, (π‘Ž, 𝑏, 𝑐, 𝑑 ∈ 𝑅),so,

Theorem 12. Task 𝑒 ∈ 𝐢(𝐺) , the subsequent Statements have been Comparable:

Proof. 1 ⟹ 2 based on a mean magnitude, A theory (10). 2 3 stems based on Fubini's familiar formula. Hypothesis ( 11):

πœ“

𝑛

(πœ‰, 𝑧) π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰ = π‘Ÿ

𝑛+1 02πœ‹

𝑒

𝑑𝑖𝑛

πœ“ (πœ‰,𝑧) =π‘Ÿ

𝑑𝑑 = 0, 𝑛 β‰₯ 1

2πœ‹π‘Ÿ, 𝑛 = 0 πœ“

𝑛

(ΞΎ , 𝑧)

π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰ = π‘Ÿ

𝑛+1 02πœ‹

𝑒

βˆ’π‘‘π‘–π‘›

πœ“ (πœ‰,𝑧) =π‘Ÿ

𝑑𝑑 = 0, 𝑛 β‰₯ 1

2πœ‹π‘Ÿ, 𝑛 = 0

u(ΞΎ) π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰

πœ“(πœ‰,𝑧) =π‘Ÿ

= πœ‹π‘Ÿ(𝑐

0

+ 𝑐

0

) = 2πœ‹π‘Ÿπ‘’(𝑧) ∎

𝑓(π‘₯, 𝑦)𝑑𝐴 =

𝑅

𝑓(π‘₯, 𝑦)𝑑π‘₯𝑑𝑦 = 𝑓(π‘₯, 𝑦)𝑑𝑦𝑑π‘₯.

𝑑

𝑐 𝑏

π‘Ž 𝑏

π‘Ž 𝑑

𝑐

1) 𝑒 ∈ β„Ž

𝐴

(𝐷);

2) for any 𝑧 ∈ 𝐺 and 𝐿(𝑧, π‘Ÿ) βŠ‚βŠ‚ G the following equality holds 𝑒(𝑧) =

1

2πœ‹π‘Ÿ πœ“(πœ‰,𝑧) =π‘Ÿ

u(ΞΎ) π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰ ;

3) π‘“π‘œπ‘Ÿ any 𝑧 ∈ 𝐺 and 𝐿(𝑧, π‘Ÿ) ⋐G the following equality holds 𝑒(𝑧) =

1

πœ‹π‘Ÿ2 πœ“(πœ‰,𝑧) β‰€π‘Ÿ

u(ΞΎ)dΞΌ (8) π‘Šβ„Žπ‘’π‘Ÿπ‘’ dΞΌ(1 βˆ’ 𝐴(πœ‰)

2

)

π‘‘πœ‰ β‹€π‘‘πœ‰

2𝑖

.

1

πœ‹ π‘Ÿ2 πœ“ (πœ‰,𝑧) β‰€π‘Ÿu(ΞΎ)dΞΌ= 1

πœ‹ π‘Ÿ2 𝑑𝑑 0π‘Ÿ πœ“ (πœ‰,𝑧) =𝑑u(ΞΎ) π‘‘πœ‰ +𝐴(πœ‰)π‘‘πœ‰ = = 1

πœ‹ π‘Ÿ2 0π‘Ÿ2πœ‹π‘‘π‘’(𝑧)𝑑𝑑 = 𝑒(𝑧).

(8)

1381 Vol. 71 No. 3 (2022)

http://philstat.org.ph

here we are using the following obvious equality,

Fix a lemniscate 𝐿(π‘Ž, 𝑅) βŠ‚ 𝐺 to prove that 3⟹1is true. Apply the poisson formula (5) to the task

Using the auxiliary task 𝑒1 = 𝑣 βˆ’ 𝑒, in which 𝑒1 πœ•πΏ(π‘Ž,𝑅) = 0.

To every 𝐿(𝑧, π‘Ÿ) βŠ‚βŠ‚ 𝐿(π‘Ž, 𝑅), equality (8) holds since 𝑣(𝑧) ∈ β„Žπ΄(𝐿(π‘Ž, 𝑅)) and 𝑒(𝑧) fulfil the Theorem condition. From the following can be inferred the required statement.

Lemma 1. in the case of the mean value condition 3 for task 𝑒 ∈ 𝐢(𝐺), uβ‰’ const, has been True, i.e. for every z∈G and 𝐿(π‘Ž, 𝑅) βŠ‚βŠ‚ G , the equivalence (8) holds, so, u(z) cannot attain its maximum or minimum magnitude within G.

Proof. Indeed, presume:

βˆƒπ‘§0 ∈ 𝐺 ∢ 𝑒(𝑧0) = sup

𝐺 𝑒(𝑧), fix 𝐿 = 𝐿(𝑧0, π‘Ÿ) βŠ‚ 𝐺, and write the equality (8)

dΞΌ (1 βˆ’ 𝐴(πœ‰)

2

)

π‘‘πœ‰ β‹€π‘‘πœ‰

βˆ’2𝑖

=

𝑖

2

(π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰ ) β‹€(π‘‘πœ‰ + 𝐴 (πœ‰)π‘‘πœ‰ ) = =

𝑖

2

π‘‘πœ“(πœ‰, 𝑧)β‹€π‘‘πœ“ (πœ‰, 𝑧) = 𝑑𝑑 ⨂ π‘‘πœ“(πœ‰, 𝑧) = 𝑑𝑑⨂ π‘‘πœ‰ + 𝐴(πœ‰)π‘‘πœ‰ .

𝑣 ∈ β„Ž

𝐴

(𝐿(π‘Ž, 𝑅)) ∩ 𝐢(𝐿 (π‘Ž, 𝑅)) :v|

πœ•πΏ(π‘Ž,𝑅)

= 𝑒|

πœ•πΏ(π‘Ž,𝑅)

𝑒(𝑧0) = 1

πœ‹π‘Ÿ2 𝐿u(ΞΎ)dΞΌ= 1

πœ‹π‘Ÿ2 𝐿∩{𝑒(πœ‰)=𝑒(𝑧0)}u(ΞΎ)dΞΌ+ 1

πœ‹π‘Ÿ2 𝐿∩{𝑒(πœ‰)<𝑒(𝑧0)}u(ΞΎ)dΞΌ = 1

πœ‹π‘Ÿ2 𝐿∩{𝑒(πœ‰)=𝑒(𝑧0)}u(𝑧0)dΞΌ+ 1

πœ‹π‘Ÿ2 𝐿∩{𝑒(πœ‰)<𝑒(𝑧0)}u(ΞΎ)dΞΌ = 1

πœ‹π‘Ÿ2 𝐿 u(𝑧0)dΞΌβˆ’ 1

πœ‹π‘Ÿ2 𝐿∩{𝑒(πœ‰)<𝑒(𝑧0)}u(𝑧0)dΞΌ+ 1

πœ‹π‘Ÿ2 𝐿∩{𝑒(πœ‰)<𝑒(𝑧0)}u(ΞΎ)dΞΌ =𝑒(𝑧0)βˆ’ 1

πœ‹π‘Ÿ2 𝐿∩{𝑒(πœ‰)<𝑒(𝑧0)} 𝑒(𝑧0)βˆ’ 𝑒(πœ‰) dΞΌ . (9) Since 𝑒(𝑧0) βˆ’ 𝑒(πœ‰) β‰₯0 βˆ€πœ‰ ∈ 𝐿(𝑧0,π‘Ÿ) then from (9) it follows that 𝐿(𝑧0,π‘Ÿ)∩ {𝑒(πœ‰) <𝑒(𝑧0)}=βˆ… , i.e. 𝑒(πœ‰) ≑ 𝑒(𝑧0) in (𝑧0,π‘Ÿ) .

(9)

1382 Vol. 71 No. 3 (2022)

http://philstat.org.ph

Changing u(z) to -u(z) reveals that the Minimum principle holds for u(z) under the conditions of Lemma 1, i.e., in the case of u(z) is less than u. (z)

It suffices to observe, to conclude the proof of Theorem (12), that the auxiliary Task 𝑒1= 𝑣 βˆ’ 𝑒, for which 𝑒1 ∈ 𝐢(𝐿 (π‘Ž, 𝑅)) and 𝑒1 πœ•πΏ(π‘Ž,𝑅) = 0, the condition (3). Based on Lemma (1), 𝑒1 = 𝑣 βˆ’ 𝑒 ≑ 0 i.e.

𝑒(𝑧) ≑ 𝑣(𝑧) ∈ β„Žπ΄(𝐿(π‘Ž, 𝑅)). ∎

Corollary 1. (Extremum principle). In the case of the task 𝑒 ∈ β„Žπ΄(𝐷) touches its extreme in G, so, 𝑒 ≑ constant.

Corollary 2. The Dirichlet problem △𝐴𝑒(𝑧) = 0 𝑧 ∈ 𝐺, 𝑒 ∈ β„Žπ΄(𝐺) ∩ 𝐢(𝐺 ), u πœ•πΊ = πœ‘, πœ‘ ∈ 𝐢(πœ•πΊ) takes the distinctive solution.

Proof. Assume two solutions 𝑒1 and 𝑒2 are existing. So, their difference 𝑣 = 𝑒1βˆ’ 𝑒2 ∈ β„Žπ΄(𝐷) has been continuous in 𝐷 and v πœ•π· ≑ 0. Therefore, by extremum standard v 𝐷 ≑ 0,

For example, 𝑒1 ≑ 𝑒2. ∎

3. Equivalence for Harnack’s theorem

Remark 2. Here, the equivalence for familiar Harnack's Inequality has presented, that is vital in proving Harnack's eorem.

Theorem 13: Assume u (z) has the A(z)-harmonic task in a lemniscate. L (a, R) βŠ‚ 𝐷 , continuous in its closure, specifically u(z)∈ β„Žπ΄ (L a, R))∩ 𝐢(𝐿(a, R)) , in which 𝐷 βŠ‚ β„‚ has been convex area. In the case of u(z)β‰₯ 0 in a lemniscate L (a, R), so, it will be right Harnack’s inequality.

βˆƒπ‘§0 ∈ 𝐺 ∢ 𝑒(𝑧0) = inf

𝐺 𝑒(𝑧) .

Then 𝑒(πœ‰)≑ 𝑒(𝑧0) βˆ€π‘§ ∈ 𝐺. ∎

(10)

1383 Vol. 71 No. 3 (2022)

http://philstat.org.ph

Theorem 14. A monotonically increasing series for A(z)-harmonic tasks u_j∈h_A(D). If it converges uniformly (in D) to, or meets uniformly to definite A(z)-harmonic tasks 𝑒 ∈ β„Žπ΄(𝐷).

Proof. It suffices to demonstrate the theorem given a monotonically growing sequence such as 𝑒𝑗 ⟢ 𝑒(𝑧) , 𝑒(𝑧) ∈ (βˆ’βˆž , +∞ . We correct a random convex area GD In which a lemniscate can be defined as (π‘Ž, π‘Ÿ) = {πœ‰ ∈ 𝐺 ∢ πœ“(πœ‰, π‘Ž) < π‘Ÿ} βŠ‚ 𝐺, a∈G ,r>0 it can be assuming that 𝑒𝑗 β‰₯ 𝑒1(𝑧) β‰₯ 0 βˆ€ 𝑧 ∈ 𝐺 given that u_jβ‰₯u_1 (z) and, should it be necessary, adding positive constant.

Using the formula for the mean value (10) so, : 𝑒𝑗(𝑧) = 1

πœ‹π‘Ÿ2 πœ“(πœ‰,π‘Ž) β‰€π‘Ÿπ‘’π‘—(ΞΎ)dΞΌ

According to Levy's theorem, this equivalence applies to you as well (the priory u is feasibly not bounded)

𝑒(𝑧) = 1

πœ‹π‘Ÿ2 u(ΞΎ)dΞΌ

πœ“(πœ‰,π‘Ž) β‰€π‘Ÿ

(11)

π‘ͺ𝒂se Ξ™. U represents not bounded task, and the equation reads βˆƒ a∈G∢u(a)=+∞. In the case of this is the case, the left side of equation (10) suggests that the value of u_j (z) as jβ†’ ∞, as uniformly evaluated in βˆ‚L(a,ρ),βˆ€ ρ<r, meets to +∞. Here, demonstrating that u(z)≑+∞ in G besides u_j (z) as jβ†’ ∞uniformly converges to + in arbitrary L(a,ρ)βŠ‚G is not a difficult task at

π‘Ÿβˆ’πœŒ

π‘Ÿ+𝜌

𝑒

𝑗

(π‘Ž) ≀ 𝑒

𝑗

(𝑧) ≀

π‘Ÿ+𝜌

π‘Ÿβˆ’πœŒ

𝑒

𝑗

(π‘Ž), 𝑧 ∈ πœ•πΏ(π‘Ž, 𝜌). (10)

Proof. In L(a, r) The Poisson's formula was written as (cf. (12) )

𝑒

𝑗

(𝑧) =

1

2πœ‹π‘Ÿ

𝑒

𝑗

(πœ‰)

π‘Ÿ2βˆ’ πœ“(𝑧,π‘Ž) 2

πœ“(πœ‰,𝑧) 2

πœ“(πœ‰,π‘Ž) =π‘Ÿ

π‘‘πœ‰ + 𝐴(πœ‰)𝑑(πœ‰ , z ∈ L(a, r), j= 1,2 β‹―

This formula implies the following inequality:

π‘Ÿ2βˆ’πœŒ2

(π‘Ÿ+𝜌)2

𝑒

𝑗

(π‘Ž) ≀ 𝑒

𝑗

(𝑧) ≀

π‘Ÿ2βˆ’πœŒ2

(π‘Ÿβˆ’πœŒ)2

𝑒

𝑗

(π‘Ž), 𝑧 ∈ πœ•πΏ(π‘Ž, 𝜌) = { πœ“(𝑧, π‘Ž) = 𝜌}

Which is equivalent to

π‘Ÿβˆ’πœŒ

π‘Ÿ+𝜌

𝑒

𝑗

(π‘Ž) ≀ 𝑒

𝑗

(𝑧) ≀

π‘Ÿ+𝜌

π‘Ÿβˆ’πœŒ

𝑒

𝑗

(π‘Ž), 𝑧 ∈ πœ•πΏ(π‘Ž, 𝜌). ∎

(11)

1384 Vol. 71 No. 3 (2022)

http://philstat.org.ph all.

π‘ͺ𝒂se II . 𝑒(𝑧) < ∞ βˆ€ 𝑧 ∈ 𝐺. So, the right-hand of (10) indicates that 𝑒𝑗+π‘š(𝑧) βˆ’ 𝑒𝑗(𝑧) β‰€π‘Ÿ+𝜌

π‘Ÿβˆ’πœŒ(𝑒𝑗+π‘š(π‘Ž) βˆ’ 𝑒𝑗(𝑧)) , 𝑧 ∈ πœ•πΏ(π‘Ž, 𝜌).

Moreover, the sequence 𝑒𝑗(𝑧) π‘Žπ‘  𝑗 β†’ ∞ uniformly converges in 𝐿(π‘Ž, 𝜌), 𝜌 < π‘Ÿ.

As a consequence of this, in any compact KG, u j (z) uniformly meets u(z), with continuous u(z) in G. (11). The both theorems support this proposition (12). As a result, u(z)h A. (G). Because GD stands for a fixed arbitrary convex area, u(z) has been A(z) in D.∎

Conclusions

1- Study some properties of 𝐴(𝑧) – harmonic tasks.

2- Proving an analog of the Schwarz inequality for analytic tasks A(z).

3-Proving the integral formula of Poisson for A (z)-analytic tasks.

4-Demonstrate an analog of Harnack's theorem for 𝐴(𝑧) - harmonic tasks.

REFERENCES

[1] Ahlfors L. Lectures on quasiconformal mappings, Toronto-New York-London,(1966).

[2] Bojarsky B. Homeomorphic solution of Beltrami systems, Report ACUSSR,Vol.102, No4, 661-664 (1955).

[3] Bojarsky B. Generalized solutions of a system of differential equations of the First order of the elliptic type with discontinuous coefficients. Math.Comp., 1957, Vol. 43(85),451-503 (1957).

[4] Sadullaev A. Theory Plurepotentials. Applications. Palmarium academic pub- Lishing (2012).

[5] Sadullaev A. Dirichlet problem to Monge-Ampere equation. DAN USSR, Vol.267, No.3, 563-566 (1982).

[6] Vekua I. N. Generalized analytic functions.M,” Science” (1988).

[7] Volkovysky L.I. Quasiconformal mappings. Lviv (1954).

[8] Gutlyanski V., Ryazanov V., Srebro U. and Yakubov E.The Beltrami equation∢ A geometric approach. Springer (2011).

[9] Shabborov N.M., Otaboev T.U. An analog of the integral Cauchy theorem forA-analytic functions, Uzbek Mat. Zh., (2016), No. 4, 50–59 (in Russian).

[10] Shabborov N.M., Otaboev T.U. Cauchy’s theorem for A-analytical functions, Uzbek Mat. Journal, No. 1, 15-18 (2014).

[11] Sadullaev A., Zhabborov N.M. On a class of A-analitic functions. Sibiran Federal University, Maths and Physics, Vol. 9(3), 374-384 (2016).

Referensi

Dokumen terkait