2326-9865
Vol. 71 No. 3s2 (2022) 756 http://philstat.org.ph
Some Compatible and Weakly-Compatible Four Self-Mapping Results Approach to Nonlinear Integral Equations in Intuitionistic
Fuzzy Cone Metric Spaces
𝐃𝐫. 𝐀. 𝐌𝐨𝐡𝐚𝐧
Assistant Professor, PG & Research Department of Mathematics, Urumu Dhanalakshmi College, Bharathidasan University, Trichy, India.
Email id: [email protected].,
Article Info
Page Number: 756 - 777 Publication Issue:
Vol 71 No. 3s2 (2022)
Article History
Article Received: 28 April 2022 Revised: 15 May 2022
Accepted: 20 June 2022 Publication: 21 July 2022
Abstract
This study uses the compatible and weakly compatible four self-mappings in intuitionistic fuzzy cone metric (IFCM) space to prove several unique common fixed point theorems. With the use of one self-map, we show that the findings in IFCM spaces under generalised rational contraction conditions are continuous.
Furthermore, given the weaker requirement of self-mapping continuity, we show several logical contraction findings. Finally, our theoretical work was used to demonstrate that the two nonlinear integral equations had a solution.
This is an example of how IFCM spaces may be used to different integral type operators.
2020 Mathematical Sciences Classification : 46N20, 46S40, 47H10, 37C25, 54H25, 55M20, 58C30.
Keywords- Intuitionistic fuzzy metric, Intuitionistic fuzzy cone, compatiple, fixed point
1. Introduction
In the year 1965, Zadeh [16] introduced the concept of fuzzy sets which permit the gradual assessment of the membership of the elements in a set. To use this concept in topology, Kramosil and Michálek in [8] introduced the class of fuzzy metric spaces. After that, George and Veeramani [5] modified the concept of fuzzy metric spaces and defined a Hausdorff topology on this fuzzy space.
The concept of cone metric space is introduced by Huang and Zhang [6] also they proved fixed point results. In 1986, the concept of an intuitionistic fuzzy set (IFS) was put forward by Atanassov [3], which can be viewed as an extension of fuzzy set. Park [10-11]
proved various types of fixed point results in Intuitionistic fuzzy metric space. After that In 2015, the notion of fuzzy cone metric space (FCM space) was introduced by Oner [9] et al.
Some triangular property and integral type application results in the theory of fixed point can be found in [7,8,12-14]. Some Basic property’s fount in [1,2,15].
2. Preliminaries
We'll go over some fundamental definitions and lemmas in this section.
Definition 1[15]
An operation ∗,◊∶ [0, 1]2 ⟶ [0, 1] is called a continuous t-norm and t-conorm if (i) ∗ is associative, commutative, and continuous
2326-9865
Vol. 71 No. 3s2 (2022) 757 http://philstat.org.ph
(ii) 1 ∗ 𝑞1 = 𝑞1 and 𝑞1∗ 𝑞2 ≤ 𝑞3 ∗ 𝑞4, whenever 𝑞1 ≤ 𝑞3 and 𝑞2 ≤ 𝑞4, for all 𝑞1, 𝑞2, 𝑞3, 𝑞4 ∈ [0, 1]
(iii) The minimum; 𝑞1 ∗ 𝑞2 = 𝑚𝑖𝑛 {𝑞1, 𝑞2} (iv) The product; 𝑞1 ∗ 𝑞2 = 𝑞1𝑞2
(v) The Lukasiewicz; 𝑞1 ∗ 𝑞2 = 𝑚𝑎𝑥 {𝑞1 + 𝑞2 − 1, 0}
(vi) ◊ is associative, commutative, and continuous
(vii) 0 ◊ 𝑞1 = 𝑞1 and 𝑞1◊ 𝑞2 ≤ 𝑞3 ◊ 𝑞4, whenever 𝑞1 ≤ 𝑞3 and 𝑞2 ≤ 𝑞4, for all 𝑞1, 𝑞2, 𝑞3, 𝑞4 ∈ [0, 1]
(viii) The minimum; 𝑞1 ◊ 𝑞2 = 𝑚𝑎𝑥 {𝑞1, 𝑞2} (ix) The product; 𝑞1 ◊ 𝑞2 = 𝑞1+ 𝑞2− 𝑞1𝑞2
(x) The Lukasiewicz; 𝑞1 ∗ 𝑞2 = 𝑚𝑖𝑛 {𝑞1 + 𝑞2 ,1}. Schweizer are Sklar [15] define the above basic continuous t-norms and t-conorms.
Definition 2 [1]
A 5-tuple (𝑈, 𝑀0, 𝑁0,∗,◊) is called a IFCM space if C is a cone of E, 𝑈 is an arbitrary set, (∗,◊) is a continuous t-norm, t-conorm and 𝑀0, 𝑁0 is a intuitionistic fuzzy set on 𝑈 2× 𝑖𝑛𝑡 (𝑃) satisfying the following conditions
i. 𝑀0(λ1,λ2, t) > 0 and 𝑀0(λ1,λ2, t) = 1 ⇔λ1 = λ2 ii. 𝑀0(λ1,λ2, t) = 𝑀0(λ2,λ1, t)
iii. 𝑀0(λ1,λ2, t) ∗ 𝑀0(λ2,λ3, s) ≤ 𝑀0(λ1,λ3, t + s)
iv. 𝑀0(λ1,λ2, . ): 𝑖𝑛𝑡 (𝑝) → [0,1] is continuous ∀ λ1,λ2,λ3 ∈ U and 𝑡, 𝑠 ∈ 𝑖𝑛𝑡(𝑝).
v. 𝑁0(λ1,λ2, t) ≤ 1 and 𝑁0(λ1,λ2, t) = 0 ⇔λ1 = λ2 vi. 𝑁0(λ1,λ2, t) = 𝑁0(λ2,λ1, t)
vii. 𝑁0(λ1,λ2, t)◊𝑁0(λ2,λ3, s) ≥ 𝑁0(λ1,λ3, t + s)
viii. 𝑁0(λ1,λ2, . ): 𝑖𝑛𝑡 (𝑝) → [0,1] is continuous ∀ λ1,λ2,λ3 ∈ U and 𝑡, 𝑠 ∈ 𝑖𝑛𝑡(𝑝).
Definition 3[2]
Let (𝑈, 𝑀0, 𝑁0,∗,◊) be a IFCM space, ∃ λ1 ∈ U and {λ𝑗} be any sequence in U.
(i) {λ𝑗} converges to λ1 if for any c ∈ (0, 1), t ≫θ, and ∃ j1 ∈ N such that M0(λ𝑗,λ1, t) > 1 − c and 𝑁0(λ𝑗,λ1, t) < c,for j ≥ j1.
This can be written as lim
j⟶∞λ𝑗 =λ1 , or λ𝑗 ⟶λ1 as j ⟶∞
(ii) (λ𝑗) is Cauchy if for any c ∈ (0, 1), t ≫θ and ∃j1 ∈ N such that M0(λ𝑗,λ1, t) >
1 – c and 𝑁0(λ𝑗,λ1, t) < c for j, k ≥ j1.
(iii) (𝑈, 𝑀0, 𝑁0,∗,◊) is complete if every Cauchy sequence is convergent in U (iv) {λ𝑗} is IFC contractive if ∃a ∈ (0, 1) so that
1
𝑀0(λ𝑗,λ𝑗+1,𝑡)− 1 ≤ 𝑎 ( 1
𝑀0(λ𝑗−1,λ𝑗,𝑡)− 1) for t ≫ θ, j ≥ 1 and
𝑁0(λ𝑗,λ𝑗+1, 𝑡) ≤ 𝑎(𝑁0(λ𝑗−1,λ𝑗, 𝑡)) for t ≫θ, j ≥ 1 (1)
Lemma 4 [3]
“Let (𝑈, 𝑀0, 𝑁0,∗,◊) be a IFCM space and a sequence λ𝑗 ⟶λ1 ∈ U iff M0(λ𝑗,λ1, t) ⟶ 1 𝑎𝑛𝑑 𝑁0(λ𝑗,λ1, t) ⟶ 0 as j ⟶∞ for each t ≫θ”.
Definition 5 [14]
Let (𝑈, 𝑀0, 𝑁0,∗,◊) be a IFCM space. The IFCM 𝑀0, 𝑁0 is triangular if
1
𝑀0(λ1,λ3,𝑡)− 1 ≤ ( 1
𝑀0(λ1,λ2,𝑡)− 1) + ( 1
𝑀0(λ2,λ3,𝑡)− 1) ∀ λ1,λ2,λ3 ∈ 𝑈 t ≫θ, and
2326-9865
Vol. 71 No. 3s2 (2022) 758 http://philstat.org.ph
𝑁0(λ1,λ3, 𝑡) ≤ 𝑁0(λ1,λ2, 𝑡) + 𝑁0(λ2,λ3, 𝑡)∀ λ1,λ2,λ3 ∈ 𝑈 t ≫θ, (2)
Definition 6 [10]
Let (𝑈, 𝑀0, 𝑁0,∗,◊) be a IFCM space and A ∶ U ⟶ U. Then, A is said to be IFC contractive if there is a ∈ (0, 1) so that
1
𝑀0(𝐴λ1,𝐴λ2,𝑡)− 1 ≤ 𝑎 ( 1
𝑀0(λ1,λ2,𝑡)− 1) ∀ λ1,λ2, ∈ 𝑈 and t ≫θ,
𝑁0(𝐴λ1, 𝐴λ2, 𝑡) ≤ 𝑎(𝑁0(λ1,λ2, 𝑡)) ∀ λ1,λ2, ∈ 𝑈 and t ≫θ, (3)
Definition 7[12]
Let U ≠ ∅ set and let B, h ∶ U ⟶ U be the self-mappings on U. If there exists ξ ∈ U such that B ρ = hρ = ξ for some ρ ∈ U. Then, ρ is called a coincidence point of B and h, and ξ is known as a point of coincidence of the mappings B, h. A pair of self-mappings (B, h) is known to be weakly-compatible if the self-mappings commute at their coincidence point, i.e., hB(ρ) = Bh(ρ) for ρ ∈ U.
Proposition 8 [13]
Let B, h be weakly-compatible self-mappings on U. If B and h have a unique point of coincidence, that is, Bρ = hρ = ξ, then, ξ is a unique CFP of the mappings B and ℎ.
Definition 9 [13]
A self-mapping pair (h, B) is said to be compatible on a IFCM space (𝑈, 𝑀0, 𝑁0,∗,◊) if, lim
𝑗→∞ 𝑀0(Bhλ𝑗, hBλ𝑗, t) = 1 and lim
𝑗→∞ 𝑁0(Bhλ𝑗, hBλ𝑗, t) = 0 for t ≫ θ, whenever {λ𝑗} is a sequence in U so that lim
𝑗→∞𝐵λ𝑗 = lim
𝑗→∞ℎλ𝑗 = 𝜉 for some ξ ∈ U.
3. Main Results
We are now in a position to communicate our key findings.
Theorem 10.
Let A, B, g, h ∶ U ⟶ U be the four self mappings on a complete IFCM space (𝑈, 𝑀0, 𝑁0,∗,◊) in which a IFCM, 𝑀0, 𝑁0 is triangular and satisfies
1
𝑀0(𝐴λ,𝐵𝜇,𝑡)− 1 ≤ {
𝑎 ( 1
𝑀0(ℎλ,𝑔𝜇,𝑡)− 1) + 𝑏 ( 𝑀0(ℎλ,𝑔𝜇,𝑡)
𝑀0(ℎλ,𝐵𝜇,2𝑡)∗𝑀0(𝑔𝜇,𝐴λ,2𝑡)− 1) +𝑐 ( 1
𝑀𝑟(ℎλ,𝐴λ,𝑡)− 1 + 1
𝑀𝑟(𝑔𝜇,𝐵𝜇,𝑡)− 1) + 𝑑 ( 1
𝑀𝑟(𝑔𝜇,𝐴λ,𝑡)− 1 + 1
𝑀𝑟(ℎλ,𝐵𝜇,𝑡)− 1)} and 𝑁0(𝐴λ, 𝐵𝜇, 𝑡) ≤ { 𝑎(𝑁0(ℎλ, 𝑔𝜇, 𝑡)) + 𝑏 (𝑁0(ℎλ,𝐵𝜇,2𝑡)◊𝑁0(𝑔𝜇,𝐴λ,2𝑡)
𝑁0(ℎλ,𝑔𝜇,𝑡) )
+𝑐(𝑁𝑟(ℎλ, 𝐴λ, 𝑡) + 𝑁𝑟(𝑔𝜇, 𝐵𝜇, 𝑡)) + 𝑑(𝑁𝑟(𝑔𝜇, 𝐴λ, 𝑡) + 𝑁𝑟(ℎλ, 𝐵𝜇, 𝑡))} (4)
∀ λ,μ ∈ U, t ≫ θ, and 0 ≤ a, b, c, d < 1 with (a + b + 2c + 2d) < 1. If A(U) ⊆ g(U), B(U) ⊆ h(U) and consider that
(1) h is a continuous self-mapping, (2) A pair (A, h) is compatible, and
(3) A pair (B, g) is weakly-compatible, Then, the mappings A, B, g, and h have a unique CFP in U.
2326-9865
Vol. 71 No. 3s2 (2022) 759 http://philstat.org.ph Proof.
Fix λ0 ∈ U and by the hypothesis A(U) ⊆ g(U), B(U) ⊆ h(U), we define the iterative sequences in U so that
ξ2j+1 = gλ2j+1 = Aλ2j and ξ2j+2 = hλ2j+2 = Bλ2j+1 , j ≥ 0:
(5)
Then by (4)
1
𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)− 1 = 1
𝑀0(𝐴λ2𝑗,𝐵λ2𝑗+1,𝑡)− 1 ≤
{
𝑎 (𝑀 1
0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡)− 1) + 𝑏 ( 𝑀0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡)
𝑀0(ℎλ2𝑗,𝐵λ2𝑗+1,2𝑡)∗𝑀0(𝑔λ2𝑗+1,𝐴λ2𝑗,2𝑡)− 1)
+𝑐 ( 1
𝑀0(ℎλ2𝑗,𝐴λ2𝑗,𝑡)− 1 + 1
𝑀0(𝑔λ2𝑗+1,𝐵λ2𝑗+1,𝑡)− 1)
+𝑑 ( 1
𝑀0(𝑔λ2𝑗+1,𝐴λ2𝑗,𝑡)− 1 + 1
𝑀0(ℎλ2𝑗,𝐵λ2𝑗+1,𝑡)− 1)
}
= {
𝑎 (𝑀 1
0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡)− 1) + 𝑏 (𝑀0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡)
𝑀0(ℎλ2𝑗,ℎλ2𝑗+2,2𝑡))
+𝑐 ( 1
𝑀0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡)− 1 + 1
𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)− 1)
+𝑑 ( 1
𝑀0(ℎλ2𝑗,𝐵λ2𝑗+2,𝑡)− 1)
}
and
𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡) = 𝑁0(𝐴λ2𝑗, 𝐵λ2𝑗+1, 𝑡)
≤ {
𝑎 (𝑁0(ℎλ2𝑗, 𝑔λ2𝑗+1, 𝑡)) + 𝑏 (𝑁0(ℎλ2𝑗,𝐵λ2𝑗+1,2𝑡)◊ 𝑁0(𝑔λ2𝑗+1,𝐴λ2𝑗,2𝑡)
𝑁0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡) ) +𝑐 (𝑁0(ℎλ2𝑗, 𝐴λ2𝑗, 𝑡) + 𝑁0(𝑔λ2𝑗+1, 𝐵λ2𝑗+1, 𝑡))
+𝑑(𝑁0(𝑔λ2𝑗+1, 𝐴λ2𝑗, 𝑡) + 𝑁0(ℎλ2𝑗, 𝐵λ2𝑗+1, 𝑡)) }
= {
𝑎 (𝑁0(ℎλ2𝑗, 𝑔λ2𝑗+1, 𝑡)) + 𝑏 (𝑁0(ℎλ2𝑗,ℎλ2𝑗+2,2𝑡)
𝑁0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡)) +𝑐 (𝑁0(ℎλ2𝑗, 𝑔λ2𝑗+1, 𝑡) + 𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡))
+𝑑(𝑁0(ℎλ2𝑗, 𝐵λ2𝑗+2, 𝑡)) }
(6)
By Definition 2 (iii & vii), 𝑀0(ℎλ2𝑗, ℎλ2𝑗+2, 2𝑡) ≥ 𝑀0(ℎλ2𝑗, 𝑔λ2𝑗+1, 𝑡) ∗ 𝑀0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡) and 𝑁0(ℎλ2𝑗, ℎλ2𝑗+2, 2𝑡) ≤ 𝑁0(ℎλ2𝑗, 𝑔λ2𝑗+1, 𝑡) ◊ 𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡) for t ≫θ. One writes
2326-9865
Vol. 71 No. 3s2 (2022) 760 http://philstat.org.ph
1
𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡),− 1 ≤ {
𝑎 (𝑀 1
0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡)− 1) +𝑏 ( 𝑀0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡)
𝑀0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡)∗𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)− 1)
+𝑐 ( 1
𝑀0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡)− 1 + 1
𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)− 1)
+𝑑 ( 1
𝑀0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡)− 1 + 1
𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)− 1) }
and
𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡) ≤ {
𝑎 (𝑁0(ℎλ2𝑗, 𝑔λ2𝑗+1, 𝑡)) +𝑏 (𝑁0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡) ◊ 𝑁0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)
𝑁0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡) ) +𝑐 (𝑁0(ℎλ2𝑗, 𝑔λ2𝑗+1, 𝑡) + 𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡)) +𝑑 (𝑁0(ℎλ2𝑗, 𝑔λ2𝑗+1, 𝑡) + 𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡))}
(7) This implies that
1
𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)− 1 ≤ 𝛽 ( 1
𝑀0(ℎλ2𝑗,𝑔λ2𝑗+1,𝑡)− 1) For t ≫θ and
𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡) ≤ 𝛽 (𝑁0(ℎλ2𝑗, 𝑔λ2𝑗+1, 𝑡)) (8)
Where γ = a + c + d/1 − b − c − d < 1 since (a + b + 2c + 2 d) < 1.
Similarly,
1
𝑀0(ℎλ2𝑗+1,𝑔λ2𝑗+3,𝑡)− 1 = 1
𝑀0(𝐴λ2𝑗+2,𝐵λ2𝑗+1,𝑡)− 1
≤
{
𝑎 ( 1
𝑀0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡)− 1) + 𝑏 ( 𝑀0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡)
𝑀0(ℎλ2𝑗+2, 𝐵λ2𝑗+1, 2𝑡) ∗ 𝑀0(𝑔λ2𝑗+1, 𝐴λ2𝑗+2, 2𝑡)− 1)
+𝑐 ( 1
𝑀0(ℎλ2𝑗+2, 𝐴λ2𝑗+2, 𝑡)− 1 + 1
𝑀0(𝑔λ2𝑗+1, 𝐵λ2𝑗+1, 𝑡)− 1)
+𝑑 ( 1
𝑀0(𝑔λ2𝑗+1, 𝐴λ2𝑗+2, 𝑡)− 1 + 1
𝑀0(ℎλ2𝑗+2, 𝐵λ2𝑗+1, 𝑡)− 1)
}
= {
𝑎 (𝑀 1
0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)− 1) + 𝑏 (𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)
𝑀0(𝑔λ2𝑗+1,𝑔λ2𝑗+3,2𝑡))
+𝑐 ( 1
𝑀0(ℎλ2𝑗+2,𝑔λ2𝑗+3,𝑡)− 1 + 1
𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)− 1)
+𝑑 ( 1
𝑀0(𝑔λ2𝑗+1,𝑔λ2𝑗+3,𝑡)− 1)
}
and
1
𝑁0(ℎλ2𝑗+1,𝑔λ2𝑗+3,𝑡)− 1 = 1
𝑁0(𝐴λ2𝑗+2,𝐵λ2𝑗+1,𝑡)− 1
2326-9865
Vol. 71 No. 3s2 (2022) 761 http://philstat.org.ph
≤ {
𝑎 (𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡)) + 𝑏 (𝑁0(ℎλ2𝑗+2, 𝐵λ2𝑗+1, 2𝑡)◊𝑁0(𝑔λ2𝑗+1, 𝐴λ2𝑗+2, 2𝑡) 𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡) ) +𝑐 (𝑁0(ℎλ2𝑗+2, 𝐴λ2𝑗+2, 𝑡) + 𝑁0(𝑔λ2𝑗+1, 𝐵λ2𝑗+1, 𝑡))
+𝑑(𝑁0(𝑔λ2𝑗+1, 𝐴λ2𝑗+2, 𝑡) + 𝑁0(ℎλ2𝑗+2, 𝐵λ2𝑗+1, 𝑡)) }
= {
𝑎 (𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡)) + 𝑏 (𝑁0(𝑔λ2𝑗+1,𝑔λ2𝑗+3,2𝑡)
𝑁0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)) +𝑐 (𝑁0(ℎλ2𝑗+2, 𝑔λ2𝑗+3, 𝑡) + 𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡))
+𝑑(𝑁0(𝑔λ2𝑗+1, 𝑔λ2𝑗+3, 𝑡)) }
(9)
Again, By Definition 2 (iii & vii), 𝑀0(𝑔λ2𝑗+1, 𝑔λ2𝑗+3, 2𝑡) ≥ 𝑀0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡)∗ 𝑀0(ℎλ2𝑗+2, 𝑔λ2𝑗+3, 𝑡) and 𝑁0(𝑔λ2𝑗+1, 𝑔λ2𝑗+3, 2𝑡) ≤ 𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡) ◊ 𝑁0(ℎλ2𝑗+2, 𝑔λ2𝑗+3, 𝑡) for t ≫θ. we have
1
𝑀0(ℎλ2𝑗+1,𝑔λ2𝑗+3,𝑡)− 1 ≤ {
𝑎 ( 1
𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)− 1) +𝑏 ( 𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)
𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)∗𝑀0(ℎλ2𝑗+2,𝑔λ2𝑗+3,𝑡)− 1)
+𝑐 ( 1
𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)− 1 + 1
𝑀0(ℎλ2𝑗+2,𝑔λ2𝑗+3,𝑡)− 1)
+𝑑 ( 1
𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)− 1 + 1
𝑀0(ℎλ2𝑗+2,𝑔λ2𝑗+3,𝑡)− 1) }
and
𝑁0(ℎλ2𝑗+1, 𝑔λ2𝑗+3, 𝑡) ≤ {
𝑎 (𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡)) +𝑏 (𝑁0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)◊ 𝑁0(ℎλ2𝑗+2,𝑔λ2𝑗+3,𝑡)
𝑁0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡) ) +𝑐 (𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡) + 𝑁0(ℎλ2𝑗+2, 𝑔λ2𝑗+3, 𝑡))
+𝑑(𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡) + 𝑁0(ℎλ2𝑗+2, 𝑔λ2𝑗+3, 𝑡)) }
(10) This implies that,
1
𝑀0(ℎλ2𝑗+2,𝑔λ2𝑗+3,𝑡)− 1 ≤ 𝛽 ( 1
𝑀0(𝑔λ2𝑗+1,ℎλ2𝑗+2,𝑡)− 1) For t ≫θ and 𝑁0(ℎλ2𝑗+2, 𝑔λ2𝑗+3, 𝑡) ≤ 𝛽 (𝑁0(𝑔λ2𝑗+1, ℎλ2𝑗+2, 𝑡))
(11)
where the value of 𝛽 is the same as in (8). Now, from (3), (8), (11), and by induction, we have
1
𝑀0(ξ2j+2,𝜉2𝑗+3,𝑡)− 1 ≤ 𝛽 ( 1
𝑀0(𝜉2𝑗+1,𝜉2𝑗+2,𝑡)− 1)
≤ 𝛽2( 1
𝑀0(𝜉2𝑗+1,𝜉2𝑗+2,𝑡)− 1) ≤ ⋯ ≤ 𝛽2𝑗+2( 1
𝑀0(𝜉0,𝜉1,𝑡)− 1) → 0. As 𝑗 →∞.
and 𝑁0(ξ2j+2, 𝜉2𝑗+3, 𝑡) ≤ 𝛽 (𝑁0(𝜉2𝑗+1, 𝜉2𝑗+2, 𝑡))
≤ 𝛽2(𝑁0(𝜉2𝑗+1, 𝜉2𝑗+2, 𝑡)) ≤ ⋯ ≤ 𝛽2𝑗+2(𝑁0(𝜉0, 𝜉1, 𝑡)) → 0. As 𝑗 →∞. (12)
2326-9865
Vol. 71 No. 3s2 (2022) 762 http://philstat.org.ph
Its prove that a sequence {ξ𝑗}𝑗≥0 is a IFC contractive, and we get that,
𝑗→∞lim𝑀0(𝜉𝑗, 𝜉𝑗+1, 𝑡) = 1 and lim
𝑗→∞𝑁0(𝜉𝑗, 𝜉𝑗+1, 𝑡) = 0 for t ≫θ (13)
Since 𝑀0, 𝑁0 is triangular, then ∀ k > j ≥ j0,
1
𝑀0(𝜉𝑗,𝜉𝑘,𝑡)− 1 ≤ ( 1
𝑀0(𝜉𝑗,𝜉𝑗+1,𝑡)− 1) + ( 1
𝑀0(𝜉𝑗+1,𝜉𝑗+2,𝑡)− 1) + ⋯ + ( 1
𝑀0(𝜉𝑘−1,𝜉𝑘,𝑡)− 1) ≤ (𝛽𝑗+ 𝛽𝑗+1+ ⋯ + 𝛽𝑘−1) ( 1
𝑀0(𝜉0,𝜉1,𝑡)− 1) → 0. As 𝑗 →
∞ and
𝑁0(𝜉𝑗, 𝜉𝑘, 𝑡) ≤ 𝑁0(𝜉𝑗, 𝜉𝑗+1, 𝑡) + 𝑁0(𝜉𝑗+1, 𝜉𝑗+2, 𝑡) + ⋯ + 𝑁0(𝜉𝑘−1, 𝜉𝑘, 𝑡)
≤ (𝛽𝑗 + 𝛽𝑗+1+ ⋯ + 𝛽𝑘−1)(𝑁0(𝜉0, 𝜉1, 𝑡)) → 0. As 𝑗 →∞ (14)
Hence, proved that {ξ𝑗} is a Cauchy sequence. Now by the completeness of IFCM space (𝑈, 𝑀0, 𝑁0,∗,◊) , ∃ξ ∈ U so that ξ𝑗 ⟶ξ as j ⟶∞. Now for its subsequences, we have that gλ2𝑗+1⟶ξ, hλ2𝑗+2 ⟶ξ, Aλ2𝑗⟶ξ, and Bλ2𝑗+1⟶ ξ as j ⟶∞.
(15)
Since, a self-mapping h ∶ U ⟶ U is continuous, therefore
h(gλ2𝑗+1) ⟶ hξ, h(hλ2𝑗+2) ⟶ hξ, h(Aλ2𝑗) ⟶ hξ, and ℎ(Bλ2𝑗+1) ⟶ hξ as j ⟶∞.
(16)
By hypothesis (2), a (A, h) is compatible, therefore,
𝑗→∞lim𝑀0(𝐴(ℎλ2𝑗), ℎ(𝐴λ2𝑗), 𝑡) = lim
𝑗→∞𝑀0(𝐴(ℎλ2𝑗), ℎξ , 𝑡) = 1, ⟹ lim
𝑗→∞𝑀0(ℎ(𝐴λ2𝑗), ℎξ , 𝑡) = 1 for t ≫θ and
𝑗→∞lim𝑁0(𝐴(ℎλ2𝑗), ℎ(𝐴λ2𝑗), 𝑡) = lim
𝑗→∞𝑁0(𝐴(ℎλ2𝑗), ℎξ , 𝑡) = 0, ⟹ lim
𝑗→∞𝑁0(ℎ(𝐴λ2𝑗), ℎξ , 𝑡) = 0 for t ≫θ (17)
Next, we have to prove that hξ = ξ, then, by Definition 2 (iii & vii), 𝑀0(ℎ𝜉, 𝜉, 2𝑡) ≥ 𝑀𝑟(ℎ𝜉, 𝐴(ℎλ2𝑗), 𝑡) ∗ 𝑀𝑟(𝐴(ℎλ2𝑗),ξ , 𝑡) for t ≫ θ and
𝑁0(ℎ𝜉, 𝜉, 2𝑡) ≤ 𝑁𝑟(ℎ𝜉, 𝐴(ℎλ2𝑗), 𝑡)◊𝑁𝑟(𝐴(ℎλ2𝑗),ξ , 𝑡) for t ≫θ (18)
Since, a pair (A, h) is compatible, by using lim
𝑗→∞, and by the view of (15), (17), and (18), we have
𝑀0(ℎ𝜉, 𝜉, 2𝑡) ≥ lim
𝑗→∞ 𝑀𝑟(ℎ𝜉, 𝐴(ℎλ2𝑗), 𝑡) ∗ lim
𝑗→∞ 𝑀𝑟(𝐴(ℎλ2𝑗),ξ , 𝑡) = 1 ∗ 1 = 1 for t ≫θ and 𝑁0(ℎ𝜉, 𝜉, 2𝑡) ≤ lim
𝑗→∞ 𝑁𝑟(ℎ𝜉, 𝐴(ℎλ2𝑗), 𝑡)◊lim
𝑗→∞ 𝑁𝑟(𝐴(ℎλ2𝑗),ξ , 𝑡) = 0◊0 = 0 for t ≫θ (19)
Hence, M0(hξ,ξ, 2t) = 1 ⇒ hξ = ξ, for t ≫θ. Now, we prove that Aξ = ξ, then again by Definition 2 (iii & vii),
𝑀0(𝐴𝜉, 𝜉, 2𝑡) ≥ 𝑀𝑟(𝐴𝜉, ℎ(𝐴λ2𝑗), 𝑡) ∗ 𝑀𝑟(ℎ(𝐴λ2𝑗),ξ , 𝑡) for t ≫θ and
𝑁0(𝐴𝜉, 𝜉, 2𝑡) ≤ 𝑁𝑟(𝐴𝜉, ℎ(𝐴λ2𝑗), 𝑡)◊𝑁𝑟(ℎ(𝐴λ2𝑗),ξ , 𝑡) for t ≫θ (20)
2326-9865
Vol. 71 No. 3s2 (2022) 763 http://philstat.org.ph Again by using lim
𝑗→∞, and by the view of (15), (17), and (20), we have 𝑀0(𝐴𝜉, 𝜉, 2𝑡) ≥ lim
𝑗→∞ 𝑀𝑟(𝐴𝜉, ℎ(𝐴λ2𝑗), 𝑡) ∗ lim
𝑗→∞ 𝑀0(ℎ(𝐴λ2𝑗),ξ , 𝑡) = 1 ∗ 1 = 1 for t ≫θ and
𝑁0(𝐴𝜉, 𝜉, 2𝑡) ≤ lim
𝑗→∞ 𝑁𝑟(𝐴𝜉, ℎ(𝐴λ2𝑗), 𝑡)◊lim
𝑗→∞ 𝑁0(ℎ(𝐴λ2𝑗),ξ , 𝑡) = 0◊0 = 0 for t ≫θ (21)
Hence, 𝑀0(𝐴𝜉, 𝜉, 2𝑡) = 1 ⇒ Aξ = ξ, and 𝑁0(𝐴𝜉, 𝜉, 2𝑡) = 0 ⇒ Aξ = ξ for t ≫θ. Thus, we get that Aξ = hξ = ξ. Next, we have to prove that Bξ = gξ. Now by hypothesis (1), i.e., A(U) ⊆ g(U), and there exists ρ ∈ U such that ξ = Aξ = gρ. Then, by view of (4), for t ≫θ,
1
𝑀0(Bρ,gρ,𝑡)− 1 = 1
𝑀0(𝐴𝜉,Bρ,𝑡)− 1 ≤ {
𝑎 ( 1
𝑀0(ℎ𝜉,gρ,𝑡)− 1) + 𝑏 ( 𝑀0(ℎ𝜉,gρ,𝑡)
𝑀0(ℎ𝜉 ,Bρ,2𝑡)∗𝑀0(gρ,𝐴𝜉,2𝑡)− 1) +𝑐 ( 1
𝑀0(ℎ𝜉,𝐴𝜉,𝑡)− 1 + 1
𝑀0(gρ,Bρ,𝑡)− 1) + 𝑑 ( 1
𝑀0(gρ,𝐴𝜉,𝑡)− 1 + 1
𝑀0(ℎ𝜉,𝐵ρ,𝑡)− 1)}
= {
𝑎 ( 1
𝑀0(ℎ𝜉, 𝜉, 𝑡)− 1) + 𝑏 ( 𝑀0(ℎ𝜉, gρ, 𝑡)
𝑀0(ℎ𝜉 , Bρ, 2𝑡) ∗ 𝑀0(𝜉, 𝐴𝜉, 2𝑡)− 1)
+𝑐 ( 1
𝑀0(ℎ𝜉, 𝜉, 𝑡)− 1 + 1
𝑀0(gρ, Bρ, 𝑡)− 1) + 𝑑 ( 1
𝑀0(𝜉, 𝐴𝜉, 𝑡)− 1 + 1
𝑀0(ℎ𝜉, 𝐵ρ, 𝑡)− 1) } = {𝑏 (𝑀0(ℎ𝜉,gρ,𝑡)
𝑀0(ℎ𝜉,Bρ,2𝑡)− 1) + 𝑐 ( 1
𝑀0(gρ,𝐵ρ,𝑡)− 1) + 𝑑 ( 1
𝑀0(gρ,𝐵ρ,𝑡)− 1)} and 𝑁0(Bρ, gρ, 𝑡) = 𝑁0(𝐴𝜉, Bρ, 𝑡)
≤ { 𝑎(𝑁0(ℎ𝜉, gρ, 𝑡)) + 𝑏 (𝑁0(ℎ𝜉 ,Bρ,2𝑡)∗𝑁0(gρ,𝐴𝜉,2𝑡) 𝑁0(ℎ𝜉,gρ,𝑡) )
+𝑐(𝑁0(ℎ𝜉, 𝐴𝜉, 𝑡) + 𝑁0(gρ, Bρ, 𝑡)) + 𝑑(𝑁0(gρ, 𝐴𝜉, 𝑡) + 𝑁0(ℎ𝜉, 𝐵ρ, 𝑡))} = { 𝑎(𝑁0(ℎ𝜉, 𝜉, 𝑡)) + 𝑏 (𝑁0(ℎ𝜉 ,Bρ,2𝑡)∗𝑁0(𝜉,𝐴𝜉,2𝑡)
𝑁0(ℎ𝜉,gρ,𝑡) )
+𝑐(𝑁0(ℎ𝜉, 𝜉, 𝑡) + 𝑁0(gρ, Bρ, 𝑡)) + 𝑑(𝑁0(𝜉, 𝐴𝜉, 𝑡) + 𝑁0(ℎ𝜉, 𝐵ρ, 𝑡))} = {𝑏 (𝑁0(ℎ𝜉,Bρ,2𝑡)
𝑁0(ℎ𝜉,gρ,𝑡)) + 𝑐(𝑁0(gρ, 𝐵ρ, 𝑡)) + 𝑑(𝑁0(gρ, 𝐵ρ, 𝑡))}
(22)
Again , by Definition 2 (iii & vii), 𝑀0(hξ, Bρ, 2t) ≥ 𝑀0(hξ, gρ, t) ∗ 𝑀0(gρ, Bρ, t) and 𝑁0(hξ, Bρ, 2t) ≤ 𝑁0(hξ, gρ, t) ◊𝑁0(gρ, Bρ, t) for t ≫θ: It follows that
= 1
𝑀0(Bρ,gρ,𝑡)− 1 + 𝑏 ( 𝑀0(ℎ𝜉,gρ,𝑡)
𝑀0(ℎ𝜉 ,gρ,2𝑡)∗𝑀0(gρ,Bρ,2𝑡)− 1) + (𝑐 + 𝑑) ( 1
𝑀0(gρ,Bρ,𝑡)− 1)
= (𝑏 + 𝑐 + 𝑑) ( 1
𝑀0(gρ,Bρ,𝑡)− 1) For t ≫θ and
= 𝑁0(Bρ, gρ, 𝑡) + 𝑏 (𝑁0(ℎ𝜉 ,gρ,2𝑡)◊ 𝑁0(gρ,Bρ,2𝑡)
𝑁0(ℎ𝜉,gρ,𝑡) ) + (𝑐 + 𝑑)(𝑁0(gρ, Bρ, 𝑡))
= (𝑏 + 𝑐 + 𝑑)(𝑁0(gρ, Bρ, 𝑡))For t ≫θ (23)
Noticing that (b + c + d) < 1, therefore, 𝑀0(Bρ, gρ, t) = 1 ⇒ Bρ = gρ and 𝑁0(Bρ, gρ, t) = 0 ⇒ Bρ = gρ for t ≫θ, hence, Bρ = gρ = ξ.. Now by hypothesis (3), a pair (B, g) is weakly compatible, therefore,
gξ = g(Bρ) = B(gρ) = Bξ:
(24)
2326-9865
Vol. 71 No. 3s2 (2022) 764 http://philstat.org.ph
Next, we have to prove that Bξ = ξ, then again by view of (4) and by using Definition 2 (iii
& v), for t ≫θ,
1
𝑀0(B𝜉,𝜉,𝑡)− 1 = 1
𝑀0(B𝜉,A𝜉,𝑡)− 1
≤ {
𝑎 ( 1
𝑀0(ℎ𝜉, g𝜉, 𝑡)− 1) + 𝑏 ( 𝑀0(ℎ𝜉, g𝜉, 𝑡)
𝑀0(ℎ𝜉 , B𝜉, 2𝑡) ∗ 𝑀0(g𝜉, 𝐴𝜉, 2𝑡)− 1)
+𝑐 ( 1
𝑀𝑟(ℎ𝜉, 𝐴𝜉, 𝑡)− 1 + 1
𝑀𝑟(g𝜉, B𝜉, 𝑡)− 1) + 𝑑 ( 1
𝑀𝑟(g𝜉, 𝐴𝜉, 𝑡)− 1 + 1
𝑀𝑟(ℎ𝜉, 𝐵𝜉, 𝑡)− 1) } ≤ {
𝑎 ( 1
𝑀0(𝜉,B𝜉,𝑡)− 1) + 𝑏 ( 𝑀0(ℎ𝜉,g𝜉,𝑡)
𝑀0(ℎ𝜉,g𝜉,𝑡)∗𝑀0(𝑔𝜉 ,B𝜉,𝑡)∗𝑀0(g𝜉,𝜉,𝑡)∗𝑀0(𝜉,A𝜉,𝑡)− 1) +𝑐 ( 1
𝑀𝑟(ℎ𝜉,𝜉,𝑡)− 1 + 1
𝑀𝑟(g𝜉,B𝜉,𝑡)− 1) + 𝑑 ( 1
𝑀𝑟(B𝜉,𝜉,𝑡)− 1 + 1
𝑀𝑟(𝜉,𝐵𝜉,𝑡)− 1)} and
𝑁0(B𝜉, 𝜉, 𝑡) = 𝑁0(B𝜉, A𝜉, 𝑡)
≤ { 𝑎(𝑁0(ℎ𝜉, g𝜉, 𝑡)) + 𝑏 (𝑁0(ℎ𝜉 , B𝜉, 2𝑡)◊𝑁0(g𝜉, 𝐴𝜉, 2𝑡) 𝑁0(ℎ𝜉, g𝜉, 𝑡) )
+𝑐(𝑁𝑟(ℎ𝜉, 𝐴𝜉, 𝑡) + 𝑁𝑟(g𝜉, B𝜉, 𝑡)) + 𝑑(𝑁𝑟(g𝜉, 𝐴𝜉, 𝑡) + 𝑁𝑟(ℎ𝜉, 𝐵𝜉, 𝑡)) }
≤ { 𝑎(𝑁0(𝜉, B𝜉, 𝑡)) + 𝑏 (𝑁0(ℎ𝜉,g𝜉,𝑡)◊𝑁0(𝑔𝜉 ,B𝜉,𝑡)◊𝑁0(g𝜉,𝜉,𝑡)◊𝑁0(𝜉,A𝜉,𝑡)
𝑀0(ℎ𝜉,g𝜉,𝑡) )
+𝑐(𝑁𝑟(ℎ𝜉, 𝜉, 𝑡) + 𝑁𝑟(g𝜉, B𝜉, 𝑡)) + 𝑑(𝑁𝑟(B𝜉, 𝜉, 𝑡) + 𝑁𝑟(𝜉, 𝐵𝜉, 𝑡))
} (25)
After simplification, we obtain
1
𝑀𝑟(B𝜉,𝜉,𝑡)− 1 ≤ (𝑎 + 𝑏 + 2𝑑) ( 1
𝑀𝑟(B𝜉,𝜉,𝑡)− 1) ⟹ (1 − 𝑎 − 𝑏 − 2𝑑) ( 1
𝑀𝑟(B𝜉,𝜉,𝑡)− 1) ≤ 0.for t ≫θ and
𝑁𝑟(B𝜉, 𝜉, 𝑡) ≤ (𝑎 + 𝑏 + 2𝑑)(𝑁𝑟(B𝜉, 𝜉, 𝑡)) ⟹ (1 − 𝑎 − 𝑏 − 2𝑑)(𝑁𝑟(B𝜉, 𝜉, 𝑡)) ≤ 0.for t ≫
θ, (26) Since (1 − a − b − 2d) ≠ 0, therefore, 𝑀𝑟(Bξ,ξ, t) = 1 ⇒ Bξ = ξ and 𝑁𝑟(Bξ,ξ, t) =
0 ⇒ Bξ = ξ for t ≫θ, which further implies that gξ = ξ. Hence, proved that hξ = gξ = Aξ = Bξ = ξ, that is, ξ is the CFP of the mappings 𝐴, 𝐵, 𝑔 and ℎ.
Uniqueness:
let η ∈ U be the other CFP of the mappings A, B, g and h in U such that hη = gη = Aη = Bη = η. Then by view of (4) and by using Definition 2 (iii & v), for
t ≫θ,
1
𝑀𝑟(𝜉,η,𝑡)− 1 = 1
𝑀𝑟(A𝜉,Bη,𝑡)− 1
≤ {
𝑎 ( 1
𝑀0(ℎ𝜉, gη, 𝑡)− 1) + 𝑏 ( 𝑀0(ℎ𝜉, gη, 𝑡)
𝑀0(ℎ𝜉 , Bη, 2𝑡) ∗ 𝑀0(gη, 𝐴𝜉, 2𝑡)− 1)
+𝑐 ( 1
𝑀𝑟(ℎ𝜉, 𝐴𝜉, 𝑡)− 1 + 1
𝑀𝑟(gη, Bη, 𝑡)− 1) + 𝑑 ( 1
𝑀𝑟(gη, 𝐴𝜉, 𝑡)− 1 + 1
𝑀𝑟(ℎ𝜉, 𝐵η, 𝑡)− 1) } ≤ {
𝑎 ( 1
𝑀0(𝜉,η,𝑡)− 1) + 𝑏 ( 𝑀0(𝜉,η,𝑡)
𝑀0(𝜉,𝜉,𝑡)∗𝑀0(𝜉 ,η,𝑡)∗𝑀0(η,η,𝑡)∗𝑀0(η,𝜉,𝑡)− 1) +2𝑑 ( 1
𝑀𝑟(η,𝜉,𝑡)− 1) } and
𝑁𝑟(𝜉,η, 𝑡) = 𝑁𝑟(A𝜉, Bη, 𝑡)
2326-9865
Vol. 71 No. 3s2 (2022) 765 http://philstat.org.ph
≤ { 𝑎(𝑁0(ℎ𝜉, gη, 𝑡)) + 𝑏 (𝑁0(ℎ𝜉 , Bη, 2𝑡)◊𝑁0(gη, 𝐴𝜉, 2𝑡) 𝑁0(ℎ𝜉, gη, 𝑡) )
+𝑐(𝑁𝑟(ℎ𝜉, 𝐴𝜉, 𝑡) + 𝑁𝑟(gη, Bη, 𝑡)) + 𝑑(𝑁𝑟(gη, 𝐴𝜉, 𝑡) + 𝑁𝑟(ℎ𝜉, 𝐵η, 𝑡)) }
≤ {𝑎(𝑁0(𝜉,η, 𝑡)) + 𝑏 (𝑁0(𝜉,𝜉,𝑡)◊𝑁0(𝜉 ,η,𝑡)◊𝑁𝑁 0(η,η,𝑡)◊𝑁0(η,𝜉,𝑡)
0(𝜉,η,𝑡) )
+2𝑑(𝑁𝑟(η, 𝜉, 𝑡)) }
(27)
After simplification, we obtain
1
𝑀𝑟(𝜉,η,𝑡)− 1 ≤ (𝑎 + 𝑏 + 2𝑑) ( 1
𝑀𝑟(𝜉,η,𝑡)− 1) ⟹ (1 − 𝑎 − 𝑏 − 2𝑑) ( 1
𝑀𝑟(𝜉,η,𝑡)− 1) ≤ 0. for t ≫θ, and
𝑁𝑟(𝜉,η, 𝑡) ≤ (𝑎 + 𝑏 + 2𝑑)(𝑁𝑟(𝜉,η, 𝑡)) ⟹ (1 − 𝑎 − 𝑏 − 2𝑑)(𝑁𝑟(𝜉,η, 𝑡)) ≤ 0. for t ≫θ, (28)
Since (1 − a − b − 2d) ≠ 0, therefore, 𝑀𝑟(ξ,η, t) = 1 ⇒ ξ = η and 𝑁𝑟(ξ,η, t) = 0 ⇒ ξ = η for t ≫ θ. This completes the proof.
Corollary 11.
Let A, B, g, h ∶ U ⟶ U be the four self mappings on a complete IFCM space (𝑈, 𝑀0, 𝑁0,∗,◊) in which a IFCM, 𝑀0, 𝑁0 is triangular and satisfies
1
𝑀0(𝐴𝜆,𝐵𝜇,𝑡)− 1 ≤ {
𝑎 ( 1
𝑀0(ℎ𝜆,𝑔𝜇,𝑡)− 1) + 𝑏 ( 𝑀0(ℎ𝜆,𝑔𝜇,𝑡)
𝑀0(ℎ𝜆,𝐵𝜇,2𝑡)∗𝑀0(𝑔𝜇,𝐴𝜆,2𝑡)− 1) +𝑐 ( 1
𝑀𝑟(ℎ𝜆,𝐴𝜆,𝑡)− 1 + 1
𝑀𝑟(𝑔𝜇,𝐵𝜇,𝑡)− 1) } and 𝑁0(𝐴𝜆, 𝐵𝜇, 𝑡) ≤ {𝑎(𝑁0(ℎ𝜆, 𝑔𝜇, 𝑡)) + 𝑏 (𝑁0(ℎ𝜆,𝐵𝜇,2𝑡)◊𝑁0(𝑔𝜇,𝐴𝜆,2𝑡)
𝑁0(ℎ𝜆,𝑔𝜇,𝑡) )
+𝑐(𝑁𝑟(ℎ𝜆, 𝐴𝜆, 𝑡) + 𝑁𝑟(𝑔𝜇, 𝐵𝜇, 𝑡)) } (29)
∀ λ,μ ∈ U, t ≫ θ, and 0 ≤ a, b, c < 1 with (a + b + 2c) < 1. If A(U) ⊆ g(U), B(U) ⊆ h(U) and consider that
(1) h is a continuous self-mapping (2) A pair (A, h) is compatible, and (3) A pair (B, g) is weakly-compatible
Then, the mappings A, B, g, and h have a unique CFP in U.
Corollary 12.
Let A, B, g, h ∶ U ⟶ U be the four self mappings on a complete IFCM space (𝑈, 𝑀0, 𝑁0,∗,◊) in which a IFCM, 𝑀0, 𝑁0 is triangular and satisfies
1
𝑀0(𝐴𝜆,𝐵𝜇,𝑡)− 1 ≤ {
𝑎 ( 1
𝑀0(ℎ𝜆,𝑔𝜇,𝑡)− 1) + 𝑏 ( 𝑀0(ℎ𝜆,𝑔𝜇,𝑡)
𝑀0(ℎ𝜆,𝐵𝜇,2𝑡)∗𝑀0(𝑔𝜇,𝐴𝜆,2𝑡)− 1) +𝑑 ( 1
𝑀𝑟(𝑔𝜇,𝐴𝜆,𝑡)− 1 + 1
𝑀𝑟(ℎ𝜆,𝐵𝜇,𝑡)− 1) } and 𝑁0(𝐴𝜆, 𝐵𝜇, 𝑡) ≤ {𝑎(𝑁0(ℎ𝜆, 𝑔𝜇, 𝑡)) + 𝑏 (𝑁0(ℎ𝜆,𝐵𝜇,2𝑡)◊ 𝑁0(𝑔𝜇,𝐴𝜆,2𝑡)
𝑁0(ℎ𝜆,𝑔𝜇,𝑡) )
+𝑑(𝑁𝑟(𝑔𝜇, 𝐴𝜆, 𝑡) + 𝑁𝑟(ℎ𝜆, 𝐵𝜇, 𝑡)) } (30)
∀ λ,μ ∈ U, t ≫θ, and 0 ≤ a, b, c < 1 with (a + b + 2d) < 1. If A(U) ⊆ g(U), B(U) ⊆ h(U) and consider that
(1) h is a continuous self-mapping (2) A pair (A, h) is compatible, and
2326-9865
Vol. 71 No. 3s2 (2022) 766 http://philstat.org.ph
(3) A pair (B, g) is weakly-compatible
Then, the mappings A, B, g, and h have a unique CFP in U.
Corollary 13.
Let A, B, g, h ∶ U ⟶ U be the four self mappings on a complete IFCM space (𝑈, 𝑀0, 𝑁0,∗,◊) in which a IFCM, 𝑀0, 𝑁0 is triangular and satisfies
1
𝑀0(𝐴𝜆,𝐵𝜇,𝑡)− 1 ≤ {
𝑎 ( 1
𝑀0(ℎ𝜆,𝑔𝜇,𝑡)− 1) + 𝑐 ( 1
𝑀𝑟(ℎ𝜆,𝐴𝜆,𝑡)− 1 + 1
𝑀𝑟(𝑔𝜇,𝐵𝜇,𝑡)− 1) +𝑑 ( 1
𝑀𝑟(𝑔𝜇,𝐴𝜆,𝑡)− 1 + 1
𝑀𝑟(ℎ𝜆,𝐵𝜇,𝑡)− 1) } and 𝑁0(𝐴𝜆, 𝐵𝜇, 𝑡) ≤ {𝑎(𝑁0(ℎ𝜆, 𝑔𝜇, 𝑡)) + 𝑐(𝑁𝑟(ℎ𝜆, 𝐴𝜆, 𝑡) + 𝑁𝑟(𝑔𝜇, 𝐵𝜇, 𝑡))
+𝑑(𝑁𝑟(𝑔𝜇, 𝐴𝜆, 𝑡) + 𝑁𝑟(ℎ𝜆, 𝐵𝜇, 𝑡)) } (31)
∀ λ,μ ∈ U, t ≫ θ, and 0 ≤ a, b, c < 1 with (a + 2c + 2d) < 1. If A(U) ⊆ g(U), B(U) ⊆ h(U) and consider that
(1) h is a continuous self-mapping (2) A pair (A, h) is compatible, and (3) A pair (B, g) is weakly-compatible
Then, the mappings A, B, g, and h have a unique CFP in U.
Example 14.
Assume that U = [0, ∞), ∗,◊ be a continuous t-norm, t-conorm and 𝑀0, 𝑁0 ∶ U × U × (0, ∞) ⟶ [0, 1] be written as
𝑀0(𝜆, 𝜇, 𝑡) = 𝑡
𝑡+|𝜆−𝜇|, 𝑁0(𝜆, 𝜇, 𝑡) = |𝜆−𝜇|
𝑡+|𝜆−𝜇|, ∀𝜆, 𝜇 ∈ 𝑈, 𝑡 ≫ 𝜃:
(32)
Then, it is easy to verify that IFCM 𝑀0, 𝑁0 is triangular and (𝑈, 𝑀0, 𝑁0,∗,◊) is a complete IFCM space. Now, the mappings, A, g, h, B ∶ U ⟶ U, be defined by, (for all λ ∈ U);
𝐴( λ ) = 𝐵( λ ) = (
1 3(3 λ
4 +1
8) , 𝑖𝑓 λ ≠ 0
o, if λ = 0 (33)
And
ℎ( λ ) = 𝑔( λ ) = ((3 λ
4 +1
8) , 𝑖𝑓 λ ≠ 0
o, if λ = 0 (34)
Since, from the above equation, A(U) = B(U) and g(U) = h(U), so that we conclude that A(U) ⊆ g(U) or B(U) ⊆ h(U). Then
1
𝑀0(ℎ𝜆,𝑔𝜇,𝑡)− 1 =|ℎ𝜆−𝑔𝜇|
𝑡 =3|𝜆−𝜇|
4𝑡 for 𝑡 ≫ 𝜃: and 𝑁0(ℎ𝜆, 𝑔𝜇, 𝑡) =|ℎ𝜆−𝑔𝜇|
𝑡 = 3|𝜆−𝜇|
4𝑡 for 𝑡 ≫ 𝜃:
(35) And
1
𝑀0(𝐴𝜆,𝐵𝜇,𝑡)− 1 =|𝐴(𝜆)−𝐵(𝜇)|
𝑡 =1
3( 1
𝑀0(ℎ𝜆,𝑔𝜇,𝑡)− 1) for 𝑡 ≫ 𝜃: and 𝑁0(𝐴𝜆, 𝐵𝜇, 𝑡) =|𝐴(𝜆)−𝐵(𝜇)|
𝑡 =1
3(𝑁0(ℎ𝜆, 𝑔𝜇, 𝑡)) for 𝑡 ≫ 𝜃:
(36)